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Abstract. This article deals with the parabolic equation
dw —c(t)0jw = fin D, D= {(t,x) ER*:t >0, 1 (t) <z < pa(t)}

with ¢; : [0,4+00[— R,i = 1, 2 and ¢ : [0,+oo[— R satisfying some conditions and the problem is
supplemented with boundary conditions of Dirichlet-Robin type. We study the global regularity problem
in a suitable parabolic Sobolev space. We prove in particular that for f € L? (D) there exists a unique
solution w such that w, dyw, &w € L? (D), j =1, 2. Notice that the case of bounded non-rectangular
domains is studied in [9]. The proof is based on energy estimates after transforming the problem in a
strip region combined with some interpolation inequality. This work complements the results obtained
in [19] in the case of Cauchy-Dirichlet boundary conditions.

Keywords: parabolic equations, heat equation, non-rectangular domains, unbounded domains,
anisotropic Sobolev spaces.
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1. Introduction and statement of the main result

Let D be an open set of R? defined by

D:={(t,x) eR*:t>0, ¢1(t) <z < pa(t)}
where ; € C([0,+00[) N C1(0, +0), i =1, 2,
w(t):=@a(t) —p1(t) >0 Vt>0, and p(0) =0.
The lateral boundaries of D are defined by
Li={(t.pi(t) eR*:t>0},i=1, 2.

Let us introduce the following functional space:

H'? (D) := {w € L* (D) : dyw, d,w, 7w € L* (D)}

*bouzidilouanas@yahoo.fr, boumathe@gmail.com
Tarezkinet2000@yahoo.fr
(© Siberian Federal University. All rights reserved
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where L? (D) stands for the usual Lebesgue space of square-integrable functions on D. The space
H12 (D) is equipped with the natural norm, that is

2
2 2 2 ;o2
||w||7-¢1‘2(D) = ||w||L2(D) + Hathm(D) + Z H89ch||L2(D) .
j=1
We consider the problem: to find a function u € H12(D) that satisfies the equation
Opu — c(t)0%u = f a.e. on D (1.1)

and the boundary conditions
u|Fl = Oyu+ ﬁgu|F2 =0, (1.2)

where f € L?(D) and the coefficient ¢ is a continuous real-valued function defined on [0, +oo],
differentiable on ]0, +oo[ and such that

O<a<e(t)<p

for every t € [0, +00[, where a and 3 are positive constants. Here, the coefficient /33, in boundary
conditions is a real number such that

B2 > 0.
T
u 0
T
L
D
t
o
»,/f/‘ -
o
7]

Fig. 1. The unbounded non-rectangular domain D

Problem (1.1)—(1.2) modelizes, for instance, the lateral diffusion of a pollutant in a flow of a
river with variable width. Note that the Robin type condition

Ozu + Baulp, =0,

means for instance, that the flux of diffusion of the pollutant is proportional to its propagation
along the wide of the river. The most interesting points of the parabolic problem studied here
is the unboundedness of D with respect to the time variable ¢ and the fact that D shrinks at
t = 0 (p(0) = 0) which prevent one using the methods in [13] and [14]. It is well known that
there are two main approaches for the study of boundary value problems in such non-regular
domains. The analysis can be done in weighted spaces with the weight controlling the behavior
of the solutions near the singularity of the boundary of the domain (see, for instance, [10,11]
and [12]). Our approach is different. Indeed, the space H!? used here has low smoothness but
one must add assumptions on the type of the domain D, as well as conditions on the coefficients
¢ and f2, near the singular point 0 and in the neighborhood of +co. So, our main result is the
following:
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Theorem 1.1. Let us assume that

I (D)@ (t) =0 as t =0T, i=1,2, (1.3)

2¢(t)B2 — @4 (t) = 0 a.e. t €]0,400], (1.4)

© and @' are uniformly bounded in a neighborhood of + oo, (1.5)
¢ is a decreasing function in)0,4o00[, (1.6)

and one of the following conditions is satisfied

(a) ¢ is increasing in a neighborhood of 400,

(b) M >0 [¢'[p < Mecft).

Then Problem (1.1), (1.2) admits a unique solution u € H'2(D).

The case where D is bounded (with ¢(t) = 1) is studied in [9]. The case where 83 = 00
corresponding to Cauchy-Dirichlet boundary conditions is studied in [19]. Whereas second-
order parabolic equations in bounded non-cylindrical domains are well studied (see for instance
[2,5,7,15-18] and the references therein), the literature concerning unbounded non-cylindrical
domains does not seem to be very rich. The regularity of the heat equation solution in a non-
smooth and unbounded domain (in the = direction) is obtained in [3,6,8] and [4].

In the next sections, we prove Theorem 1.1 in four steps:

(1) case of a bounded domain which can be transformed into a rectangle;

(2) case of an unbounded domain which can be transformed into a half strip;

(3) case of a small in time bounded triangular domain;

(4) finally, we use the previous steps and a trace result to complete the proof of Theorem 1.1.

2. The case of a bounded domain which can be transformed
into a rectangle

Let T be an arbitrary positive number. Denote by
Dy :={(t,z) eER*:0<t<T; o1 (t) <z < p2(t)}
with ¢ () > 0 for all ¢ € [0, 7] and consider the following problem:

0w — c(t)0?u = f1 a.e. on Dy,
ulp, = ulp, =0, (2.1)
Oy + Bgu|F2 =0,

where f1 € L*(D;) and Iy is the part of 9D; where t = 0.

Let us denote the inner product in L? (D;) by (.,.). Then, the uniqueness of the solutions
may be obtained by developing the inner product

(Opu — c(t)02u, u) .

Indeed, Let us consider v € H12(D;) a solution of Problem (2.1) with a null right-hand side
term. So,

O — c(t)0%u =0 in Dj.
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A
Btk =0
pu T r -
_1\1\
w=0 Dy
T > |
5 >
~
Fiy) _
!(_k__ 0

Fig. 2. The bounded domain Dy

In addition u fulfils the boundary conditions
u\FO = u|Fl = 8Iu—|—,6’2u|r2 =0.

Using Green formula, we have

/Dl (Bpu — c(t)D7u) u dt dz = /

(1 lul? vy — c(t)@xu.uum> do +/ c(t) (|8xu\2) dt dz,
D4 2 D1

where v4, v, are the components of the unit outward normal vector at 9D;. We shall rewrite
the boundary integral making use of the boundary conditions. On the part of the boundary
of Dy where t = 0, we have v = 0. Accordingly the corresponding boundary integral vanishes.
On the part of the boundary of D; where t = T, we have v, = 0 and 1, = 1. Accordingly the

corresponding boundary integral

w2(T)
5 [ @
»1(T)
is nonnegative. On the parts of the boundary where x = ¢; (t), i = 1,2, we have
N Y N ) 1)
L+ (#)" (1) L+ () ®)

and
u(t, 1 (t) = Ozu(t, 2 (t)) + Pau(t, 2 (t)) = 0.

Consequently, the corresponding integral is

1
|5 Celt)p = ()02 (2 1) .

Then, we obtain

1 /7T
/ (O — c(t)P2u) u dt do = 5 / (2¢(t)Ba — @b (1)) u? (t, 2 (1)) dt +
Dy 0

1 p2(T)
+= / |u|2(T,m)dx+/ c(t) (|8mu|2)dtdx.
2 Dy

v1(T)
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Consequently using the fact that u is the solution yields

/Dl c(t) (|6'ru\2) dt da =0,

because thanks to the condition (1.4) and to the fact that ¢(t) > 0 for every t € [0,4o00], we
have

p2(T)

1 (" 1
5/ (2e(t)B2 = ¢ (1) w? (t, 02 () dt + 5 / Jul? (T,x)dx+/ c(t) (|81u|2> dt dz > 0.

’ 1(T) o
This implies that |8,u|” = 0 and consequently &2u = 0. Then, the hypothesis dyu — c(t)2u = 0
gives 0yu = 0. Thus, u is a constant. The boundary conditions and the fact that Sy # 0, imply
that w = 0 in D;. This proves the uniqueness of the solution of Problem (2.1).
Now, let us look at the existence of solutions for Problem (2.1). The change of variables (¢, z) to

— t
(t, xgo(ftl)()) transforms D; into the rectangle @ = ]0,T[ x ]0,1[ and Problem (2.1) becomes

the following;:
c(t)
@ (t)

Ou+ a(t,x) Opu — 0%u = f; a.e. onQ,

ul;—g = ul,—g =0,

Ozt~ Pa(t)ul,_, =0,

() + oy (¢
where f; € L?(Q) and a (¢, z) = _339"()(‘:)901(). Observe that the coefficient a is bounded. So,
P

a(t,2)0, : H? (Q) — L*(Q)

the operator

is compact. Hence, it is sufficient to study the following problem:

oct) o
Oru 200 O;u= f1 a.e. on @,

uly_g = ul,_o =0, (2:2)
a:tu + ﬂ?@(t)u|x=1 = 07

where f; € L?(Q). It is clear that Problem (2.2) admits a (unique) solution u € H2(Q) because
c(t)
@ (1)
other hand, it is easy to verify that the aforementioned change of variable conserves the spaces
L? and H'2. Consequently, we have proved the following theorem:

the coefficient "

satisfies the "uniform parabolicity" condition (see, for example [1]). On

Theorem 2.1. Problem (2.1) admits a (unique) solution u € HY?(Dy).

3. The case of an unbounded domain which can be
transformed into a half strip

In this case, we set

Dy :={(t,z) ER*:t>0; 1 (t) <z <2 (t)}
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with ¢ (0) > 0 and consider the following problem:

Opu — c(t)0?u = f1 a.e. on Dy,
ulp, = ulp, =0, (3.1)
Osu + 52u|r2 =0,

where f; € L?(Ds), and Ty is the part of 9Dy where t = 0.

4
%u,e
3 ?]J‘u‘\',_,i..l,. _
_ﬁ\'ﬂ )
A
T
u=10 N
0 g
x> T
L,@ B
u—gp

Fig. 3. The unbounded domain Dy

The change of variables indicated in the previous section transforms D, into the half strip
P =]0,400[ x]0,1[. So Problem (3.1) can be written as follows:

c(t) B
Opu+ a (t, ) Oyu 2 Oiu= f1 a.e. on P,

u|t=0 = u‘ac:O = 07 (32)
Ozu+ Bap(t)ul,_, =0,

where f; € L?(P) and the coefficients a is that defined in Section 2.

T
h

Oruw+ Pou =0

u=>0

Fig. 4. The half strip P

Let fl(n) be the restriction f1|}0’n[x]0’1[ , for all n € N*. Then, Theorem 2.1 shows that for all
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n € N*| there exists a function u,, € H'? (P,) which solves the problem

t
Opun + a (t,x) Oy, — 62((1) 02u, = 1(") a.e. on P,,
¥

un|t:0 = unlz:O = 07
Oyl + /82(10(t)un|x:1 =0,

(3.3)

where £ € L2(P,), and P, =10,n[ x ]0,1[.

r
h

Oty + oy, =0

Uy =0

0 up =0 n

Fig. 5. The truncated half strip Pn
Now, let us prove an "energy" type estimate for the solutions u,, which will allow us to solve
Problem (3.2) and then equivalently Problem (3.1).
Proposition 3.1. There exists a constant K > 0 independent of n such that

2 2
K| fillzzcpy -

2 n)
HunHHLZ(Pn) S KHfl L2(P,) <

In order to prove Proposition 3.1, we need the following result:

Lemma 3.1. There exists a constant K independent of n such that
2 2 2
lunllzz(p,) < K Osunllr2(p,) < K f1llpzcp) -

Proof. The Poincaré inequality gives |[un|r2(p,) < K ||0sunl|p2(p,) - Now, we estimate the inner
product <f1("), un>
Estimation of <f1(n), un>:

<f1n)7un> = / unﬁtundtdx—l—/ a (t,x) upOpupdtdx —/ Z(ii)unaiundtdx =
P, P, p, ¥
c(t)

1 1
/6 [2 |un|2 vy + a(t,x)§ |u”|2 Vg — spz(t)axun.unux] do +

C(t) 2 1 / 2
+ ——— (Ogu,)” dtde — = Oza(t, x) |uy|” dtdx,
/P = (t)( ) 2 /. (t,2) |un|

where v, v, are the components of the unit outward normal vector at the boundary of P,. We
shall rewrite the boundary integral making use of the boundary conditions. On the part of the
boundary of P, where ¢t = 0, we have u, = 0 and consequently the corresponding boundary

n
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integral vanishes. On the part of the boundary where ¢ = n, we have v, = 0 and vy = 1.
Accordingly the corresponding boundary integral is the following:

/0 % (un)? (n, z)dz.

On the part of the boundary where x = 0, we have v, = —1, vy = 0 and wu, (¢,0) = 0. Conse-
quently, the corresponding integral vanishes. On the part of the boundary where z = 1, we have
vy =1, vy, =0 and

Oz (t,1) 4 Baip (t) up (t,1) = 0.

Consequently, the corresponding integral is

/” (2¢(t)B2 = #5 (1)) (un)” (8, 1)dt.
0

2 (1)
Finally,
p2(n)
(@) = [ S g [7EAOEEAT) ) ¢
p1(n)
+/Pn@2(t)(aw )2 dtd +2/13n(p(t)| W2 dtde.

Thanks to the condition (1.4) and since the function ¢ increases, we obtain

(n) N c(t) 2 S 2
(7 0 ) > /P G eh O e > C 0,00,

Hence, for all € > 0,

2 1 (n)
||8zun||L2(Pn) < 6 ||Un||L2(pn) ‘fl L2(Py) <
1 (n) 2 € 2
ae L P S
By using the Poincaré inequality, we obtain
€ 2 1 (n) 2
(1 — 6) HaxUnHL2(Pn) g a 1 L2(Pn) .

Choosing € small enough in the previous inequality, we prove the existence of a constant K such

that
2

2 n
HazunHm(Pn) < KHfl :

L2(P,)

Since
2

e

2
poiny < IHillEacr).

we obtain
5 2
[0ztnllz2cp,) < K fillz2py -
O

Remark 3.1. Similar computations show that the same result holds true when we substitute the
condition that ¢ increases in a neighborhood of +o0o by the following:

" ()] p(t) < Mc(t).
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Proof of Proposition 3.1.
Let us denote the inner product in L? (P,) by (.,.), then we have

_ )
) =(Opun, + a (t,x) Oy, 200

— 1BrtunllZagp,y + ladsttnllZagp, +

2 cet) o
Oy, Oy, + a (t, ) Opun, 2 oup) =
2

+2/ a0y Opupdtdr—
L2(P,) P,

Hf(")

<) o,
22

—2/ a@@acun@gundtdx—Q/ &@una‘zundtdm.
P, P2 (1) P, ¥* (1)

c(t)
©* (1)

Observe that the coefficients a and are bounded. So, thanks to Lemma 3.1, for all € > 0

we obtain

2

ct) e - / ) g, WOPupdtds <
L2(P,) p, ¥ 2(t)

22 () wln

2
[0cunllzz(p,) + ’

2

Hfl L2 + |a0zunlr2(p,) + 2 100unll 12 (p,y 160 unll p2(p,) +
c(t)
+2||02uy, a——~OgUn, <
R T

2 2 2

Hf1 L2(P ) + K (1 + e) 10zunllz(p,) + €10tunllL2ep,) +€ Hagun||L2(pn) <
(n) 2 2
< Kc||fi L2(Py) +e ||6t“n||L2(Pn) te Haxu"HL?(P")

where K, and K; are constants independent of n. Consequently

2 22 c(?) 2 (n)
(1—¢) (||8tUnHL2(pn) + ||amun}|L2(Pn)> < 2/Pn Watun8$undtdx + K, . (3.4)
Estimation of 2 / &&un(ﬁundtdw :
p, (1)
We have )
Aptin 02ty = Oy (DyinDytiy) — 50 (Dpun)” .
Then
c(t) 2 / c(t) / c(t) 2
2/ Opun Oyundtdr = 2 ——0,, (Oyu,,0zu,,) dtdr — O (Ozup)” dtdx =
Ik 2 (O OrinOtn) i = | oy O (Orin)
c(?) 2 / c(t) 2
= — (Ogup)” vy + 204Uy, Opunvy | do + Ogpuy, ) dtdx
f 700 [ @ 20 i+ [, )@

where v4,v, are the components of the outward normal vector at the boundary of P,. We
shall rewrite the boundary integral making use of the boundary conditions. On the part of
the boundary of P, where t = 0, we have u,, = 0 and consequently 0, u,, = 0. The corresponding
boundary integral vanishes. On the part of the boundary where t = n, we have v, = 0 and
vy = 1. Accordingly the corresponding boundary integral

_/0 9062(7(2) (Opun)*(n, x)dx
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is negative. On the part of the boundary where x = 0, we have v, = —1, vy = 0 and w,, (¢,0) = 0.
Consequently, the corresponding integral vanishes. On the part of the boundary where x = 1,
we have v, =1, v, =0 and

Oztp (t,1) + Bap () up (,1) = 0.

Consequently, the corresponding integral is

" —2fac(1) —Bac(n) , " c(t) \/
/O T2 D (£, 1)un (t, 1)dt = un(n,1)+/0 52( )ui(t,1)dt,

o (t) ¢ (n) e (t)
which is negative thanks to the condition (1.6) and to the fact that 85 > 0. Finally,
c(t ) 2 / c(n) Bac(n)
2/ Opun O undtde = — Opun)?(n, x)dx — u, (n, 1)+

(n
2(¢tt) tl)dt—i—/P (;2(2))/<6xun>2dtda:.
5)

Q

“f

n

/
are bounded. So, by using Lemma 3.1, we deduce

Note that the functions (() (
2 /P n S0(72))@%3 undtdz /P n (@02(2))'@ s <

2

K, ||awunHL2(Pn) <
2

Ks | fillze(py »

<
<

1
where K5 and K3 are constants independent of n. Consequently, Choosing € = 3 in the relation-
ship (3.4), we obtain
10ctunllZapyy + 10203 p,y < K 11132

Consequently, making use of Lemma 3.1 and the previous estimate, then, there exists a constant
K > 0, independent of n satisfying

2 2
lunllzg2p,y < K Nfillz2(py -
This ends the proof of Proposition 3.1.

Remark 3.2. We obtain the solution u of Problem (3.1) by letting n go to infinity in the previous
proposition. The uniqueness can be proved as in Theorem 2.1.

Finally, we have proved the following Theorem:

Theorem 3.1. Problem (3.1) admits a (unique) solution u € HY?(Dy).

4. The case of a small in time bounded triangular domain

Let T be a small enough positive real number. We set
Dy:={(t,z) eR*:0<t<T; o1 (t) <z < p2(t)}
with ¢ (0) = 0 and consider the following problem:

Opu — c(t)0?u = f1 a.e. on D3,
ulp, =0, (4.1)
Ozu + Baulp, =0,
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where f1 € L?*(D3). Set

1 1
QnZ{(t,x)€D3:n<t<T}, n € N* and 5<T,

1 n
For each n € N* such that ~ < T, we set fl( ) = filg, € L*(Qn) and denote by u, € H"* (Qy)

the solution of the following problem:

Oy, — c(t)0%u, = f1 a.e. on Qp,
= O,
=0.

un|t:% = Up|

Ot + ﬂZun|

z=¢1(t)
r=p2(t)
Such a solution exists by Theorem 2.1.

Proposition 4.1. There exists a constant K > 0 independent of n such that

2
2
lanlnaq,y < K | A

2
13Qu) < K| fillzepg) -

Remark 4.1. Let € > 0 be a real which we will choose small enough. The hypothesis (1.3)

implies the existence of a real number T > 0 small enough such that
loh (t) p(t)| <€, forallt € (0,T), i=1,2.
In order to prove Proposition 4.1, we need some preliminary results.

Lemma 4.1. There exists a constant K independent of n such that for all t €]0,T:

D lunll2(q,) < K l[@0aunll2(q,);

©2(t) ®2(t)
2) [ wi(t,x)de < Kp* [ (02un)?(t, z)dw;
p1(t) w1(t)

#2(t) P2(t)
3) [ (Opun)?(t,x)de < Kp? [ (02un)?(t, z)dx;
p1(t) w1(t)

4) 10zunllr2(q,) < Kl f1llp2cp,) -

Proof. Inequality (1) is a consequence of the Poincaré inequality.
The following operator is an isomorphism (see, [9])

2 2
HZ(0,1) — L*(0,1), u > u”,

where,
H2(0,1) = {u e H*(0,1) : u(0) = 0,u (1) + Bou (1) = 0} .

So, there exists a constant K > 0 such that

||“||L2(0,1) < ||UH||L2(0,1)’
lu'll 20,0y < NIl p20,0) -

The change of variables (for a fixed t)

[0,1] = [p1(t), p2(B)]; x— y = (1 —x)p1(t) + zp2(2),
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leads to the estimates (2) and (3).

To prove (4), it is sufficient to expand the inner product < fl(")

,un> and use the inequality (1).

Indeed, we deduce for all € > 0, (see the proof of uniqueness of solutions in Theorem 2.1)

/ c(t)(Opun)?dtde < ’<f1(n),un> <

Qn
< A, el <
el iz "A@)=

2 2
S ALz + K 00aunllzz g, -
However, ¢ is bounded and ¢ > a > 0. Choosing € small enough yields the desired result. O

Proof of Proposition 4.1. Let us denote the inner product in L?(Q,) by (.,.) and set £ :=
0y — c(t)9?2, then we have

n 2 2
Hfl( ) o = (Luy,, Luy,) = ||at“nHL2(Qn) + Hc(t)aiunHLz(Qn) — 2(Dytn,, c(t)0?uy,).
Estimation of —2(d;u,,, c(t)02u,,) :
We have
unduy, = Op(Opundpun) — 30; (Dpun)? .
Then,

—2(0y,, ¢(t) D) —2/ c(t)0sun 02 uy dtde =

n

-2 / (t) 0y (Opundyuy,) didz + / c(t)0; (Opun)® dtds =

n n

/ c(t) [(8zun)2 v, — 28tunamunux] do — / ¢ (t)(0puy, ) dtd
0Qn

n

where vy, v, are the components of the unit outward normal vector at the boundary of @,,. We
shall rewrite the boundary integral making use of the boundary conditions. On the part of the

boundary of @,, where t = —, we have u,, = 0 and consequently 0,u,, = 0. The corresponding

n
boundary integral vanishes. On the part of the boundary where ¢ = T, we have v, = 0 and
vy = 1. Accordingly the corresponding boundary integral

#2(T)
(T) (Dpun)? da
©1(T)
is nonnegative. On the parts of the boundary where z = ¢; (t), i = 1,2, we have
CON 10
L+ (9)* (1) L+ (1) (1)

s Un (891 (1)) = Ozun (8, 02 (1)) + Baun (L, 02 (8)) = 0.

Vgp=

Consequently, the corresponding integral is

T T
— [ et (1) [Bsun (¢, o1 (8)) dt —2 / c(t)Brun (L, p2 () Oxun (¢, @2 (1)) dt —

1

3=

n

T
- C(t)()pé (t) [awun (ta P2 (t))]Q dt.

3=
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By putting A (t) := u,(t, p2(t)), t € [1,T], we obtain

Dt (1, 02 (1) Dtin (£, p2(1)) = B (1) (t, 3(t)) = 93(t) (Dun(t, p2(1)))*.

So, by using the boundary conditions, we get

T
9 / ()00 (t, (1)) Datin (£, 9 (£)) dt =

n

T

=—aﬁcwwwmwwmwMHa/;wwﬁnawwwwm%ﬁ:

T

T
= 2ﬂz/ C(t)h'(t)h(t)dt+2/ c(t)pa(t) (Duun(t, p2(1)))* dt =

1

ES
n
T

:xyﬁc@wmwm+2ﬁyﬂwwﬂm%www»fﬁ:

T T

= Boe(T)(W(T))? - B [ (2t o (8) it + 2 / c(t)on(E) (Datin(t, 22 (£)))? dt.

1

Observe that, thanks to the condition (1.6) and the fact that 82 > 0, ¢(¢) > 0, we have
T
Bac(T)(W(T))* — 52/ (it pa(t)dt > 0.

1
n

So, by setting

h1=—[cw¢w@%wwwWw

n

T
Mzz(ﬁdWﬂm%w@meﬁ

n

we have

~ 20y, e()3un) = — L] = nz2| - (4.4)
Estimation of I, ;, k=1, 2.
Lemma 4.2. There exists a constant K > 0 independent of n such that
5 12
max(|Ina|, [ Inz]) < Ke HawunHm(Qn) .

Proof. We convert the boundary integral I,, ; into a surface integral by setting

w2(t)

L el -

»1(t)

[Dpun (£, 01 (£)]2 = —22 (t)—=

=0 () Oen (2]

e2(1) P2(t)
= w (% T 2u xT)ar — L U T 2 T
=2 [ B0, () R () da = [ s (D (1)

2
»1(t) w1(t)
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Then, we have

1

L = - / ()@} (t) Dgtin (£, 1 ()t =

3

_ M u 2 . MC , . 2 i
N / e (t) (Osun)” dtd +2/” - (@) (1) (t) (Oxun) (O2un) didz.

Thanks to Lemma 4.1, we can write

p2(t) p2(t)
[Ortn (2, x)]2 dx < Clp (t)]2 / [aﬁun (t, :r)]2 dx.
w1 (t) w1(t)

Therefore,
p2(t) p2(t)

dr <Cleillel [ [2un (t.2))" da.

»1(t) w1(t)

consequently,

|In,1

< C/ c(t) o1 [¢] (8§un)2 dtdx + 2/ c(t) 9] 0ptn| |02un | dida,
p2(t) —
(t)

'
Tl <C [ 1elt)] 6] (2un) dedo -+ ¢ [ elt) (@2u) dtdo % [ o(t) (1) (0ru,)” dtde.
Qn €

n n

since < 1. So, for all € > 0, we have

Lemma 4.1 yields
1 1
o )7 @t < 07 [ elt) () e (G

Thus, there exists a constant M > 0 independent of n such that

n

Ll < C / c(t) [muwlwafw] (02u,) dida + ¢ / (t) (0%u,)° dtde <
Qn €
€

< M/ (02u,,)? dtdz,

n

because ‘cp/lgo’ < €. The inequality

Lol < Ke | @unf7a.

can be proved by a similar argument. O

Now, we can complete the proof of Proposition 4.1. Summing up the estimates (4.4) and
those of Lemma 4.2, we then obtain

2

b

2 2
vy 2 1020, + e@®2nl 520, = Kae |02l f2q, ) =

> [0, + (0% = Kie) [02un g, -
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where K is a positive number. Then, it is sufficient to choose € such that
2
a” — Kqye > 0,

to get a constant Ky > 0 independent of n such that

2 2
L2(Qn) = KO( ||atun||L2(Qn) + Ha:zunH[g(Q") )

But

(n)
| v S Ml

then, there exists a constant K > 0, independent of n satisfying
2 2 2
||atunHL2(Qn) + HazunHLz(Qn) <K ||f1HL2(D3) :

Consequently, making use of Lemma 4.1 and the previous estimates, then, there exists a constant
K > 0, independent of n satisfying.

2 2
[unll32(q,) < CllfillL2(p,) -
This ends the proof of Proposition 4.1. Finally, we have proved the following Theorem:
Theorem 4.1. Problem (4.1) admits a (unique) solution u € H?(D3).

Proof. We obtain the solution u of Problem (4.1) by letting n go to infinity in the previous
proposition. The uniqueness can be proved as in Theorem 2.1. O

5. Back to Problems (1.1)—(1.2) and proof of Theorem 1.1

The proof of Theorem 1.1 can be obtained by subdividing the domain
D:={(t,2) eR*:t>0, o1 (t) <z <¢2(t)}
into three open sub-domains €24, 9 and Q3. So, we set D = Q; UQy U Q3 UI'r, Uy, where
Q={(t,x)eD:0<t<Ti}, Q={(tz)eD Ty <t<To}, Q={(tz)eD:t>T},

FT] = {(Tl,l‘) S R?: Y1 (Tl) <x < P2 (Tl)} and FT2: {(TQ,Z‘) € R?: ¥1 (TQ) <xT < P2 (TQ)}

with T is a small enough positive number and T is an arbitrary positive number such that
T, > Ti. In the sequel, f; stands for an arbitrary fixed elements of L? (D) and ffz) = f1|ﬂi7
i=1,2,3.

Theorem 4.1 applied to the triangular domain 21, shows that there exists a unique solution
wy € HY2 () of the problem

Oywy — c(t)0%wy = fl(l) a.e. on (),
w1|F1,1 = O’ (51)
Opw1 + Pawr|p, , =0,

where fl(l) € L? () and T'; ; are the parts of the boundary of Q; where z = ; (t), i =1,2.

Lemma 5.1. If w € HY2(]0,T[ x ]0,1[), then w|,_, € H" (v0), w|,_, € Hi (v1) and w|,_, €
H? (v5), where 4o = {0} x]0,1[, 71 =10, T[ x {0} and vo =10,T[ x {1}.
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It is a particular case of Theorem 2.1 ([14, Vol. 2]). The transformation
(t,2) — (', 2") = (L () z + 91 (1))
leads to the following lemma:

Lemma 5.2. If we H"2(Qy), then w|FT1 € H (I'r,), Wy 1) € H? (Iy5) and wl
H%(Fgg), where T'; o are the parts of the boundary of Qs where x = ¢, (t), i =1,2.

z=¢2(t) €

Hereafter, we denote the trace wi|,, by ¥ which is in the Sobolev space H! (T'r,) because
1

wy € HY? (1) (see Lemma 5.2). Now, consider the following problem in Q5 :

Oywsz — c(t)2wz = 1(2) a.e. on (o,
w3\pT1 =11,

ws‘rm =0,

Opws + Paws|p, , =0,

(5.2)

where fl(z) € L? (Q) and I'; » are the parts of the boundary of Qs where z= ¢;(t), i= 1,2. We use
the following result, which is a consequence of Theorem 4.3 ([14, Vol.2]), to solve Problem (5.2).

Proposition 5.1. Let Q be the rectangle 10, T[ x 10, 1], f1, fo € L?(Q) and 1,12 € H' (7).
Then, the following problem admits a (unique) solution u € HY? (Q):

O — c(t)0?u = f1 € L?(Q),
U|,Y0 =1,
u|,y1 =0,
Ogu + ﬂ2u|,y2 =0,
where Yo = {0} X ]07 1[3 7= ]OvT[ X {0} and V2 = ]OaT[ X {1} '

Thanks to the transformation
(t,2) — (ty) = (Lo Bz + e (D),
we deduce the following result:
Proposition 5.2. Problem (5.2) admits a (unique) solution wz € HY? (Qy).
Hereafter, we denote the trace w3|FT2 by ®; which is in the Sobolev space H! (I'1,) because

wz € HY? (Q2) (see Lemma 5.2). Now, consider the following problem in Q3 :

Oyws — c(t) 02wz = fl(g) a.e. on {3,

Ws = (b s
oy, = 1 (5.3)
w5‘1—‘1,3 = 0’

Oz ws + 52105\1}3 =0,
where fl(g) € L? (Q3) and I'; 3 are the parts of the boundary of Q3 where z = ¢; (¢), i = 1,2. By
similar arguments like those used previously, we deduce the following result:
Proposition 5.3. Problem (5.3) admits a (unique) solution ws € H1? (Q3).
Finally, the function u defined by

w1 in Ql,
U= ws in Qs
Ws in Qg,

is the (unique) solution of Problem (1.1)—(1.2). This ends the proof of Theorem 1.1.
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Remark 5.1. Let us consider the following problem: to find a function v € HY2(D) that satisfies
the equation
O — c(t)0?v = fo a.e. on D (5.4)

and the boundary conditions
v|F2 = Oyv+ ﬂlv|r1 =0, (5.5)

where fo € L?(D) and the coefficient ¢ and the domain D have the same properties as in Problem

(1.1),(1.2).

By using the same arguments like those used in solving Problem (1.1), (1.2), we can show that
Problem (5.4)-(5.5) admits a (unique) solution v belonging to H'?(D), under the assumption

B1 <0 and 2¢(t)B1 — @y (t) <0 a.e. t €]0,+00].

The authors want to thank the anonymous referee for a careful reading of the manuscript and
for his/her helpful suggestions.
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I'mobGasibHBIE BO BpeMeHU Pe3yJIbTaThl AJIsSI penieHus
MapaboJINvYeCKOTO YpaBHEHUsI B HENPSIMOYTOJIbHBIX
obJacTax

Jlyanac By3umau
Apesku Xesioydn

Yuusepcurer Bemxkas
Bemxas, Amxup

Awnnoranusi. B 310it cTaThe paccMarpuBaeTcs mapabomIecKoe ypaBHEHNE
dw —c(t)0iw = fin D, D= {(t,2) ER*:t >0, ¢1(t) <z < pa(t)},

rae ; : [0,400[— R,i =1, 2 m ¢ : [0,+00[— R, ymoBreTBOpsiss HEKOTOPBIM YCJIOBUSAM, 33298 J10-
MIOJIHSIETCSI TPAHUYHBIMU ycaoBusiMu Tumna /lupuxise-Pobuna. Ml usydaem npobsiemy riaobajabHOM pery-
JIIDHOCTH B NOAXOZsIeM napabosmdeckoM npocrpanctse CobosieBa. B wacrHOCTH, JOKaXKeM, 9TO JJIst
f € L?(D) cyuiecTByer eqMHCTBEHHOE pEIIeHHe w Takoe, 4to w, dww, P w € L*(D), j = 1, 2. O6paru-
Te BHEMAHUE, YTO CJIydail OrpaHUIEeHHBIX HENIPSIMOYTOIbHBIX obsacTeii nusydaercs B [9]. JokasaTesbcTBo
OCHOBAHO Ha OIIEHKAaX SHEPIUH II0CJe MPpeodpa3oBaHus 3aJadl B II0JIOCOBOM 00IaCTH B COYETAHUN C HEKO-
TOPBIM MHTEPIIOJISIIMOHHBIM HEPABEHCTBOM. DTa PaboTa JONIOJHSIET Pe3yabTaThl, noaydenuse B [19] B
ciaydae rpaHnyHbix ycsouii Kommw-/Iupuxie.

KuroueBsbie ciioBa: napabomyecKne ypaBHEHUsI, yPAaBHEHUE TEILJIONPOBOIHOCTH, HEIIPSIMOYTOJIbHBIE 006-
JIaCTH, HEOTPAHWYEHHBIE 00JIACTH, aHU30TPOIHBIE MpocTpaHcTBa CoboseBa.
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Abstract. This paper is devoted to further investigation of the property of a number of vertices of
convex hulls generated by independent observations of a two-dimensional random vector with regular
distributions near the boundary of support when it is a unit disk. Following P. Groeneboom [4], the
Binomial point process is approximated by the Poisson point process near the boundary of support and
vertex processes of convex hulls are constructed. The properties of strong mixing and martingality of
vertex processes are investigated. Using these properties, asymptotic expressions are obtained for the
expectations and variance of the vertex processes that correspond to the results previously obtained
by H.Carnal [2]. Further, using the properties of strong mixing of vertex processes, the central limit
theorem for a number of vertices of a convex hull is proved.

Keywords: convex hull, Poisson point process, Markovian jump process, martingales, Central limit
theorem.
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Introduction

The functionals of convex hulls are complex objects in analytical aspect. Therefore, studying
the properties of even the simplest functionals of convex hulls such as the number of vertices or
the area, has for a long time remained a difficult task. This explains the fact that such well-
known researchers as in [2, 3, 15] and others, limited their interests to studying the average value
of the number of vertices, the area, and the perimeter of a random polygon. For many years, due
to the lack of valid research methods, the attempts to develop this area have not been successful.

In paper [4] has made a significant progress in this field. He managed for the first time to
obtain the limit distribution for the number of vertices of a convex hull in the case when the
support of initial uniform distribution is either a convex polygon or an ellipse. His research
method is based on the original idea of using the Poisson approximations of a binomial point
process near the boundary of the support of initial distribution. Then he applied powerful
methods such as martingales, mixing of stationary processes and others. Based on this method,
in [1] have established the limiting distribution for the area of the convex hull when the support
of initial distribution is a convex polygon. In [6] proved the limit theorems for the area outside
a convex hull when the support is a unit disk. These results in a more general form, for the

*khamdamov.isakjan@gmail.com  https://orcid.org/0000-0002-7464-8358
(© Siberian Federal University. All rights reserved
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joint distribution of the vertex number, area, and perimeter, were obtained by [12] using the idea
of [4] on Poisson approximations of a binomial point process near a polygon boundary. In [7]
has developed this problem for the case when the convex hull is generated by distributions with
exponential tails, including, in particular, the normal distribution.

The approach used in this paper is a modification of the methods proposed by [4,5, 12] and
adapted to a wider class of initial distributions.

1. Statement of the problem and results formulation

Let the support of initial distribution A be a unit disk with a center at a point(0,1).
Suppose that random points (r;, «;) are given in the polar coordinate system (with pole (0, 1))
in a disk A, where r; and «; are independent and «;is uniformly distributed in [, 7] and

1
P(ri>1—m):x'@L<),0<x<17ﬁ>17 (1)
x

where L(z) is the slowly varying function in the Karamata sense given by

L(u) :exp{/lu E(t)dt}, () 0, t— o0

t

Next, assume that X; = r;sinay, 1 — Y; = r; cos a; and denote by C,, the convex hull generated
by random points (X1,Y7), (X2,Y2),...,(X,,Y,), and denote by v,, s, and [,, the number of
vertices, the area and the perimeter of the C),, respectively.

Denoting the largest root of the equation by b,

nz~(BT3) () = 1. (2)

In this case, in [2] obtained asymptotic expressions for the expectations of Ev,, Es, and El,.
In the one-dimensional case, in [13] studied the role of the extreme summands in the sums, when
the tail of the distribution of the initial random variable is (1) regularly varying. This paper is a
continuation of [9,10,13] in the multidimensional case. According to P. Groeneboom’s remark,
we consider v, for the case when L(z) = 1. Then from (2) we get

2

by = n7e. (3)

The basic theorem of the present paper is given.

Theorem 1. Let the conditions At n — oo the following ratio is true
1
Un — al(ﬁv n)bfl

1

a2 (63 n)b;%

Here 2% means the weak convergence, N(0,1) denotes the standard normal distribution with pa-
rameters (0,1), a1(B8,n), az(B,n) are positive constants determined from relations (12) and (13).

4 N(0,1).

In particular, if 5 =1 Groeneboom’s result [4] follows.

Corollary. If condition (3) is satisfied, then

Yn — AP )0n Cl(@bg 4 N(0,1),
ca(B)bn

where ¢1(8), ca(B) have an explicit form, and ¢1(1),c2(1) coincide with the corresponding con-
stants in the [4].
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2. Preliminaries

In this section we give a modification of the key approach by [4,12] on the Poisson ap-
proximation of binomial point process (b.p.p.) B,(:) generated by n random sample from the
distribution (1) in the unit disk.

Assume that

S.={@y) 1-e<Var -y <1},

Ap(A) = P((X1,Y1) € A).

(4)
Consider a convex hull C/ generated by a nonhomogeneous Poisson point process (n.h.p.p.p.)
I1,,(S.) with intensity of nAg (-).

Lemma 1. Let B, (S:) be the n.h.b.p.p. with parameter(n,Ag (-)). Then there is the n.h.p.p.p.
I1,, (S:) with intensitynAg (-) such that

P (Bn (Se) #, (Se)) < 2M(S:), P (Cn #Cy) =0,
atn — oo, € = 0.

To formulate Lemma 2, we need some notation.

2
Lt 1(9) = {(e.0) sy <1 1- G < /EF T 9P < 1,

X
1_y‘<tg5},
2 2 2
w6 = {w: el <6 S <y S DL

2
where § = 0,, = c\/logn/b,.

For any set of forms

introduce a measure

Then assume that
A(B)=0, at BC {(z,y): 2®+ (1 —y)* > 1}.

Lemma 2. There is I} (S:) the n.h.p.p.p. with intensityAl (-) such that for any e >0

logﬁ t2n
by ©

P (IT;(S.) # TI(S.)) = (

We denote by C? the convex hull generated by the realization of n.h.p.p.p. I} (D), where

2

T % {,C2 {E2

N
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Then assume that

Introduce the following measure

1 22\?7!
N S dzdy, A C Ry,
A%(A) = 27v/bn é/ (y 2 ) B
0

, at AZ R,.
Then denoting by IL,(-) n.h.p.p.p. with intensityA9(-) it is easy to see that
d s g

Now the whole circle is divided by m,,parts, where m,, = \/bn/ log n. Each section is 2w/b,, logn
long, with central angle 27 logn / Vby,. Disk section corresponding to the circumference section

(ﬂ\/a(log n)(2k — 1), 7/, (log n)(2k + 1))

is denoted by Iy n,(k=0,1, ...,m, —1).

From Lemma 2, Poisson’s processes II* (b, !:) and II9(-) are almost similar. So consider
Poisson’s process I12(-) in I ,only.

Following [4], consider the statement of Poisson point process in each sector I, separately.

The vertex process Wy, (a) = (X, (a),Y,(a)) for any a € (a—,ay) is such a point (X, V)
of n.h.p.p.p. realization 1Y (-), for which Yy — aX}, takes the minimum value, where a_ =
= —mlogn/\by, ay =mlogn/v/by,.

It is easy to understand from the definition that, W, (a) is a non-stationary Markov jump
process.

The following lemma gives the types of distributions W, (a) which correspond to various
situations.

Lemma 3. Let s =y —azx + azbn/Q.
Then

1)P (W, (0) € (da, dy)) b {yM;B (5+1;;)} (y x2>ﬁ_1dxdy;

o, P Var
2P (W, (0) € (dr, dy)) = —2 {—S“éB(ﬁH;l)}(y—xz)ﬂ_ldmy;

T o, P T Vo 2
3)P (Wy(a) = Wn(0)/W,(0) = (z,y)) =

1 V2b,s ’LL2 B V2bny ’LL2 B
=e — s§—— | du — — dy ¢ .
P 2m \% bn r—aby, ( 2bn ) /w (y 2b7l > Y
Proof. Let v = a(u — z) + y be a straight line passing through points (x,y) with angular
coefficient a, A(a,x,y) is the set of points in the domain bounded by lines v = a(u — x) + y and

v=u?/(2b,).
It is easy to see that if w; and us are the roots of equation

u?/ (2bn) = a(u —z) +y,

then uy 2 = ab, + v/2b,s.

- 278 —



Isakjan M. Khamdamov On Limit Theorem for the Number of Vertices of the Convex Hulls. ..

Calculate AY (A(a,x,y)) (see (5)). Considering

u? ab,  (u—aby,)? (u— aby,)?
y—i—a(u—x)—m—y—ax—k ST =5— %%,

we get

u [3 B
AO(A(axy)):$ y+a(ufx)fu—2 du:$ / sfu—2 du =
" T 27/ by, S, 2by, 2m+/b,, 2b,

9¢8+3 1 p+1 1
_\m/@u?)ﬁdu_s 23<ﬂ+1;>.
™ 0 7'('\/5 2

Next, let d = \/(Az)* + (Ay)?, v = au+c_, v = au+ c; be two straight lines parallel to
v =a(u — ) + y and passing at distanced from below and above, respectively.
By A; (a,z,y) and A} (a,z,y)denote the sets bounded by lines v = au+c_, v =u?/(2b,)
and v =au+cy, v= u2/ (2b,,) respectively. Assume that A, , = [z,z + Az] X [y, y + Ay].
It follows from the definition W,,(a) that if 7(A) is the number of points in A realization of
n.h.p.p.p. IL,(+), then

P (Wy(a) € Ayy) < P (T(Asy) 21, T (A7 (a,2,y)) =0). (7)
On the other hand, it is easy to see that
P (Wy(a) € Apy) = P (T(Asy) =1, T (Af (a,2,y) — Ay y) =0). (8)

Considering the property of the Poisson process (the independence of increments) and from
inequalities (7) and (8), using (5) at d — 0 we obtain the first relation of the lemma.
Similarly, the other relations of the lemma are obtained.
Assume that
X7 (a) | R7(a)

2by, + 2b,

Obviously that T,,(0) = W,,(0) a.s. and therefore

R, (a) = X, (a) — ab,, Sp(a) =Y, (a)

P (T,(0) € (dr,ds)) = P (W,(0) € (dr,ds)).
Lemma 3 leads to the following lemma.

Lemma 4. T,(a) is a stationary Markov jump process and

B sPts 1 r? A1
1) P(T,(0) € (dr,ds)) = b exp < — Tor B ([3 +1; 2) (s - 2()) drds;

2) P(Tw(a) = (r1,51)/T0(0) = (r0, 50)) =

1 11 1t
=exp| = sf+2/ (1—t2)6dt—sg+2/ (1—)"dt| 3,
2rL (bn) Ve Weome

where vy = rg — ab,, $1 = Sg — arg + a2bn/2;

3) P(Tn(a) € (dri,ds1)/T,(0) = (ro,50)) = P (Tn(a) € (dr1,ds1)),
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if aby, —/2b,81 > v/2b,S0;
4) P (T, (a) € (dra,ds2)/Tn(0) = (r1,81)) =

1
1 L | s+1 / 2\ 8
= - 1—?)" dt—
2w+/by, exp{ Vor l82 ( )

s1—s9 abp

ay /2bn52 /2bn so

1 ! r B-1
- S’f—’_i / (1 — t2 ] } So — 2b2> dTQdSQ.

s1—59 + aby

ay/2bns1 | \/2bnsi

Here assume that

(riys:) € D= {(r,s) D s> (7“2) /(an)}, ab,, — \/m < m,
S9 + (aan) /2 +arg = 81 = 89 — (azbn) /2+ar1.
Consider the following o-algebras generated by process T, (a):
) =0 {Ty(c): c <0}, %" =0 {Th(c):c>a}.
From Lemmas 3 and 4 it is easy to prove the properties of strong mixing of the process T, (a)

Lemma 5. For any A € SY and B € 3¢+ |P (AN B) — P(A)P(B)| < 7n(a), where

n

B+3
Tn(a) < dexp {_\/lﬁﬂ- (a28bn> B <B—|— 1; ;) } :

Lemma 6. If a > (aycl) /by, then under the conditions of Lemma 5 we have Y. (1n(a))” < oo

n=1
for any T > 0, where a,, = \/2b, logn, &} = (logn)_% , 0<d< 1.
Proof. If a > (anel) /by, then from Lemma 5 we get
Tn(a) < dexp {—c (logn)H%} .
This immediately implies the statement of Lemma 6. d

Now introduce notations

(k)( 2 VEms k u? \ 77
MW" (t; R?) = (u—r)*|s—— du =
QT\F/ < 2bn>
V2bps—r 2\ A-1
(5 _ (U+7">) du,

27rf
where t = (1, s).
Lemma 7. Processes N
- / MW (T(b); R?) db
and i

N2%(a) — /a [2N(b) + 1] MY (T(b); R?) db
0

are martingales with respect to o-algebra 39 = 0 {T(c): 0 < c<a}.
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Proof. We have
E{N(a+h)—N(a)/Sp,q} = E{N(a+h)— N(a)/T(a)}
Hence, due to stationary nature of the process T'(a)
E{N(a+h) = N(a)/T(a) = (r;5)} = E{N(h) = N(0)/T(0) = (r,s)} ~
~ ET(A"(hir,5)) ~ A% (A" (hs 7, s))
where T(A*(h;r, s)) is defined in the previous paragraph and
A*(hirys) = A%(h;mys) | J A (hi ).

Further, by the definition A°(-)of a measure (see (5)), it is easy to show that at small h
A% (A°(h;r,s)) = o(h) and
bby++/2by, 51
A?z (A(l)(a,lL ff(),y())> < Czh’g_a / du=0 (h6+1_5) . (9)
abn++/2b, 50

From the latter, again using definition (5) at small h, we have
AL (A*(hyr,8)) = A (A°(h;r, 5)) + o(h) = hMW (t; R?) + o(h). (10)

By virtue of (9) and (10), we obtain the proof of the first statement of the lemma. Proceed to
the proof of the second statement of Lemma 6.

We have
E{N?*(a+h)— N*(a)/T(a) ,8)} =
:E{(N(a+h)*N(a))(N(a+h)*N()+2N(a))/T(a) (r,s)} =
= B{(N(a+h) = N(@))*/T(a) = (r5) } + 2N(@E{N(a + h) = N(a)/ = T(a) = (r, )} =

= E{N(a+ h) = N(a)/T(a) = (r,s)} +o(h) +2N(a E{N a+h)— N(a ) T(a) = (r,s)} =
= (2N(a) + 1) E{N(a+h) — N(a)/T(a) = (r,s)} + o(h
= (2N(a) + 1) kMW (¢, R?) + o(h).
So, Lemma 7 is completely proved. (Il

Using these Lemmas, calculate the asymptotic behavior of the moments N(a) and N?(a)at
fixed a and at n — ooc.

Let N
o= (B (2041 )/”)(%) r(s- 550

where B(-, -) and I'( - ) are the known beta and gamma functions, respectively.

Lemma 8. We have
a) = aAV\/b,, DN(a)=aX?\/b,, as n — o,

where AP = % +o(1), A =+ o(1).
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Proof. We use Lemma 7. Since the process T'(-) is stationary, we have
a) :E/ MM (T(b); R?) db = aEM™ (T(0); R?). (11)
0

By definition of M) (t; RQ), after some identical transformations we have

V2b,s—r - (U+T)2 B—1 i
27r\/7 2b,, -

B Vst (w+r)2\" |
_2W¢EE{/0 “(3_ 2, ) =

\/2b,, 32 o0 B 1,1 ) .
— 2bn 8 {/ exp | — (IBJF 72)55"‘2‘| sw_zds}x

EMW (T(0); R?) =

2772 \/§7T
1 1—r 5-1 (12)
1—p2)p-t 1— 2" d }d =
x/l{( r?) /0 u(l—(u+r)?) u o dr
48+1
VR var \7 -r(z—l )
S 2m2(4+1) \ B(B+ 1;3) 268 +1
1 1—r
1- 1)1 1- 277 .
x/_l( r°) 7"/0 u( (u—l—r)) U
It is easy to calculate that
1 1—r 1 426+1 1
_2v8-1 B oNB-1 1 [TtFTdt B (28, 3)
/71(1 r?) dr/o u(l—(u+r)?) du_ﬁ A= (13)

From relations (11)—(13), the proof of the statement of the first part of Lemma 8 follows.
The second part of Lemma 8 is easy to prove, using Lemma 7 and the first part of Lemma 8,
and Lemma 2.6 considering in [4]. O

3. Proof of the theorem

Assume that Ny, is the number of vertices of the convex hull in [}~ — "big block" and
Nj 7, is the number of vertices of the convex hull in I}, = — "small block", where sectors Iy -
and I - correspond to

(w\/a(logn)(zk — 1) + &, my/bn (log ) (2K + 1) — gn)
and
(7 V/ballogn) 2k + 1) — €, 7/ba(logm) (2K + 1) + £,
of the part of disk, respectively and
€n = m\/bn(logn)' =%, 0<d<1/[2(268+1)].

Hence
My —1 myp—1

Vp = ZNkmn_FZ kmn
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By the principle of construction of sectors I kom,, and L% NG s insignificant relative to
Ny, - Further, from Lemmas 5 and Theorem 17.2.2 in [8], we can apply the classical central
limit theorem for the summs of random variables N, + Ny, +---+NJ and Ng7, +

+N{,, + -+ Nyt 4, - Therefore, we get that

1,my

n—1,mn

Vn —mn(EN} .+ ENSL ) 1 Mel Ny, —EN;,.

k,mp o Z
* m *
/m.DN} . Ve = /DN;,.
My —1 ATsx ok DN**
1 o~ Niom, — ENgL kymny

+ +o(1) =
Vifin kZ:o VEPNEm,  \/PNem,
my,—1 my,—1
1 n N*m _ EN*m 1 n N**;n _ EN*»;n
— Z k7 n ka n + Z k7 n k; no, 0(1) +O(1)$N(O,1).
vIiTin 2o DNy ... VI 20 /DN

The theorem is proved.
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O npeneabHO TeopeMe i 9MCJIa BEPIIUH BBIMYKJIBIX
000JI09€eK B €JIMHUTHOM KpyTe

Ncak>xkan M. XamgaMoB
TammkenTckuit yHuBEpCUTET UHMOOPMAIIMOHHBIX TEXHOJIOTHI
Tamkent, Y30ekucran

Awnunoranusi. /lannasi crarbs HOCBAINEHA JaJIbHEHIIEMy HCCJIEIOBAHNIO CBONCTBA Psijia BEPIIUH BbI-
IYKJIBIX ODOJIOYEK, TOPOXKIEHHBIX HE3aBUCUMBIMU HAOJIIOJACHUSMHU JIBYMEPHOTO CIYyYalHOTO BEKTOpA C
PEryJIsSpHBIMU paCHpeseIeHUSIMU BOIU3U FPAHUIIBI HOCUTEJIs, KOT/Ia OH SIBJISETCH €IMHUYIHBIM JHUCKOM.
Cuenys I1. I'peneGymy [4], 6GMHOMUAIBHBIN TOYEUHBLH IPOIECC ANIIPOKCHUMHUPYEM IIyACCOHOBCKUM TOYeY-
HBIM MIPOIECCOM BOJIM3U T'PAHUIIBI OTIOPBI M CTPOUM BEPIIMMHHBIE ITPOIECCH BBIMYKJIBIX 000104ek. Vcce-
JIOBaHBI CBOMCTBA CUJIBHOIO IIEPEMENINBAHUA U MAaPTUHIAJIBHOCTUA BEPIIMHHBIX MPOIECcOB. Vcmomb3ys
9TU CBOMCTBA, MOJIyYaeM ACUMIITOTUYECKHUE BBIPAXKEHU IS OXKUJAHUN U JUCHEPCUU BEPIINHHBIX IIPO-
IIECCOB, KOTOPBbIE COOTBETCTBYIOT pe3yibraraM, panee nonydenabivm H. Kaprama [2]. Hdamee, nconnsys
CBOICTBa CHUJILHOI'O IlepeMelINBaHus BEPIIMHHBIX IIPOIECCOB, JOKa3blBaeM IEHTPAJbHYIO HPeAebHYIO
TeopeMy JJIsl Psifia BEPINUH BBILYKJION OOOJIOUKH.

KuaroueBrbie cioBa: BbIykias 00009YKa, TyACCOHOBCKHII TOYEUHBIN MPOIECC, CKAYKOOOPA3HBIN Map-
KOBCKHI IIPOIIECC, MAPTUHIAJIbHOCTD, IIEHTPAJIbHAA IIPeJeIbHas TeopeMa.
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Abstract. This article discusses examples of transcendent systems of equations of a general form. The
residue integrals are determined over the cycles associated with the system. Formulas are given for their
calculation and their relationship with the power sums of the roots of the system is established.
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For systems of nonlinear algebraic equations in C™, based on a multidimensional logarithmic
residue, formulas were previously obtained for finding power sums of the roots of a system without
calculating the roots themselves (see [1-3]). For different types of systems, such formulas have
different forms. On this basis, a new method for the study of systems of algebraic equations in
C™ is constructed. It arose in the work of L. A. Aizenberg [1], and its development is continued in
monographs [2,4]. Its main idea is to find power sums of roots of systems (for positive powers) and
then using one-dimensional or multidimensional recurrent Newton formulas (see [5]). Unlike the
classical method of elimination, it is less labor intensive and does not increase the multiplicity
of roots. It is based on a formula (see [1]) obtained using the multidimensional logarithmic
residue, to find the sum of the values of an arbitrary polynomial in the roots of a given systems
of algebraic equations without finding the roots themselves.

For systems of transcendent equations, formulas for the sum of the values of the roots of the
system, as a rule, cannot be obtained, since the number of roots of a system can be infinite and
a series of coordinates of such roots can be diverging. Nevertheless, transcendent systems of
equations arise, for example, in the problems of chemical kinetics [6,7]. Thus, the urgent task is
to consider such systems.

In the works [8-15] power sums of roots are considered for a negative power for different
systems of non-algebraic (transcendent) equations. To compute these power sums, a residue
integral is used, the integration of which is carried out over skeletons of polycircles centered at
zero. Note that this residue integral is not, generally speaking, a multidimensional logarithmic
residue or a Grothendieck residue. For various types of lower homogeneous systems of functions
included in the system, formulas are given for finding residue integrals, their relationship with
power sums of the roots of the system to a negative degree is established.

Article [16] investigated more complex systems in which the lower homogeneous parts are
decomposed into linear factors and integration cycles in residue integrals, and are constructed
from these factors.

In [15], a system is studied that arises in the Zel’”dovich-Semenov model (see [6,7]) in chemical
kinetics.

* AKytmanov@sfu-kras.ru
tkhodos _o@mail.ru
© Siberian Federal University. All rights reserved
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The object of this study is transcendent systems of equations in which the lower homogeneous
parts of the functions included in the system form a non-degenerate system of algebraic equations:
formulas are found for calculating the residue integrals, power sums of roots for a negative power,
their relationship with the residue integrals is established. See [16,17].

Let f1(2),..., fn(2) be a system of functions holomorphic in a neighborhood of the origin in
a multidimensional complex space C™, z = (z1,...,2n).

We expand functions fi(z),..., fn(z) into Taylor series in a neighborhood of the origin and
consider a system of equations of the form

fZ(Z):Pl(Z)—FQZ(Z):O, 1=1,...,n, (1)

where P; is the lower homogeneous part of the Taylor expansion of the function f;(z). The degree
of all monomials (in the totality of variables) included in P;, is m;, i = 1,...,n. In functions Q;,
the degrees of all monomials are strictly greater than m;.

The expansion of the functions Q;, Pj, j = 1,...,n, in a neighborhood of zero in Taylor

series converging absolutely and uniformly in this neighborhood has the form

Qj(z) = Z al 2%, (2)

llecl|>m;
Pi(z)= Y b2’ (3)
1Bll=m;
j=1,...,n,
where a = (a1,...,05), 8 = (B1,...,0s) are multi-indices i.e. «; and §; are non-negative
integers, j = 1,...,n, ||af| = a1 + ...+ an, |8l = f1 + ... + Bn, and monomials z* = z{'* -

a2z, an LB _ P B2 .8
2 zpn, 2P =2 2 zpm.

In what follows, we will assume that the system of polynomials P;(z),..., P,(z) it is non-
degenerate, i.e. its common zero is only the point 0, the origin. Consider an open set (special
analytic polyhedron) of the form

Dp(r1,...,mn) ={2z: |Pi(2)| <mri, i=1,...,n},
where rq,...,r, are positive numbers. Its skeleton has the form
Tp(ri,...,mn) =Tp(r)={z: |P(2)|=m, i =1,...,n}.

These sets play an important role in the theory of multidimensional residues (see, for exam-

ple, [2]).
For sufficiently small 7;, the cycles I'p lie in the domain of holomorphy of functions f;,

therefore, the series
7 .01 «,
E |(La|7"1 Ty

lal|>m;

converge, ¢ = 1,2,...,n. Then on the cycle I'p(tr) = T'p(try,tre, ..., tr,) for sufficiently small
t > 0, we have

|P;(tr)| = Z b%(tr)ﬁ = Z t'lﬁ”|b%|rﬂ:tmi Z \biﬁ|rﬁ, i=1,...,n,

lIBlI=m: lI8ll=m: ll8ll=m:

and

QN =| 30 ar)| < 30 g = et 30 ja pedlell-tre),

llecl|>m; lleel|>m. lleel>m.
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Therefore, for sufficiently small ¢ on the cycle I'p(¢r) the inequalities hold
|Pi(2)] > 1Qi(2)], i=1,2,...,n. (4)

Thus,
fi(z) A0 ma Tp(tr), i=1,2,...,n.

In what follows, we assume that ¢ = 1, that is, that the inequality (4) is valid on the cycle
Tp(ri,...,mn).
We introduce the concept of residue integral J., (see [18]). Define

1 1 df _

I'p
. ! A
@rv=T)r J ettt AT e T
P
where v = (v1,...7,) is a multi-index. This residue integral is defined if r,...,r, is chosen

so that the inequality (4) holds and the cycle I'p does not intersect with the coordinate planes.
Note that this integral is not a multidimensional logarithmic residue or a Grothendieck residue.
Recall some concepts from the space of the theory of functions C" which equal to the product
of n copies of Riemann spheres CP*', i.e. C"'=CP' x--- x CP".
Let z; : w; be homogeneous coordinates in the j-th factor of the space C" and let

Fi(zi,wi,...,2n,wp) =0, j=1,...,n (6)

be a system of equations consisting of polynomials F; homogeneous for each pair of variables
(zk,wi), k =1,...,n. We will consider only those roots (z1, w1, ..., 2n, w,) systems (6) for which

(zmwr) € C2\ {(0,0)}, k=1,...,n.

The roots of the system (6) with pairs having proportional coordinates determine one root
(21 :w1,..., 2y s Wy) in c".
Let
a= (ng : wgo), 20 )

be the root of the system (6) for which all wlio) neq0. Then the point (z1,1,..., z,,1) is the root
of the system
Fj(z1,1,...,2,,1) =0, j=1,...,n,

in C™. Roots of a for which some w§-0) are equal to zero correspond to infinitely remote roots in
@TL

For a given system of equations of the form (1) for which all f;(z) are polynomials, then
in order to find the infinitely remote roots of this system in @n, you must first go to homoge-
neous coordinates, substituting the zj /wy relationship instead of z; and discarding the resulting
denominator, thereby obtaining a system of type (6). Solving it, we find ordinary roots and
infinitely remote roots of the system (1).

We return to the consideration of the system (1). Assume that, in addition to non-degeneracy,

the system Py(2),..., P,(z) does not have infinite roots in the space C .
We now cousider as functions Q;(z), ¢ = 1,...,n, polynomials of the form
Qi(z) = Z al z®. (7)
el >m
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Suppose that for each i-th equation in (1) the conditions
degzi PL < degzi Q’iv degzj PZ = degzj Qi7 .7 # i. (8)

Here deg,, P(z) is the degree of the polynomial P in the variable z; for the remaining variables
We have deg P; = m;. Denote deg@; = s;, a deg, P; = mj, deg, Q; = s]. Then m; < s;,
mi < st i=1,...,n. In addition, m] > s} for j # i. Cases when Y mi > m,.
j=1
1
In all functions, we write f;(z) = Pi(z) + Qi(2), i = 1,2,...,n, and replace z; = 1=

1,...,n, assuming that all w; # 0. We get

1 1 1 1 mi—p mi—3
S e o Moy
’ ’ ﬁl B mr mr W1 n ;
Yo W gsm, W Wntwyt Wa T
and
1 1 o1 1 1 o s"—a
Qi<’”.7>: Z o~y Tan =~ am Z CLw1 Doy
w w w wp™ Si
! n lleell >m 1 wy wyt el >m;
We have
1 1 1 1 1 1
fl<’ )PZ<37 >+QZ< y a)
wq W, w1y n w W,
1 (9)

Il
ssw
—

=
g
4
iOz
g
~~

where P; are homogeneous polynomials

~ 1 i n 1 1
7n/ éi m.;
Pi(wy,...,wp) =wy " - w, -~~wn1~Pi< )—

S o o,
ll8ll=m:
and P; are homogeneous polynomials

bﬂwm B UC s
E 1 T .
ll8ll=m:

In P;, neither wy, ... ; NOT Wy, .
The polynomials @); have the form

~ 1 st n 1 1
Qi(wl,...,wn):w;n’l~~w;1~~w?’ - Qi <w,...,> =

Wnp,

1 2 n ]_ n
m; S m, —Q S, —«

:wll...wiz...wnl. T E awl 1...fwn’ "=
wy* w" ||| >m;
1 1 1 n
m;—s; m;—sl j : i m;—a mi—a
:wl ...[wi]...wn a;wlz 1_.'wn1 n
||| >m;
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Denote by f; the functions

Fi(w) = Bi(w) + Qi(w) = wl ™™ - P+ Qs(w), i=1,2,...,n. (10)

We have R ~
deg P, > degQ;, i=1,...,n. (11)

Consider a system of equations of the form (1) with polynomials Q;(z) satisfying the condi-
tions (8).
Let I' 5 = I'5(¢) denote the cycle

Fp={weC":|P|=¢, >0 i=1,...n} (12)

This cycle does not intersect with the coordinate planes for almost all &;, i =1,...,n.
Consider the residue integral J, of the form

5 1 /ww df(1/w)

7T @n/oD)n F(jw)’

I'p
where w T = ] T T F(1/w) = fL(1 w1 wn) - fa(L w1 wy), df(1/w) =
=dfi(1/wi,...,V/wp) Ao Adfy(L/wr, ... 1 wy).

In fact, J, is obtained from the integral J, (5) using the substitution in the integrand z; =
1/wj, j = 1,...,n, and replacing I'p by I'5. But the equality of these integrals needs to be
proved.

Since the inequalities (11) hold for functions from the system (10), and the system of functions
Pi(w),..., Py(w) is non-degenerate, the well known Bezout theorem says that the system of
equations ~

filw)=0, j=1,...,n, (13)

has a finite number of roots (counting each root so many times what its multiplicity is) and this
number is equal to the product of the degrees of the polynomials P;(w).
We cite the theorem from [16].

Theorem 1. The following equality holds:

p
1
Z bl oyl o et -

j=1 %1 32 jn

a1 | Aoz Naun
_ el Aoyt yetl 1 1 w2 Qn
= E (-1) A - w] wy w) Bartl poati. ., pantl dw,
" - P Ny
llelI< IvII+n rs

where A is the Jacobian of the system (10).

For what follows, we need a generalized Grothendieck residue transformation formula (see [19],
as well as [4, Ch. 2]).

Theorem 2 ([19]). Let h(w) be a holomorphic function, and the polynomials fi(w) and g;(w),
7, k=1,...,n, be related by

n
gj:Zajkf]ﬁ j:1727"'7n5
k=1

the matriz A = ||ajk\|}’_k=1 consists of polynomials. Let us consider cycles

Ff:{w ‘fj(w” =Ty, j:17"'an}7 Fg:{w: ‘g](z)lzrja j:17"'an}7
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where all r; > 0.
Then the equality is valid:

det A H a, ”dw

[rw = ¥ e [hw (14)
Ly

B
n ko) g
S s,gl( sil'e,
where B! = G118 ... Bn, B = (51,02,--.,5n), the summation in the formula is over all integer
n
non-negative matrices K = |ks;||5 =, with the conditions that the sum _ ksj = o, then 3; =
s=1

n
Here fo=forfon gBf = gt g,
From this theorem, a statement is obtained in [16].

Theorem 3. The formulas are valid

- < ~ ~
1 i . "
Z — _ (=D /w¥1+1 gt LA fa N f

= 2 ~ ~ e ~ ==
ATt (2T "

j=1 31 fl f2 fn

P

_ el / ottt B QY Q8 e Qrdun Ndwy A duy
_ gt 2 i t _
2my/—1)n " poatl. poetl . pantl

llel<livil+n ( T's

(=1l T (Z ksj>! w - A-det A- Q¥ T[ aby
Z s=1 \j=1 m s,5=1

a T ‘N:+B;+N;
K< +n IT (ksp)! [T w oAt
s,J=1 j=1

where | K|| = Z ksj, and the functional 9 maps the Laurent polynomial to its free term.
s,j=1
In fact, in Theorem 3, analogues of the classical Waring formulas for finding power sums of
the roots of a system of algebraic equations are obtained.
Note that in [20] general algebraic systems of equations were considered, decompositions
of their solutions in hypergeometric series were obtained. In addition, it proves analogues of
Waring’s formulas for systems of the form

y;nj—i— Z x&j)ykzo, M+ F A <my, j=1,...,n,
AeAu{o}

those higher homogeneous parts are monomials. We considered other (more general) systems of
equations with functions of the form (10).
Consider a more general situation. Let the functions f; be meromorphic and have the form

£9()
£2(z)

where f;l)(z) and fj@(z) are entire functions in C™ that decompose into infinite products uni-

fi(z) = , j=1,2,...,n, (15)

formly converging in C", fj@) (0) #£ 0,

Vo) =110, 126 = Hf<2>< ),

s=1
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moreover, each of the factors has the form P; () + Q; s(2), and Q; s(2) satisfy conditions (8),
s=1,2,....

For each set of indices ji,...,Jjn, where ji,...,j, € N, and each set of numbers iy, ..., 1i,,
where i1, ...,1, are equal 1 or 2, systems of nonlinear equations
e =0, f2E =0, ..., f5) =0, (16)

have a finite number of roots not lying on coordinate planes.
The roots of all such systems (not lying on the coordinate planes) are no more than a countable
set. Renumber them (taking into account multiplicities):

Z(l), Z(2)r 1 B()y e -
Denote by 041 the expression
Ip+1 = Z SBitl ﬂ2+1 Bntl’ (17)
=1 1) “*2(1) " Pn()
Here 1, ..., By, as before, are non-negative integers, and the sign ¢; is +1, if in a system of

the form (16), the root which is z(;y, includes an even number of functions ff); and is equal to
—1if in a system of the form (16), the root which is z(;), includes an odd number of functions

@)
Il
For a system (16) composed of functions of the form (15), the points z(;) are roots or singular
points (poles). All functions f; are holomorphic in a neighborhood of zero and are defined for
them integrals Jg, since they have the form (1).

Theorem 4. For a system of equations with meromorphic functions (15) the series (17) abso-
lutely converges, and
Jp = (=1)"op41.
Example 1.
Consider a system of equations in two complex variables

fi(z1,22) = 21 — 20 +az? + bz} =0,
fg(Zl,Zg) =1 + Czg = 0.

1 1
We make the change of variables z; = —, 20 = —. Our system will take the form
w1 w2

{fl = w%wg — wf + awjwsy + bwy = 0, (18)

}TQ =wy +c=0.
The Jacobian of the system (18) A is

_ a2 2
A= ‘Zwlwz gwl +aws wi+ alw1 +0| _ Swrws — 3w + aws.

It is clear that _
{Q1 = awiwy + bws,

QQZC.

D 22 3
P = wiwy —wy,
P2:w2.
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Since
. _ _
wy = a1 Py + a2 Pa,

we = a1 P1 + axn Py,
it is easy to show that the elements a;; of the matrix A are equal
a1 = —1, a1y = wi,

az =0, az =1.

Thus, det A = —1.
By Theorem 3

E: (71WKH.“11+khg!ka—%knﬂx
k‘11! . 1{312! . k21! . k22!

J(0,0) =
| K||=k11+ki2+ko1+ko2 <2

(Bw? — 2wiws — aws) - (awiwy + bwg)k1 ke . ckhzthez . (_)ku . (ka2 . gkar . (ke

th
3(k11+k +1 ko1+k —1
w ( 11 12) . w( 21 22)

Simple calculations give that
_ 2
J(O,O) =cC .

Recall the well-known decomposition of the sine function into an infinite product:
sinz lo—o[ 1_ 22
z k2n2 )’
k=1

which uniformly and absolutely converge on the complex plane and has a growth order of 1.
Consider the system of equations

fi(z1,22) = 21 — 20 +az? +b23 =0,

sin z
fo(21,20) = —2 = 0.

2o
Using the formula obtained above and the known sum, we obtain that the integral Jig ) is
equal to the sum of the series
= 1 1
J =2 — =
(0,0) Z 252 3

s=1

Example 2. Consider a system of equations in two complex variables

fi1(z1,22) = 2122 + b121 + bazp = 0, (19)
fQ(Zl, 2’2) =14a1z1 +aszs =0.
. 1 1 .
We make the change of variables z1 = —, 2z = —. Our system will take the form
w1 Wa
fi=1+b biwy =0
]il + bawy + 1w ) (20)
fo = wiws + aswy + aqws = 0.

The Jacobian of the system (24) Ais

N b b
A ‘ 2 ! = b211.)1 — b1w2 + (a1b2 — a2b1).

we +as w1+ ay

- 292 —



Alexander M. Kytmanov, Olga V. Khodos On Some Examples of Systems of Transcendent Equations

Notice that

Q2 = a1ws + asw;.

{@ =1, (21)

P =b bowy,
{ [y 1W2 + bW (22)
Pg = wWi1wa.
We calculate det A :
Since _ _
wi = a1 P + a2 Ps,
w% = a21]51 + 0221327
where ﬁl = biwsy + bywy, f’z = Wi Ws.
Therefore, the elements of a;; are equal
w1 b1
a1 = —, G132 = ——
11 by 12 by’
wao bz
g1 = —, Gy = ——.
21 by 22 by
Hence,
we  wi  waby —wiby
detA=—+——=—""——-=
by by b1bo
Notice that ~ B
Ql = ]-7 Q2 =1
Carrying out the same calculations as in the previous example, we obtain
J _ 2(&1 + b2)
(070) - A :
Example 3.
Consider a system of equations in two complex variables
f1(z1,22) = a121 — agz + 21 =0, (23)
fg(Zl, 22) =b1z1 + bozo + Z% =0.

It satisfies the conditions (8) on Q;(z). We assume that aibs + a2b; # 0, i.e. the system of
lower homogeneous polynomials is non-degenerate.

1 1
We make the change of variables z1 = —, zo0 = —. Our system will take the form
w1 w2

fl = —agw% + ajwiwy + we = O7
f2 = bowiws + byw3 + wy = 0.

This system has 4 roots, on the coordinate planes there is one root, (0,0).
The Jacobian A of the system (24) is equal to

X —20,211)1 + ajws aiwy + 1

— - _ 2 _ 2 _ — _
A= b2w2 + 1 2b1w2 + b2w1 = 2a2b2w1 4a2b1w1w2 + 2a1b1w2 a1wy b2w2 1.

Notice that

Q1 =w2, Q2 =wi. (25)
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ﬁl = —agwf + ajwiwa, pg = bowqwsy + blwg. (26)

To find the matrix A, we use Example 8.3 from [4].
We introduce the matrix

—as aq 0 0
. 0 —az Qi 0
Res=1 o 4, 5 o

0 0 by b

The determinant A of the matrix Res is equal to A = agby(azby + a1bs).
We calculate some minors according to Example 8.3 from [4]:

) —as a; O ~ agz 0 0
Al = bg bl 0| = —agb% — alblbg, AQ = — b2 bl 0| = —(le%,
O bg b1 O b2 bl
_ ay 0 0 5 aq 0 0
Ag = |—a2 a1 0= a%bl, A4 = —|—a2 a1 0] =0.
0 b2 b1 b2 bl 0
0 —a al —a al O
Al =—10 b2 b1 = 0, Ag = 0 bg bl = —agbg,
0 0 b 0 0 be
—a9 ay 0 —a9 a1 0
As=—1] 0 —a2 a1| = —a%bg, Ay=10 —az a1 = a%bl + aragbs.
0 0 b 0 by b1

Therefore, the elements a;; of the matrix A are equal
1/« ~ 1
=5 (Alwl + A21112> A ((*GQbf —a1bibo)w; — alb%wQ) ;

1 /~ ~ a2biw 1
ajz = A (A?,U/l + A4102) = %, ag) = A (Aqwi + Aqws) =

1
ax = (Aszwy + Aqws) =

7(12[)%71)2
A
% (—a%bgwl + (a3by + alagbg)wg) )
Then, it is easy to verify that

w‘f = CL11151 + a12152, w% = a21ﬁ1 + a22162~
We calculate det A :

1

2 2
a2b2w1 - a2b1w1w2 — a1b1w2) .

By Theorem 3

_ (=1)IEI. (Byy 4 k1) - (koy + Koo)'
Tow = ki - kol - Kot! - Koo x

I Kl<2
A Ak11+k21 | Aki2+ka2 k11 k12 k21 koo
<M A-detA-Q Qs B T Ve )
3(k k 1 3(k k 1
wl( 11+k12)+ .w2( 21+k22)+

Denote A = asb; + a1bs. Cumbersome but simple calculations (using the definition of the
functional 9M) give that
1 2a1b2 6a%b% bg a:f 8a1b2 4 a% a1b2 3&2()1 bg

J = — — = = = = — = = = 7 — =
OO T A7 b A agb A2 b A2 agAZ | A2 aghy agA? A2 A2 b A2
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O HeKOTOpPBLIX MpPUMeEpPaxX CHUCTEM TPAHCIEHIEHTHBIX
YpaBHeEHU

Anekcanap M. KbitmaHnoB
Oasbra B. Xomgoc

Cubupckuii deiepaibHbIl YyHUBEPCUTET
Kpacnospck, Poccuiickaa Penepariust

AnHoTaiuga. B manHOil cTarhbe paccMaTpUBAIOTCS IIPUMEDPBI TPAHCIIEHJIEHTHBIX CHCTEM ypPaBHEHHUI 00-
LIEro BUJa. BhrueTHbIe HHTErPAJIbI ONIPEJIESISIOTCS IO [IUKJIaM, CBSI3aHHBIM ¢ cucTeMmoit. [IpuBenensr dop-
MYJIBI JIJISI UX PACUeTa, M YCTAHOBJIEHA CBSI3b CO CTEIIEHHBIMHM CYMMaMU KOPHEH CHCTEMBI.

KuroueBrble ciioBa: TPAHCIEHIEHTHbIE CUCTEMbI YPABHEHU, BEIUYETHbIE HHTEIPAJIbI, CTETIEHHBIE CYMMbI
KOPHEH.
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Colorings of the Graph Kj' + K,

Le Xuan Hung*
Hanoi University of Natural Resources and Environment
Hanoi, Vietnam
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Abstract. In this paper, we characterize chromatically unique, determine list-chromatic number and
characterize uniquely list colorability of the graph G = K3" 4+ K,,. We shall prove that G is y-unique,
ch(G) = m + n, G is uniquely 3-list colorable graph if and only if 2m +n > 7 and m > 2.
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1. Introduction and preliminaries

All graphs considered in this paper are finite undirected graphs without loops or multiple
edges. If G is a graph, then V(G) and E(G) (or V and E in short) will denote its vertex-set
and its edge-set, respectively. The set of all neighbours of a subset S C V(G) is denoted by
Ng(S) (or N(S) in short). Further, for W C V(G) the set W N Ng(S) is denoted by Ny (S).
If S = {v}, then N(S) and Ny (S) are denoted shortly by N(v) and Ny (v), respectively. For a
vertex v € V(G), the degree of v (resp., the degree of v with respect to W), denoted by deg(v)
(resp., degy, (v)), is |Ng(v)| (resp., |[Nw(v)|). The subgraph of G induced by W C V(G) is
denoted by G[W]. The independent sets and complete graphs of order n are denoted by O,, and
K, respectively. Unless otherwise indicated, our graph-theoretic terminology will follow [1].

A graph G = (V, E) is called r-partite graph if V admits a partition into r classes V =
= ViUV, U...UV, such that the subgraphs of G induced by V;, i = 1,...,r, is independent set.
An r-partite graph in which every two vertices from different partition classes are adjacent is
called complete r-partite graph and is denoted by K\v,|v4|,...,|v;,| - The complete r-partite graph
Ky, val,...,|v,] with [V1] = [Vo] = ... = |V,| = s is denoted by K[

Let Gy = (Vi,Ey), Go = (Va, Es) be two graphs such that V1 NV, = (. Their union
G = G71 U Gy has, as expected, V(G) = V3 UV, and E(G) = Ey U Ey. Their join defined is
denoted G1 4+ G> and consists of G; U G5 and all edges joining V; with V5.

Let G; = (W4, Ev), Go = (Va, Es) be two graphs. We call G; and G isomorphic, and write
G1 = G, if there exists a bijection f : Vi — Va5 with wv € Fy if and only if f(u)f(v) € Es for
all u,v € V7.

Let G = (V, E) be a graph and A is a positive integer.

A X-coloring of G is a bijection f : V(G) — {1,2,...,A} such that f(u) # f(v) for any
adjacent vertices u,v € V(G). The smallest positive integer A such that G has a A-coloring is
called the chromatic number of G and is denoted by x(G). We say that a graph G is n-chromatic
if n = x(G).

*1xhung@hunre.edu.vn
(© Siberian Federal University. All rights reserved
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Let V(G) = {v1,vs,...,0,}, two A-colorings f and g are considered different if and only if
f(vg) # g(vg) for some k = 1,2,...,n. Let P(G,\) (or simply P(G) if there is no danger of
confusion) denote the number of distinct A-colorings of G. It is well-known that for any graph
G, P(G, \) is a polynomial in A, called the chromatic polynomial of G. The notion of chromatic
polynomials was first introduced by Birkhoff [3] in 1912 as a quantitative approach to tackle
the four-color problem. Two graphs G and H are called chromatically equivalent or in short
Xx-equivalent, and we write in notation G ~ H, if P(G,\) = P(H,\). A graph G is called
chromatically unique or in short y-unique if G’ =2 G (i.e., G’ is isomorphic to G) for any graph
G’ such that G’ ~ G. For examples, all cycles are y-unique [8]. The notion of y-unique graphs
was first introduced and studied by Chao and Whitehead [4] in 1978. The readers can see the
surveys [8,9] and [12] for more informations about x-unique graphs. Recently, Ngo Dac Tan and
Le Xuan Hung characterized chromatically unique split graphs [12] (A graph G = (V, E) is called
a split graph if there exists a partition V = I U K such that the subgraphs of G induced by I
and K are independent sets and complete graphs, respectively).

Let (Ly)yey be a family of sets. We call a coloring f of G with f(v) € L, forallv € Vis a
list coloring from the lists L,. We will refer to such a coloring as an L-coloring. The graph G is
called A-list-colorable, or A-choosable, if for every family (L,)yev with |L,| = A for all v, there is
a coloring of G from the lists L,. The smallest positive integer A such that G has a A-choosable
is called the list-chromatic number, or choice number of G and is denoted by ch(G). In [7], we
characterized list-chromatic number for split graphs, we have proved that if G is a split graphs
then ch(G) = x(G).

Let G be a graph with n vertices and suppose that for each vertex v in G, there exists a
list of k colors L,, such that there exists a unique L-coloring for G, then G is called a uniquely
k-list colorable graph or a UKLC graph for short. The idea of uniquely colorable graph was
introduced independently by Dinitz and Martin [6] and by Mahmoodian and Mahdian [10]
(Mahmoodian and Mahdian have obtained some results on the uniquely k-list colorable com-
plete multipartite graphs, for example, they proved that graph G = O,, + K,, is U3LC when
(m,n) € {(4,6),(5,5),(6,4)}).

Finding a general result for the problems raised above is a difficult task, requiring a lot of
time and effort for mathematicians. There have been many interesting and insightful research
results on these issues for different graph classes. However, these are still issues that have not
been resolved thoroughly, so much more attention is needed. In this paper, we shall characterize
chromatically unique, determine list-chromatic number and characterize uniquely list colorability
of the graph G = K"+ K,,. Namely, we shall prove that G is x-unique (Section 2), ch(G) = m+n
(Section 3), G is U3LC if and only if 2m+n > 7 and m > 2 (Section 4). These results contribute
to solving the coloring problem for a complete multipartite graph.

2. Chromatic uniqueness

We need the following Lemmas 1-4 to prove our results.
Lemma 1 ([2]). If K, is a complete graph on n vertices then x(K,) = n.
Lemma 2. If G = Ky, n,,...n, is a complete r-partite graph then x(G) =r.

Lemma 3 ([11]). Let G and H be two x-equivalent graphs. Then
(1) V(@) = [V(H)|;
(ii) |E(G)| = |E(H));
(iii) X(G) = x(H);
(iv) G is connected if and only if H is connected;
(v) G is 2-connected if and only if H is 2-connected.
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Lemma 4. Let G = (Vi UVLU...UVyin, E) be a (m + n)-partite graph with m > 1, n > 1,
Vil = [Val = ... 2 [Vingnl and [Vi| 4+ [Va| 4+ ... + |Vingn| = 2m +n. Then

In particular,
(2m +n)? —4m —n
2
if and only if G is a complete (m + n)-partite graph Ky, | |vo).....|Vin| With

|E| =

|V1| = ‘V2| == |Vm| =2, |Vm+1| = |Vm+2| =...= |Vm+n| =1

Proof. We prove the lemma by induction on ¢t = m+n. For t = 2 the assertion holds, so let t > 2
and assume the assertion for smaller values of t. If |V, 4,| = 2 then |Vi| + |Va| + ... 4+ |Vipgn| =
2m+2n > 2m+n, a contradiction. So, |Viyin| = 1. If |V, | = 3 then |Vi| +|Va| +. .. +|Vitn| =
3m +n > 2m + n, a contradiction. Therefore, |V,,| < 2. Now we consider separately two cases.
Case 1: There exists i € {1,2,...,m} such that |V;| = 2.

Set G/ = G —V;. It is clear that G’ is a (m + n — 1)-partite graph

(VTUVoU...UV, UV U UV, EY).

By the induction hypothesis,

(2(m—1)+n)2—4(m—1)—n.

F'l <
We have
El < [E|+|Vil(Vil+ .. + [Vica| + Vigal + -+ Vi) <
2 -1 2 _4(m—-1)—
< @m )+”)2 (=D oman—2) =
_ (2m+n)?—4m—n
— 5 )
It is not difficult to see that
‘E|_(2m+n)2—4m—n

2
if and only if G is a complete (m + n)-partite graph K|y, | |vy|..... [ Vinsn| With

|V1| = |V2‘ == |Vm‘ =2, |Vm+1‘ = ‘Vm+2| =...= |Vm+n| =1L

Case 2: |V;| # 2 for every i =1,2,... ,m.
In this case, |Vi| > 3. Let h € {1,2,...,m} such that |V}| =1 and |V3_1] > 3. Let G; =

= Ky, ps.....pmsn D€ acomplete (m+n)-partite graph such that p, = [Vj,|+1 =2, pp—1= [V},_1]| -1
and p; = |V;| for every i € {1,2,...,m+n}\ {h —1,h}. By Case 1,
2m+n)2 —4m —n
(G < B .
We have
[E(G)] = > pii=

1<i<j<m+n
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= Z pip; + Z PiPh—1+

i,j€{1,...,m+n}\{h—1,h} i€{1,...,m+n}\{h—1,h}
+ > PiPh + Ph—1Ph =
i€{l,....m+n}\{h—1,h}
= > VillVs] + > Vil([Vh-1] = 1) +
i,5€{1,....m+n}\{h—1,h} i€{1,...,m+n}\{h—1,h}
+ > Vil(IlVal + 1) + (Vi—1] = D(IVa] + 1) =

ie{l,....m+n}\{h—1,h}
= > |VillVil+ Vel = [Val -1 >
1<i<js<m+n

E|+1.

WV

It follows that
(2m +n)? —4m —n

|E] <

2
Now we characterize chromatically unique for the graph G = K3" + K.
Theorem 5. The graph G = K3 + K,, is x-unique.
Proof. It is clear that G is a complete (m + n)-partite graph K, ,, .. p,. ., With
PL=P2=...=Dm =2, Dm+l =Pm+2 = -+ = DPm+tn = L.
Let G' = (V', E’) is a graph such that G’ ~ G. Since Lemma 2 and (iii) of Lemma 3 we have
X(G") =x(G) =m+n.
Let G’ has a coloring f using m +n colors 1,2,...,m +n. Set
Vi={ueV'| fu)=i}.
for every i =1,2,...,m+n. It follows that G’ is a (m+n)-partite graph (V/UVyU...UV, ., E').
By (i) and (ii) of Lemma 3 we have
, , 2m+n)? —4m —n
V(G =IV(G)| =2m+n, [E(G) =I|EG) = 5 :
Without loss of generality we may
VIS Vi > > Vil
By Lemma 4, we have
Vi = IVdl = o = Vil = 2, Vil = [Viayal = o = Vil = 1.
It follows that G’ = G. Thus G is x-unique. O

3. List-chromatic number

We need the following Lemmas 6-8 to prove our results.

Lemma 6 ([5]). If G is a graph then ch(G) > x(G).
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Lemma 7 ([5]). If Gy is a subgraph of G5 then ch(G1) < ch(Gs).
We determine list-chromatic number for complete graphs.

Lemma 8. If K,, is a complete graph on n vertices then ch(K,) = n.
Now we determine list-chromatic number for the graph G = KJ.

Theorem 9. List-chromatic number of G = K3 is
ch(G) =r.

Proof. By Lemma 2 and Lemma 6, we have ch(G) > r. Now we prove ch(G) < r by induction
on r. For r = 1 the assertion holds, so let 7 > 1 and assume the assertion for smaller values of r.

Let V(G) = V1 UV, U... UV, is a partition of V(G) such that for every i =1,...,7, |V;| =2
and the subgraphs of G induced by V;, is independent set. Set

Vi = {vir, via }

for every i = 1,...,r. Let L, be the lists of colors of v;; such that |L,, | = r for every
i1=1,2,...,r;7 = 1,2. Now we consider separately two cases.

Case 1: There exists i € {1,2,...,r} such that L,, N L,,, # 0.
Without loss of generality we may assume that L,,, N Ly, # 0 and a € L,,, N L,,,. set
G' = G — V. Tt is clear that G’ is a graph K5~ '. Again set
L;)ij g L'Ui,j \{a’}
such that |L;J| =r—1foreveryi=23,...,m;5 =1,2.
By the induction hypothesis, there exists (r —1)-choosable g of G’ with the lists of colors L], |
for every i1 =2,3,...,r;5 =1,2.
Let f be the coloring of G such that
f(vij) = g(v;;) for every i =2,3,...,r;j =1,2,
f(v1;) = a for every j =1,2.
Then f is a r-choosable for G, ie., ch(G) < r.
Case 2: Ly, N Ly, =0 for everyi=1,2,...,r.
Let b € Ly,,. Set G’ =G —V; = K5~ and

Vi1-

such that [L;, | =r—1forevery i=2,3,...,rj=12.
By the induction hypothesis, there exists (r —1)-choosable g of G’ with the lists of colors L], |
for every i =2,3,...,7;7 = 1,2. Since |Ly,, U Ly ,| = 2r and |V(G'| = 2(r — 1), it follows that

V11

|(Lvll U L'U12) \g(V(G/)N = 2.

We again divide this case into two subcases.
Subcase 2.1: ((Ly,, U Ly,,) \ g(V(G"))) N Ly, # 0.
Let ¢ € ((Ly,, U Lyy,) \ g(V(G")) N Ly,,. Let f be the coloring of G such that
f(vij) = g(vij) for every i =2,3,...,r;j =1,2,
f(vi) =0, f(vi2) = c.
Then f is a r-choosable for G, ie., ch(G) < r.
Subcase 2.2: ((Ly,, U Ly,,) \ g(V(G"))) N Ly, = 0.
By [(Ly,, ULyy) \ g(V(G))| = 2, there exists d € (Ly,, U Ly,,) \ g(V(G')), d #b. It is clear
that b,d € L,,,. Since |L,,,| = r and |g(V(G"))| < 2(r — 1), there exists ¢ € {2,3,...,r} such
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that g(v;1), g(vi2) € Ly,,. Without loss of generality we may assume that g(va1), g(vas) € Ly,,.
Let e € (Ly,y, U Ly, ) \ g(V(G')). First assume that e € L,,,. If e # b then coloring f of G such
that

f(vij) = g(vi;) for every i = 3,4,...,r;j =1,2,

f(va2) = g(v22), f(va1) =€,

f(v11) = b, f(vi2) = g(va1).
is a r-choosable for G. If e = b then coloring f of G such that

f(vij) = g(vi;) for every i = 3,4,...,r;5 =1,2,

f(va2) = g(va2), fva1) =e,

f(oir) = d, fviz) = g(va).
is a r-choosable for G. By symmetry, we can show that ch(G) < r if e € Ly,,. O

Theorem 10. List-chromatic number of G = K3* + K, is
ch(G) =m+n.

Proof. Tt is clear that G = KJ* 4+ K,, is a complete (m + n)-partite graph. By Lemma 2 and
Lemma 6, we have ch(G) > m+n. Now we prove ch(G) < m+n. It is not difficult to see that G
is a subgraph of K3"™™. By Lemma 7 and Theorem 9, ch(G) < m+n. Thus, ch(G) = m+n. O

4. Uniquely list colorability

If a graph G is not uniquely k-list colorable, we also say that G has property M (k). So G
has the property M (k) if and only if for any collection of lists assigned to its vertices, each of
size k, either there is no list coloring for G or there exist at least two list colorings. The least
integer k such that G has the property M (k) is called the m-number of G, denoted by m(G).
This conception was originally introduced by Mahmoodian and Mahdian in [10].

We need the following Lemmas 11-16 to prove our results.

Lemma 11 ([10]). A connected graph G has the property M(2) if and only if every block of G
1s either a cycle, a complete graph, or a complete bipartite graph.

Lemma 12 ([10]). For every graph G we have m(G) < |E(G)| + 2.

Lemma 13 ([10]). Every UkLC graph has at least 3k — 2 vertices.

Lemma 14. If2m+n=7 and m > 2 then G = KJ" + K,, is U3LC.

Proof. Tt is clear that G = K" + K, is a complete (m + n)-partite graph. Let V(G) = V4 UTL U

... U Vign is a partition of V(G) such that |Vi| = [Vo| = ... = |[Viu| = 2, |Ving1| = [Ving2| =
oo = |Vinen| = 1 and for every ¢ = 1,...,m the subgraphs of G induced by V;, is independent
set. Set V; = {1, u;n} for every i = 1,...,m and V,,; = {v;} for every i = 1,...,n. Now we

consider separately two cases.

Case 1: m =2 and n = 3.
We assign the following lists for the vertices of this graph:

Ly, = {172’3}’ Ly, = {17475}7 Ly,, = {1,2,3}7 Ly,, = {27475}7

Lv1 = {17275}7 va = {1»274}7 ng = {17273}

A unique coloring f exists from the assigned lists:

f(ull) =1, f(U12> =1, f(qu) =2, f(u22) =2,
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f(v1) =5, f(v2) =4, f(v3) =3.

Case 2: m=3 and n = 1.
We assign the following lists for the vertices of this graph:

Lull = {17 4) 5}’ Lu12 = {27 47 5}7 Lu21 = {]‘7 27 3}7 Lu22 = {3’ 47 5}7

Ly, = {172’4}’ Ly, = {35475}7 L, = {37475}-

A unique coloring f exists from the assigned lists:
flunn) =1, flue) =2, f(uan) =3, flug)=3,
f(udl) = 47 f(U32) = 47 f(vl) =3.

Lemma 15. If m =2 andn > 3 then G = Ki" + K,, is U3LC.

Proof. We prove G is U3LC by induction on n. If n = 3 then by Lemma 14, G is U3LC. So let
n > 3 and assume the assertion for smaller values of n.

Let V(G) = ViUVLU. ..UV, 42 is a partition of V(G) such that |Vi| = |Vo| = 2, [V3| = |V4| =
=...=|Vu42| = 1 and for every ¢ = 1,2 the subgraphs of G induced by V;, is independent set.
Set V; = {w;1,u;0} for every i = 1,2 and V1o = {v;} for every i = 1,...,n. Set G' = G — v,,.
By the induction hypothesis, for each vertex v in G’, there exists a list of 3 colors L’ , such that
there exists a unique f’ for G’.

We assign the following lists for the vertices of G:

L,, =L L,,=1L =L =L

L L

U1l u11”? U112 u12? u21 u21"? UuU22 U292
L'Ul = Lijla ceey L'Un—l = Li)n_u Lvn = {f/(vl)a f/(UQ)at}a
with ¢t ¢ L, UL, UL, UL, UL, U...UL, .
A unique coloring f of G exists from the assigned lists: f(v)= f'(v) if v € V(G), f(v,) =t.

O
Lemma 16. If m =3 andn > 1 then G = K3* + K,, is U3LC.

Proof. We prove G is U3LC by induction on n. If n = 1 then by Lemma 14, G is U3LC. So let
n > 1 and assume the assertion for smaller values of n.

Let V(G) = ViUV U V3 U...UV,43 is a partition of V(G) such that |V;| = |Va| = |V5] = 2,
Vil = |V5| = ... = |Voe3] = 1 and for every ¢ = 1,2,3 the subgraphs of G induced by V;, is
independent set. Set V; = {w;1,u;2} for every i = 1,2,3 and V13 = {v;} for every i = 1,...,n.
Set G’ = G — v,. By the induction hypothesis, for each vertex v in G’, there exists a list of 3
colors L/, such that there exists a unique f’ for G’.

We assign the following lists for the vertices of G:

Luu = L'/u,lla Lulz = L;ma Lum = L;zlv Lu22 = L;,L227 Lual = L;,L317 Lusz = L;,L32
Lv1 = L’/Ul7 IR Lvn71 = L;",l’ Lvn = {f/(vl)’ f/(v2)>t}’7
witht ¢ L, UL, UL, UL, UL, UL, UL, U...UL, .

A unique coloring f of G exists from the assigned lists: f(v)= f'(v) if v € V(G'), f(v,) =t.
[
Theorem 17. G = K" + K,, is USLC if and only if 2m+n > 7 and m > 2.
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Proof. Firrst we prove the necessity. Suppose that G = K3 + K, is USLC. By Lemma 13,
[V(G)| =2m+mn > 7. If m =1 then |[E(G)| = 1, by Lemma 12, m(G) < |E(G)|+2 = 3, a
contradiction. Therefore, m > 2.

Now we prove the sufficiency. We prove G is U3LC by induction on m. If m = 2 then by
Lemma 15, G is U3LC. If m = 3 then by Lemma 16, G is U3LC. So let m > 3 and assume the
assertion for smaller values of m.

Let V(G) = ViUV, U V3 U...U V4, is a partition of V(G) such that |[V4]| = [Va] = ... =
= |Vinl = 2, [Vint1| = |Ving2|l = ... = |Vinin| = 1 and for every i = 1,2,...,m the subgraphs of
G induced by V;, is independent set. Set V; = {uj1,us2} foreveryi=1,...,mand G' = G—V,,.
By the induction hypothesis, for each vertex v in G’, there exists a list of 3 colors L/, such that
there exists a unique f’ for G'.

We assign the following lists for the vertices of G: Ly, , = Ly, = {f'(v11), f'(u21),t} with
te¢ f'(G), L, =L, if v e V(G).

A unique coloring f of G exists from the assigned lists: f(um1) = f(umz2) =1, f(v) = f'(v)
if v e V(G). O

5. Conclusion

The coloring problem, including the list coloring problem, has always been much researched
in graph theory because it has many applications in computer science. The list coloring model
can be used in the channel assignment. The fixed channel allocation scheme leads to low channel
utilization across the whole channel. It requires a more effective channel assignment and man-
agement policy, which allows unused parts of channel to become available temporarily for other
usages so that the scarcity of the channel can be largely mitigated [13]. It is a discrete optimiza-
tion problem. A model for channel availability observed by the secondary users is introduced
in [13]. The research of list coloring consists of two parts: the choosability and the unique list
colorability.

The main results of the paper have identified the list-chromatic number (Theorem 10), char-
acterized chromatically unique (Theorem 5) and characterized uniquely list colorability (Theo-
rem 17) of the graph G = KJ' + K,,. The desire in the future will achieve deeper results on the
issues raised in this article.
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Packpacku rpada Kj' + K,
JIe Xyan XyHr

XaHONCKMIT YHUBEPCUTET IIPUPOJIHBIX PECYPCOB U OKPYKAIOIIEN CpeIbl
Xamnoit, Bbernam

Awnnoranusi. B 9701 craThe MBI XapaKTepu3yeM XPOMATHYIECKU YHUKAJIBHOE XPOMATHUIECKOE UHC/IO B
CIIUCKE W OJIHO3HAYHO XapaKTepudyeM okpammuBaeMocTb rpada cinucka K3' + K. Mbr gokaxkem, uro G
X eauHCTBeHHO, ch(G) = m + n, G ABisAeTCa OJHO3HAUHBIM TPEXIBETHBIM I'padOM PacKpacKd TOra U
TOJIBKO TOTJIa, Korma 2m +mn =7 um > 2.

KimroueBble cjioBa: XpoOMaTUIECKOE YUCJIO, XPOMATHIECKUI HOMED CIUCKA, XPOMATUYECKH yHUKAIbHBII

rpad, OJIHO3HAYHBINA CITMCOK PacKpalmBaeMoro rpada, MoJHBIN Ir-pa3/ie/bHbli rpad.
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Abstract. Procedure for constructing exact solutions of 3D Navier—Stokes equations for an incompress-
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obtain new classes of exact solutions.

Keywords: incompressible fluid, motion, equation, integral, primary generator of solutions, exact solu-
tion.

Citation: A.V.Koptev, Exact Solution of 3D Navier—Stokes Equations, J. Sib. Fed. Univ. Math. Phys.,
2020, 13(3), 306-313. DOI: 10.17516,/1997-1397-2020-13-3-306-313.

Introduction

The Navier—Stokes equations describe the motion of fluid and gaseous media in the presence of
viscosity. These equations are widely used for solving practical problems in various fields. These
fields traditionally include hydraulic engineering, oceanology, shipbuilding, aircraft engineering,
tribology and cardiology.

The simplest version of the equations corresponds to the case of incompressible fluid mo-
tion. In this case the density and all other physical characteristics of the fluid are constant
and unknowns are the components of velocity vector u, v, w and pressure p [1,2]. In this case
the Navier—Stokes equations in dimensionless variables and in the presence of the potential of
external forces can be represented as

?Z—Fungrng—kng:—Wﬁ-];Au? (1)
?;—I-uggjﬁ—vg;;—l—wgz:—(w+;eﬁv, (2)
%:+u?;+v§;+wgf=—w+};ﬁw, (3)
5t 3 =0, ()

0? 0? 0?

where A is the 3D Laplace operator with respect to spatial coordinates: A = — + — + —
x z

® is the potential of external forces, Re is the Reynolds number.
The study of equations (1-4) is one of the directions of modern mathematical physics [3,4].
However, at present many issues are not fully clarified and they require additional research. One
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of the main problems is the lack of a general constructive method of solution. How to construct
solutions of 3D Navier—Stokes equations with all non-linear terms? There is no answer to this
question yet but practice needs resolution of this issue.

An important step along this path is the construction of exact solutions. Some solutions
are known [5-8]. Now broad classes of solutions are of particular interest. Each class of exact
solutions introduces new understanding of general laws and to some extent creates a basis for
developing methods to construct exact solutions.

1. Integral of the Navier—Stokes equations

The procedure for constructing an integral of equations (1-4) was proposed by author [9, 10].
So, the integral is represented by nine relations. In the most simple notation they are

U2
p+¢+7+d+dt:po, (5)
Wl — 0?4+ i(_ Ou n @) _ PV 0Py Py Py 0P
Re ox Oy Ox? Oy? 072 022 Oyoz (©)
2T 0, 0y OUs  O(Ts+ Tg)
* w02 +&(_ o "oy T o2 ).
2 2 i @ @ - 82\1110 82\1111 B 32\1112 82\1112 _ 82\1113_
v Re( Oy * 82) 022 Ox? Oy + 022 OxOy )
B 82\1114 i 9(3(\111 —|-\I/2) i oVy _ 8\116)
Oxdz Ot ox oy 0z /)’
1 (91} 6’& 82\1110 1 (9 8‘1’15 (9\1114 8‘1’13
“”_§<%+Fy)__axay 5&(‘ oz oy | o2 )+ .
lg(_ ovs  o0vy 3(‘1’84-‘1’9))
20t oz Ay 0z ’
1 810 8u 82\1111 1 6 6‘1’15 8\1114 6‘1’13
w5+ %) " T tag " a e e ) o)
19(_ 6\115 n 8(\119—\117) n 8\112)
20t Ox Ay 0z /)’
1 ow ov - 82\:[/12 10 8\:[/14 (3\1115 8\:[/13
”w_ﬁ(@+£)__ayaz +38m oy oz 0: )+ )
" 1&((6‘1’7 +\Ifg) i o0V i 8\114)
20t Ox Oy 0z 7’
170 ovsy 0¥, 0¥y 0 ovs 0¥g 0Py
“_2(ay(_ 8x+8y+3z)+ (- 8$+8y_8,z)>’ (11)
1[0 0¥ 0¥y 0¥y 0 0¥g O¥g 0V,
”‘2(%(&; oy 8z)+8z(6x+0y az>>’ (12)
1[0 (0¥5 0¥g 0V, 0 Vg 0Ty 0Vy
w2(8$(8$ 6y+8z)+8y( BE ay+az)>' (13)

Functions ¥; denote new unknowns that arise in the process of integration. In the case being
considered there are fifteen functions and they complete the system of unknowns. The term
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"stream pseudo-function" was introduced for them [9,10]. Thus, a total of nineteen unknowns
are introduced, namely, four major unknowns and fifteen associated unknowns.

Relation (5) contains additional terms py, %2,
constant. Another three terms represent combinations of unknowns defined in a special way.

d and d;. The first one is an additive pressure

2 . . . .
Value % is dimensionless velocity

U? w2 40®+uw?
2 2 ’

Values d and d; are dissipative terms defined as

Uz 1 0?W3  0?Wyy 0?5
d= 6 3 (Amy\ho ~AeVin+ Ay Vo + oxdy  Oxdz = Oydz ) ’ (14)
10 (0(Ws—T1)  O(Wy—Ts) (g — Us)
" =35 ( o oy T o (15)

Symbols A,
spatial coordinates

Az, Ayy in (14) denote the incomplete Laplace operators with respect to

9? 0? 0? 02 02 0?
e

quzi .9 Aaczzi a9 Aqui
Y Oy + 072 Ox? + 022 Yo 022 0 oy

Relations (5-13) include the major unknowns u, v, w, p, the associated unknowns ¥;, given
potential function of external forces ® and the Reynolds number Re. The order of derivatives for
major unknowns is one. It is less than their order in original equations (1-4). Relations (5-13)
represent the first integral of the Navier — Stokes equations (1-4).

The integral of equations (1-4) in the form (5-13) allows us to construct exact solutions in a
new way.

2. Primary generator of solutions

The primary generator of solutions allows us to construct the set of solutions of original
equations (1-4). One such primary generator is presented below.

Let us briefly analyze relations (5-13) that represent the first integral of the Navier—Stokes
equations. Relations (5) and (11-13) give expressions for the major unknowns u, v, w, p in terms
of associated unknowns ¥;, where j = 1,2,...,15. It is fair to conclude that these four relations
determine general structure of solutions for equations (1-4).Let us note that unknowns u, v, w
defined by (11-13) satisfy continuity equation (4). Relation (5) is special because it contains the
unknown p. In the way of practical solution of equations this relation should be used at the last
stage when all other unknowns have been already found.

When considering relations (6-13) in general, the following features attract attention [11].
In the right-hand sides of (11-13) there are derivatives of only the first nine associated un-
knowns ¥, k = 1,2,...9 but there are fifteen associated unknowns in total. Unknowns ¥ with
k =10,11,...,15 do not appear in relations (11-13). These unknowns are present in relations
(6-10) in the form of linear combinations of second derivatives. It is possible to exclude these un-
knowns from (6-7) and to obtain general relations. The procedure for constructing such relations
is briefly described below.
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Let us denote the sums of all terms in (6-10) that are independent of unknowns Wy,
E=1,2,...,9, by f; (j =2,3,...6). So we have

hed -t (- ) a0
o ) R )
fsfuw,f(fl )+%a§<a@5+aaz7*aaq;9*aai2)’
o ) B S 2

As a result, five non-linear equations (6-10) are represented in the form

0?Wyy 0%V 0Py PV 02V 92Wyy

- 0a2 + o2 922 922 * Oydz * 0x0z =F (17)

Ox2 or2 o2 + 022 Ozdy 020z =Jfs (18)

82\:[/10 0 oV 15 SAVSP o0V3 .

" ozdy 5&7(‘ oz oy T os )= (19)
82‘1111 10 0¥15 oW1y 013

5‘:1:6'z+§87(_ or 0y 0z ) fs, (20)
82\1112 10 (9\1114 (9\1115 (9\1113

~oyo- 2693( oy oz 02 )=Jo (21)

Let us eliminate terms with unknowns Wy for & = 10,11,...,15. To do this we take term
by term derivatives of (17-21) with respect to coordinates and then select the necessary linear
combinations to exclude terms with the specified unknown. As a result, terms with unknowns
U at k =10,11,...,15 are excluded from (17-18). Then we obtain two equations [11]

Pfa  Pfa n 4 n Pfs  Pfs _
oxdy  0x2 = Oy?  Oydz Oxdz

Pfs  Pf Pfs  Pfs | [

Oy0z + 0xdz  0zdy  Oy? + 022

Taking into account (16), it is clear that only nine unknowns are present in equations (22-23).
These unknowns are ¥y with £ = 1,2,...,9. This fact is obvious since u, v, w are expressed in
terms of these unknowns, according to (11-13). So, system of two equations (22-23) can be
considered as primary generator of solutions of 3D Navier-Stokes equations (1-4). Any set of
functions Wy, Wo,..., Wy that satisfy this system allows one to determine all other unknowns

(22)

~0. (23)

including the major ones. Firstly u, v, w are found according to (11-13). Then using (16), f; are
defined for j = 2,3,...,6. Next, six unknowns ¥qg, Y11, ..., U5 are determined with the help
of (17-21). Finally, using relation (5) and taking into account (14-15), we determine unknown p.
As a result, all major unknowns are determined and the main problem is solved.
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3. Method implementation

As an example of the implementation of the described approach we construct a set of solutions
that correspond to a cascade of plane waves into deep water provided ® = 0. Let us assume that
unknowns wu,v,w are represented in complex variables as linear combinations of plane waves.
General structure for u, v, w is defined by relations (11-13). Let us assume that

ov, 0VY; n vy

y or 0z

oVs 0¥g 0Py )
_ _ — B(t i(naz+moy+laz) 24
ox + dy 0z ( )e ) ( )

oAV n oV O0Uy

or dy 0z

— A(t)ei(nll-‘rmly-‘rllz)’

_ C(t)ei(nngrmserlsz)

)

where ¢ is the imaginary unit, ng, mg,l, (k= 1,2,3) are some constants and A(t), B(t), C(t)
are some functions of time.

Taking into account (11-13), we obtain the following expressions

)

U (Amlei(n1x+m1y+llz) + Blzei(n2x+m2y+lzz))
)

[\V]

.

v = ,(_Anlei(nll'-‘rmly-‘rllz) + Clgei(n3w+m3y+lsz))7 (25)

\V]

w = %(—Bngei(””erzszz) — O'mge!(msvtmaytlaz)),

So, u, v, w are defined by (25), where ny, mg, I for k = 1,2, 3 are still unknown wave numbers
and A(t), B(t), C(t) are indeterminate functions of time.

Let us consider primary generator of solutions (22—-23) and find the restrictions imposed on
these equations.

Substituting (16) into (22-23) and taking into account (24) and (25), we obtain the following
results. Components of two kinds are present in (22-23). Components of the first kind are
linear combinations of quantities e!("1@+miy+hiz) pilnaztmaytlaz) ei(nse+msy+lsz) - Components
of the second kind are quadratic combinations of quantities e!(m@t+miythz) = ei(naztmay+isz)
elnsztmsy+lsz) - Components of the first kind are mutually reduced if functions A(t), B(t), C(t)
satisfy the ordinary differential equations of the first order

dA A

o= ——Re(nf—i—m%—i—l%),

dB B

i~ Rt (26)
dC C

Components of the second kind are also mutually reduced and equations (22-23) are identi-
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cally satisfied if wave numbers ng, my, i satisfy the following system of six algebraic equations

2nyl3(ny 4+ n3)(my +mg) — mals(ng + n3)2 + mylz(my + m3)2—

— mlmg(ml =+ mg)(ll —+ 13) — nlmg(nl —+ ng)(ll —+ lg) = 0,
— mglg(m2+ mg)(lg—l— 13) + n213(n2+ ng)(lz + lg) - lglg(nz-f— 7’L3)2+ lzlg(mg-f— m3)2 =0,

2myla(ny + ng)(my + ma) + nila(ng +n2)? — nyla(my +ma)*—

— myna(mi +ma)(li + l2) — nina(ni +ne)(lh +12) =0,

— nllg(nl + ng)(ll + lg) + mlng(m + nZ)(ml + m2)_ (27)

— ning(my +me)? +nina(ly +12)* =0,

— 2n2m3(m2 + mg)(lg + lg) + n213(m2 + m3)2 — n2l3(12 + 13)2+
+ lals(ne 4+ n3)(le + 13) + mala(ng + ng)(me + m3) =0,

— 2n1l3(m1 + mg)(h + lg) + mllg(nl + ’/7,3)(11 + lg) + mlmg(nl + ng)(ml + mg)—

— nlmg(ml + m3)2 + n1m3(l1 + l3)2 =0.
Solutions of equations (26) are easy to find. They are defined by expressions

A1) = AQ)e~"FF By = p(oje- SRR
(28)
(n3+m3+13)t
Ct)=C(0)e 7,
where A(0), B(0), C(0) are arbitrary constants.

Preliminary analysis of system (27) shows that it has many real and complex solutions .
Each set of numbers that satisfy (27) generates a solution of Navier-Stokes equations (1-4).
Some special cases are presented below. Each of them can be considered as an implementation
of the above approach.

4. Special cases

4.1. Solution 1. The simplest solution corresponds to the case when the wave vectors are
collinear. In this case n3, ms, l3 are arbitrary and not all equal to zero. In addition, the following
proportionality relations are fulfilled ny = uns, m; = ums, Iy = pls, no = &ng, me = Emg,
lo = &l3, where o and € have arbitrary but not equal to zero values. In this case all six equations
(27) are identically satisfied.

According to (25) and (28), expressions for velocities are

7 p2(n3+m3+13)

. e2m3+mi3Hd) .
u:5(A(O),umge—Tt—i—zu(ngm—kmgyﬂ-lgz)+ _B(O)gl:je—T75—‘,—15(ng,ac—&-mgy-‘rlg,z))7
. 2,2, 2,2 2. 92,2
1 K (n3+mg+l3)t . 1 - (n3+m3+l3)t . !
0= L (- AOunge D s mariis) | ooptge D s tmarst) - (29)
1 2(n24m2412 . n24m2412 )
w= 3(_B(o)gnBe—is%mtﬂé(nswmsyﬂsz) _ C(O)m3e_(43+—m3+—ﬂt+2("33€+m3’y+l32)>_

2
According to (5), the unknown p is
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4.2. Solution 2. Analysis of algebraic equations (27) leads to the conclusion that system
admits the following solution n; = ny= 0, ng :\/§7 mi= Mo = M3z = \—/i, li=1ly=-2,I3=1.

In this case unknowns u, v, w are defined as

. i(1A(O)_2B(O))e—2%et+i(\}§y—22)7 o %C<O)e—ﬁt+i(\/§z+%y+2)

2\v2 . ) (31)
w=——_(0)e e Hi(VEt Javts)
2v2
According to (5), the unknown p is defined as
1 3 ,
p=p(0) + ;C(0) (\Q[A(O) - ¢63(0)>e—ﬂ»t+l<ﬁw+ﬂy-z>. (32)
4.3. Solution 3. Equations (27) are also satisfied if ny = ns =0,
n3=1iV3, mi=mo=mz=1iV3, =l =1, I3 =2.
The velocities in this case are defined as
w= 2 ((VBAO)+B(0)) et ~YIHE g = iC(0)ee VAT,
(33)
w = %ﬁC(O)e%t—ﬁw-ﬁﬁm.
For pressure we have the following expression
1 .
p=p(0) + 70(0)(iV3A(0) + B(0))erie! -V 2Vautsr, (34)

Conclusion

As a result of the implementation of the proposed approach new complex solutions of 3D
Navier—Stokes equations (1-4) are obtained. They are defined by expressions (29-34).

Let us pay attention to the qualitative differences of the obtained solutions. Let us consider
coeflicients at the time ¢ in Solution 1 and Solution 2. The following inequalities are true for these
p*(n3 + m3 + 1) §(n +m3 +13) 9

<0, — < 0 for Solution 1 and ——— < 0 for
Re 5 Re Re2
Solution 2. For Solution 3 we have — > 0. Then Solution 1 and Solution 2 decay exponentially

coefficients: —

with time. On the contrary, Solution eZ’)increases exponentially with time. This pattern holds for
both pressure and the magnitude of velocity.

The following fact is also worth attention.The pressure increases in half the time by compar-
ison to the magnitude of velocity.

If we compare expressions for pressure (30), (32) for Solution 1 and Solution 2 then there is
also a qualitative difference. The pressure does not depend on coordinates for Solution 1 whereas
the pressure depends on z, y and z for Solution 2.

Let us pay attention to another interesting feature of the proposed method for constructing
solutions. The above relations allow us to construct purely real solutions of the Navier—Stokes
equations. To do this, let us consider relations (24-26) and assume that ny = —iNg, my = —i My,
ly = —iLy, where k = 1,2, 3, i is the imaginary unit and Ny, My, Ly are real numbers. In this case
algebraic equations (27) retain their form but we should take Ny, My, Ly instead of ny,myg, .
Any set of real numbers (N1, My, L1), (Na, Ma, Lo), (N3, Ms, L3) that satisfies equations (27)
allows us to construct purely real solutions of Navier—Stokes equations (1-4).
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Tounbie pentenus 3D-ypaBuennit HaBbe—CTtokca

Anekcanap B. Konresn
TocymapcTBeHHBIH yHUBEPCUTET MOPCKOro U peuHoro duiora nmenu agmupasa C. O. Makaposa
Cankt-ITerepbypr, Poccuiickast @emepariust

Amnnoranus. B pabore npesioxkena mnporue/ypa MocTpoeHusl TOYHbIX perrennit 3D-ypasuennit HaBbe—
Crokca 1 HeCXKUMAEMOI KUJIKOCTH. 3& OCHOBY IIPUHUMAIOTCST COOTHOIIEHU S, TPEICTABJISIIOIINE TIEPBBIi
nnrerpas ypasHenuit HaBbe—Crokca, panee moJiydeHHble aBTOPOM. IloCTpOeH mHepBUYHBINA reHepaTop
YaCTHBIX PEIIeHUi, U C ero IOMOIIBIO HallJIeHbl HOBBbIE KJIACCHI TOUHBIX PeIleHMUI.

KurouyeBrble cjioBa: HEC2KIMAEMasi JKUJIKOCTD, IBUKEHNE, yPABHEHUE, NHTETPaJl, IEPBUIHBII TeHEPpaTOD

PpelIeHun, TOYHOEe PelleHue.
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Abstract. In this paper, we introduce (left, right) bi-commutative AG-groupoids and provide a simple
method to test whether an arbitrary AG-groupoid is bi-commutative AG-groupoid or not. We also
explore some of the general properties of these AG-groupoids. Further we introduce and study some
properties of ideals in these AG-groupoids and decompose left commutative AG-groupoids by defining
some congruences on these AG-groupoids.
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1. Introduction and preliminaries

An AG-groupoid S is in general a non-associative groupoid that satisfies the left invertive
law,

(ab)e = (cb)a Ya,b,c € S. (1.1)

It is called medial if satisfies the medial property, (ab)(cd) = (ac)(bd)Va,b,c,d € S. It is easy
to prove that every AG-groupoid is medial [1]. An AG-grouoid is called an AG-monoid if it
contains the left identity element. Every AG-monoid is paramedial [2], i.e., it satisfies the identity,
(ab)(ed) = (db)(ca). Recently many new classes of AG-groupoids have been introduced by various
researchers [3-9]. These new classes are studied in a variety of papers like for instance [10-15].
AG-groupoid is a vast field of algebra that can have almost all concepts of other algebraic
structures with different characteristics and properties. A rapid research in this area can be
seen on various aspects in a couple of years. AG-groupoids have a range of applications in
flocks theory [1], geometry [16], topology [17], matrices [18] and in finite mathematics [19]. The
structure of AG-groupoid has been strengthen by AG-rings [20,21]. Recently many varieties of
ideals, I'-ideals, bi-ideals prime ideals, semiprime ideals and quasiprime ideals have also been
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$arsham@uk.ac.ir

© Siberian Federal University. All rights reserved
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defined and investigated by various researchers [22-25]. Fuzzification of AG-groupoids [26,27]
and other relevant concepts have also made the field interesting and valuable. All this have
attracted a considerable researchers to investigate and enhance the area.

A groupoid G is called left (resp. right) commutative groupoid if G satisfies the identity
(ab)e = (ba)c (resp. a(bc) = a(ch)) Va,b,c € G [28]. In this article, we extend the concept
of these groupoids to introduce new classes of AG-groupoids as left commutative AG-groupoid
or shortly an LC-AG-groupoid, a right commutative AG-groupoid or an RC-AG-groupoid, and
a Bi-commutative AG-groupoid or BC-AG-groupoid. In Section 2, we properly define these
notions and list some non-associative examples of these AG-groupoids to show their existence.
In Subsection 2.1 and 2.2 we provide a method to verify an arbitrary AG-groupoid for LC-AG-
groupoid and RC-AG-groupoid. We use the GAP software [29] and the relevant data of [29]
to enumerate these new classes of AG-groupoids up to order 6. We discuss the enumeration
of these AG-groupoids in Section 3. In Section 4, we define and characterize ideals of these
AG-groupoids, while in Section 5, we investigate some basic properties of these AG-groupoids
and establish their relations with some of the already known AG-groupoids. We list these known
subclasses of AG-groupoids with their defining identities in Tab. 1, that arise in various papers
like, [16,18,19] and are used in the rest of this article.

Table 1. AG-groupoid with their defining identities

AG-groupoid satisfying identity
Left nuclear square AG-groupoid a’> - bc=a’b-c
Middle nuclear square AG-groupoid ab’>-c=a- b’
Right nuclear square AG-groupoid ab-c? = a - bc?
TT-AG-groupoid ab=cd = ba = dc
Medial AG-groupoid ab - cd = ac-bd
Paramedial AG-groupoid ab-cd=db-ca
Flexible -AG-groupoid ab-a=a-ba
AG-3-band a-aa=aa-a=a
Left alternative AG-groupoid aa-b=a-ab
Self-dual AG-groupoid a-bc=c-ba
AG*-groupoid ab-c=b-ac
AG**-groupoid a-bc="b-ac

2. Bi-commutative-AG-groupoids and Bi-commutative
AG-test

We extend the concept of bi-commutativity of groupoid [28] to AG-groupoid and introduce
the following subclasses of AG-groupoids.

Definition 1. An AG-groupoid S is called
1. - a left commutative AG-groupoid (LC-AG-groupoid) if Va,b,c € S,
(ab)e = (ba)c (2.1)
2. — a right commutative AG-groupoid (RC-AG-groupoid) if Va,b,c € S,
a(be) = a(ch) (2.2)
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3. — a bi-commutative AG-groupoid (BC-AG-groupoid) if it is both LC-AG-groupoid and an
RC-AG-groupoid.

Example 1. Let S ={1,2,3,4}. Then one can easily verify that:
(i) (S,-) in table (i) is an LC-AG-groupoid of order 4 and satisfies Equation 2.1,
(i) (S,x*) in table (ii) is an RC-AG-groupoid of order 4 that satisfies Equation 2.2 and
(iii) (S,0) in table (iii) is BC-AG-groupoid of order 4 and satisfies both the properties of (2.1)

and (2.2).
|1 2 3 4 |1 2 3 4 o1 2 3 4
171 1 3 3 171 1 1 1 111 2 2 2
211 1 4 3 211 1 1 3 212 1 1 1
313 3 1 1 3|1 1 1 1 312 1 1 1
413 3 1 1 412 2 2 1 413 1 1 1

The procedure of testing a groupoid for an AG-groupoid has been explained by P.V.Protic
and N. Stevanovic [24]. Here we also present a similar method to verify an arbitrary AG-groupoid
for LC and RC-AG-groupoids.

1. Left Commutative AG-groupoid Test

We describe a procedure to test whether an arbitrary AG-groupoid (G,-) is an LC-AG-
groupoid or not. For this we define the following binary operations:

aob = (ab)z (2.3)

axb = (ba)z (2.4)
Now (2.1) holds if

aob = ax*b (2.5)
or

aob = boa (2.6)

To test whether an arbitrary AG-groupoid is an LC-AG-groupoid, it is necessary and suf-
ficient to check if the operation “o” and “ x” coincide Vx € G. To this end we check
the validity of Identity (2.1) or a o b = a x b. In other words it is enough to check whether
the operation o is commutative i.e. @ ob = b o a. The tables of the operation “ o ” for
any fixed x € G is obtained by multiplying a fixed element z € G by the elements of the
“.7 table row-wise. It further gives the tables of the operation “ % ” if these are symmetric
along the main diagonal. Hence it could easily be checked whether an arbitrary AG-groupoid
is left commutative AG-groupoid or not. We illustrate this procedure with the following example.

Example 2. Check the following AG-groupoids (G1,-) and (Gs,-) for an LC-AG-groupoid.

Table 2 Table 3

‘ 1 2 3 ‘ 1 2 3
111 1 1 111 2 3
211 1 1 213 1 2
312 2 2 312 3 1
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We extend Tab. 2 in the way as described above. It is obvious that the tables constructed
for the operation “o” on the right of the original table are symmetric about the main diagonal
and thus coincide with the “x” tables as required. Hence (G, ) is an LC-AG-groupoid. While
in extended table for Tab. 3 is not symmetric about the main diagonal and thus (Gg, -) is not an

LC-AG-groupoid.

11 2 3 1 2 3
111 1 1 1 1 11 1 111 1 1
(i) 211 1 1 1 1 1|1 1 11 1 1
312 2 2 1 1 1/]1 1 11 1 1

Extended table for (G1, )

11 2 3 1 2 3
1/1 2 3 1 3 212 1 33 2 1
- 203 1 22 1 3 2 1|1 3 2
312 3 1 3 2 1|1 3 2|2 1 3

Extended table for (Ga,-)

2. Right Commutative AG-groupoid Test

Now, we discuss a procedure to check an AG-groupoid (G, -) for RC-AG-groupoid, for this
we define the following two binary operations:

a®b = a(bx) (2.7)
adb = a(zxb)

Equation (2.2) holds if,
aQb = adb (2.9)

“

For any fixed = € G, re-writing x-row of the “-” table as an index row of the new table and
multiplying it by the elements of the index column to construct table of operation “{”. These
extended tables are given to the right of the original table in the following example. Similarly
the table for the operation “©” for any fixed x € G is obtained by taking the elements of x-
column of the “-” table as an index row of the new table and multiplying it by the elements
of the index column of the original table to construct tables for the operation “©”, which are
given downward in the extended table of the following example. If the tables for the operation
“@” and “¢” coincides for all € G, then Equation (2.9) holds and the AG-groupoid is right
commutative-AG-groupoid in this case.

Example 3. Check the following AG-groupoid for RC-AG-groupoid.

[N}
N — =
N = DN
DN = =W

Extend the above table in the way as described we get the extended form as follows:
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DN = =N
—= o= =W

[N}
[SCRSSY JS

DN = =N = =
[ e B N e e
DN = N = =
N — RN R |-
[ R e N e e
N — HN R |-
N~ HN - N
N — N~ N
N~ HN R PN

It is clear from the extended table that the tables for the operations“®” and “{” coincide
for every z € G, so (G, ) is an RC-AG-groupoid.

3. Enumeration of BC-AG-groupoids

Enumeration and classification of various mathematical entries is a well worked area of re-
search in finite and pure mathematics. In abstract algebra the classification of algebraic structure
is an important pre-requisite for their construction. The classification of finite simple groups
is considered as one of the major intellectual achievement of twentieth century. Enumeration
results can be obtained by a variety of means like; combinatorial or algebraic consideration.
Non-associative structures, quasigroup and loops have been enumerated up to size 11 using
combinatorial consideration and bespoke exhaustive generation software [30]. FINDER (Finite
domain enumeration) [31] has been used for enumeration of IP loops up to size 13 [32]. Associa-
tive structures, semigroups and monoids have been enumerated up to size 9 and 10 respectively
by constraint satisfaction techniques implemented in the Minion constraint solver with bespoke
symmetry breaking provided by the computer algebra system GAP [29]. The third author of
this article has implemented the same techniques under the guidance of A. Distler (the author
of [33-35]) to deal the enumeration of AG-groupoids using the constraint solving techniques
developed for semigroups and monoids.

Further, they provided a simple enumeration of the structures by the constraint solver and
obtained a further division of the domain into a subclass of AG-groupoids using the computer
algebra system GAP and were able to enumerate all AG-groupoids up to isomorphism up to
size 6. They also presented enumeration for various other subclasses of AG-groupoids.

It is worth mentioning that most of the data presented in [36] has been verified by one of the
reviewers of the said article with the help of Maced4 and Isofilter as has been mentioned in the
acknowledgement of the said article. All this validate the enumeration and classification results
for our bi-commutative AG-groupoids, as the same technique and relevant data of [36] has been
used for the purpose. Further, all the tables of size up to 3 have been verified manually for our
BC-AG-groupoids. In the following we describe the used algorithms with GAP commands for
enumeration of our subclasses of AG-groupoid.

Algorithm 1. GAP Function for Testing if S is an LC-AG-groupoid
InstallMethod (IsLCAG GroupoidTable, "for matriz,”
[IsMatriz]
function (Is),
local i, j, k;
if not IsAGGroupoidTable (ls) then
return false;
ﬁ,.
for i in [1..Length (Is)]do
for jin [1..Length (Is)] do
for k in [1..Length (Is)] do
of Usfls[i[i]][k] <> Is[ls[j[[i]][k] then return false;
ﬁ}.
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od;
od;
od;
return true;
end );

Algorithm 2. GAP Function for Testing if S is an RC-AG-groupoid
InstallMethod (IsRCAG GroupoidTable, "for matriz,"
[IsMatriz]
function (Is),
local i, j, k;
if not IsAGGroupoidTable (Is) then
return false;
fi;
for i in [1..Length(ls)] do
for jin [1..Length(ls)] do
for kin [1..Length(ls)] do
if Usfil[ls[if[k]] <> ls[i][ls[k][j]] then return false;

ﬁ’.
od;
od;
od;
return true;
end );

Tab. 4 presents the enumeration of BC-AG-groupoids of order 3 to 6.
Table 4. Enumeration of BC-AG-groupoids up to order 6
] Order \ 3 \ 4 \ 5 \ 6 \

Total AG-groupoids | 8 | 269 | 31467 40097003
LC-AG-groupoids 6 | 194 | 22276 34845724
RC-AG-groupoids 2| 52 1800 170977
BC-AG-groupoids 2| 47 | 1558 150977

4. Ideals in LC-AG-groupoids and RC-AG-groupoids

In this section, we investigate ideals for LC and RC-AG-groupoids. We also characterize LC
and RC-AG-groupoids by the properties of their minimal ideals. We start with the following
definition and list some observations regarding ideals for LC and RC-AG-groupoids.

A subset A of the AG-groupoid S is a left (right) ideal of S if,

SAC A(AS C A), (4.1)
A is a two sided ideal or simply an ideal of S if it is both left and right ideal of S.
Remark 1 ([24]). If S is an AG-groupoid and a € S, then by the Identity (1.1), it follows that:

= = C .
(aS)S m&ég(aw)y %;Jes(yx)a_Sa

From this we conclude that (AS)S C SA.

Further we have the following remarks.
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Remark 2. If S is an AG-groupoid with left identity e and a € S, then by the medial property
and Identity (2.2), it follows that:

S@$) = U alay) = U (ex)lay) = U (ea)ay) € aS.

In general for any A C S we conclude that S(AS) C AS.

Remark 3. If S is an LC-AG-groupoid and a € S, then by left invertive law and (2.1), it follows
that:

Sa)S = U = U = U C Sa.

(Sa)S= U (sa)y= U (azly= U (y)aC Sa

Thus for any A C S we conclude that (SA)S C SA.

Remark 4. If S is an RC-AG-groupoid with left identity e and a € S, then by left invertive law
and (2.2), it follows that:

§(5a) = U alya)= U (ex)(ya)=
= Lagse@w) = Y fea)(y) € af.

Hence in general S(SA) C AS for A C S.

Remark 5. If S is an RC-AG-groupoid with left identity e and a € S, then by medial law and
by Identity (2.1), it follows that:

(SG)S = z’l%s(m)y = 1)3€S($a)(ey) — Ifes(m)(ye) _
- I’Ees(a:y)(ae) - x,bjes(xy)(ea) C Sa.

Thus (SA)S C SA for ACS.

Definition 2 ([24]). Let S be an AG-groupoid and A,B C S, than A and B are right (left)
connected sets if AS C B and BS CA(SACB & SBCA).

Example 4. Let S = {1,2,3,4} be an AG-groupoid given by the following table

N DN = ==
— == =N
N = = =W
el S

B~ W N

Now and A = {1,2,3} and B = {1, 2,4} be two subsets of S. Then clearly AS C B and BS C A
also SA C B and SB C A. Thus A and B are left and right connected and hence are connected.

Remark 6. If L is a left and R is a right ideal of an LC-AG-groupoid S, then by left invertive
law and Identity (4.1), we have

(LR)S = (SR)L = (RS)L C RL and (RL)S = (SL)R C LR.
It follows that LR and RL are right connected sets.
Proposition 1. Let S be an LC-AG-groupoid. Then for each a € S the set aUaS and aS U Sa

are right connected sets.

-320 -



Muhammad Rashad, Imtiaz Ahmad. .. Enumeration of Bi-Commutative—AG-groupoids

Proof. If a € S, then by Remarks (1) and (3), we have
(aUSa)S =aSU(Sa)S CaSUSa,
also,
(aSUSa)S = (aS)SU(Sa)S C SaUSa CaUSa.
Hence the result follows. O

Theorem 1. Let S be an LC-AG-groupoid. Then for each a € S the set a U aS U Sa is right
ideal of S.

Proof. Let a € S, then by Remarks 1-3, we have

(aUaSUSa)S = aSU(aS)SU(Sa)S CaSUSaUSa
C aSUSaCaUaSUSa.

Hence (a UaS U Sa)S is right ideal of S. O

Theorem 2. Let S be an RC-AG-groupoid with left identity e. Then for each a € S the set
J(a) = aUaSUSa is the minimal (two sided) ideal of S containing a.

Proof. By Remarks (2) and (4), we have
S(aUaSUSa) = SaUS(aS)US(Sa)C SaUaSUaS C SaUaS CaUaSU Sa.
Thus J(a) is a left ideal. Now again by Remarks (1) and (3), we have
(aUaSUSa)S=aSU(@S)SU(Sa)S CaSUSaUSaCaSUSaCalUaSU Sa.

Thus J(a) is a right ideal, and hence it is a two sided ideal or simply an ideal of S. If J is an
ideal of S and a € J, then

J@a) = aU(aSUSa) CJUJSUSI)CJUJUJ)CJ= J(a)CJ
Hence the result follows. ]

Theorem 3. If S is an RC-AG-groupoid with left identity e, then for a € S the sets a(Sa) and
(aS)a are ideals of S. If a € a(Sa) (resp. a € (aS)a), then a(Sa) (resp. (aS)a) is a minimal
ideal generated by a. Further if a € (a(Sa) N (aS)a), then (aS)a = a(Sa) and it is minimal ideal
generated by a.

Proof. If a € S, then by the medial law, left invertive law and (2.2), we have

Sa(Sa) = U ala(ya) = U (er)(alya) = U (ea)(a(ya)) =
= U alalay) = U al(ay)a) = U a((wy)a) C a(Sa).

Similarly, by paramedial, medial, left invertive laws and (2.2), we have

(a(Sa))S = U (a(za))y= U (y(za))a= U (y(az))a =

z,y€S z,y€S z,y€S
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Hence, a(Sa) is an ideal of S. Now, again using the paramedial and left invertive laws and the
Identity (2.2), we have

5(((aS)a)) = ;JGSx((ay)a) = I,;Jesx(a(ay)) = myges(ex)(a(ay)) _
- x:fes(ea)(””(“y)) = Y lea)(a)a) = U (ea)((zy)a) =
= ?%S(aa)((xy)e) = z,fes(a(w))(ae) = Lges(a(:z:y))(ea) -
= x:ges(a(xy))a C (aS)a = S(((aS)a)) C (aS)a.
Similarly,
(@S)a)s = U ((@n)a)y=_ U (yo)ar)= U (ya)(we)= U (yr)(aa)=
— 0 (el ~ U (alys)(ae) = U (alye))(eo)

C (aS)a= ((aS)a)S C (aS)a.

Hence (aS)a and a(Sa) are ideals of S. If A is an ideal on S, then for every a € A we have (aS)a C
A and a(Sa) C A, clearly. If a € AN (aS)a(resp. a € AN a(Sa)), then (aS)a (resp. a(Sa)) is
a minimal ideal generated by a. If a € AN (aS)a N a(Sa), then by minimality, it follows that
(aS)a = a(Sa). Clearly, for each a € S it holds that (aS)a C Sa and a(Sa) C Sa. O

5. Characterization of BC-AG-groupoids

In this section, we discuss the relations of BC-AG-groupoid with some already known sub-
classes of AG-groupoids. We start with the following results which proves that every AG*-
groupoid is RC-AG-groupoid, but the converse is not always true as illustrated in Example 5.
The Example 6 also shows that every LC-AG-groupoid may not be an AG*-groupoid.

Theorem 4. FEvery AG*-groupoid is RC-AG-groupoid.
Proof. Let S be an AG*-groupoid, and a, b,c € S. Then
a(be) = (ba)c = (ca)b = a(cb) = a(bc) = a(cbh).
Hence S is RC-AG-groupoid. O

Example 5. Let S = {1,2,3} be an RC-AG-groupoid with the following table. Then (S,x*) is
not an AG*-groupoid since (1% 1) %1 % 1% (1x1).

Example 6. Let S = {1,2,3,4,5,6}. Then it is easy to verify that S is an AG*-groupoid, but
not an LC-AG-groupoid as clearly, (1%2) %1 # (2x1) % 1.

* 11 2 3 4 5 6
113 4 5 5 5 5
213 4 6 6 5 5
315 5 5 5 5 5
416 6 5 5 5 b
515 5 5 5 5 5
65 5 5 5 5 b
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Now, we prove the following:
Theorem 5. Fvery LC-AG*-groupoid is a semigroup.
Proof. Let S be an LC-AG*-groupoid, then for every a,b,c € S
ab-c=ba-c=a-bc=ab-c=a-bc.
Thus S is semigroup. O
The converse of the above theorem is not true as shown in the following example.

Example 7. Let S = {1,2,3,4,5,6}. Then (S,*) with the given table is a semigroup. Clearly S
is neither LC-AG-groupoid nor AG*-groupoid as, (0%1)*0 # 1% (0%0) and (0x1)%0 # (1%0) x0.

5

Tk W N~ O %
NN TN NDO
NN W
NN DN NN NN
DN NN DNDW
DN NN N Y

NN DN NN DN

An element a of an AG-groupoid S is called left cancellative if ab = ac = b = ¢, right
cancellative and cancellative elements are defined analogously.

Theorem 6. Let S be an LC-AG-groupoid. Then S is a commutative semigroup if it has a right
cancellative element.

Proof. Let x be a a right cancellative element of an LC-AG-groupoid S, and a,b € S. Then
(ab)x = (ba)x = ab = ba.

Thus S is commutative, but commutativity implies associativity in AG-groupoids. Hence S is a
commutative semigroup. O

Theorem 7. Every LC-AG-groupoid is paramedial AG-groupoid.
Proof. Let S be a LC-AG-groupoid, and a,b,c,d € S. Then

(ab)(cd) = (ba)(cd) = ((cd)a)b = ((dc)a)b = ((ac)d)b =
) =

= ((ca)d)b = (bd)(ca) = (db)(ca)
= (ab)(cd) = (db)(ca).
Hence S is a paramedial AG-groupoid. O

Example 8. The following is an example of RC-AG-groupoid of order 4 that is not paramedial
AG-groupoid.

=W N %
W = R =
— W R W N
[SUIIS NN S
W = R =

Theorem 8. Every LC-AG-groupoid is left nuclear square AG-groupoid.
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Proof. Let S be a LC-AG-groupoid, and a,b,c € S. Then

a*(bc) = (aa)(bc) = ((bc)a)a = ((cb)a)a = ((ab)c)a =
= (c¢(ab))a = (a(ab))c = (ab)a)c = ((ba)a)c =
= ((aa)b)c = (a®*b)c = a*(be) = (a®b)c.
Hence S is left nuclear square AG-groupoid. O

The following counterexample shows that neither AG**-groupoid nor BC-AG-groupoid is
nuclear square AG-groupoid. However, both these properties jointly gives the desired relation as
given in the following theorem.

Example 9.
(i) AG**-groupoid that is not a nuclear square AG-groupoid as (3 * 3) * 3% # 3 * (3 x 32).

(ii) BC-AG-groupoid that is not nuclear square AG-groupoid as (3 * 3) * 32 # 3 x (3 * 32).

2
1
1
2

(i) (i)
Theorem 9. Let S be a BC-AG**-groupoid. Then the following assertions are equivalent.
(i) S is left nuclear square AG-groupoid;
(ii) S is middle nuclear square AG-groupoid;
(#ii) S is right nuclear square AG-groupoid.

Proof. Let S be a BC-AG**-groupoid. Then
(i) = (4i). Assume (i) holds, let a,b,c € S. Then

a(b?*c) = b*(ac) = b*(ca) = (b?c)a = (cb?)a = (ab*)c = a(b’c) = (ab?)c.
Thus S is middle nuclear square AG-groupoid.
(#4) = (i4i). Assume (i7) holds, let a,b,c € S. Then

a(bc?) = blac?) = b(c?a) = (bc*)a = (c*b)a = (ab)c® = a(bc?) = (ab)c>.

Finally we show,
(#91) = (). Assume (4i7) holds, and a,b,c € S. Then
a®(bc) = b(a’c) = b(ca?) = (be)a® = (cb)a® = (a®b)c = a®(bc) = (a?b)c.
which proves (i). Hence the theorem is proved. O

Now, we give an example of left alternative AG-groupoid and BC-AG-groupoid that are not
flexible AG-groupoid.

Example 10. (i) The AG-groupoid in Table (i) below, is left alternative but not flexible AG-
groupoid.

(i) The AG-groupoid in Table (ii) is BC- AG-groupoid, but not flexible AG-groupoid.
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|1 2 3 4 |1 2 3 4

I[1 1 1 1 1[1 1 1 1

2|1 1 1 3 2|1 1 1 1

3/1 4 1 1 31 1 2 1

4111 2 1 412 2 1 1
(1) (i)

However, we have the following:

Theorem 10. Every BC-AG-groupoid is left alternative AG-groupoid if and only if it is flexible
AG-groupoid.

Proof. Let S be a BC-AG-groupoid satisfying the left alternative AG-groupoid property, and let
a,b € S. Then

(ab)a = (ba)a = (aa)b = a(ab) = a(ba) = (ab)a = a(ba).

Hence S is flexible AG-groupoid.
Conversely let S be a BC-AG-groupoid satisfying the flexible AG-groupoid property, then for
a,b €S, we have

(aa)b = (ba)a = (ab)a = a(ba) = a(ab) = (aa)b = a(ab).
Hence S is left alternative AG-groupoid. O

One can easily verify in the following tables that neither T'-AG-groupoid nor BC-AG-
groupoid is self-dual AG-groupoid.

Example 11. 1. The AG-groupoid given in Table (i) is T'-AG-groupoid but not self-dual
AG-groupoid, while the AG-groupoid in Table (ii) is BC- AG-groupoid but not self-dual
AG-groupoid.

N N
e ) R
e L)
— = =
=N

(i) (i)
However, we prove the following:
Theorem 11. Every T -AG-groupoid S is self-dual AG-groupoid, if any of the following holds.
(i) S is LC-AG-groupoid.
(ii) S is RC-AG-groupoid.
Proof. Let S be a T'-AG-groupoid, and let a,b,c € S.
(i) If S is LC-AG-groupoid, then
(bc)a = (¢b)a = (ab)c = (ba)c = a(bc) = c(ba).
(ii) Again, if S is RC-AG-groupoid, then

a(be) = a(ceb) = (bc)a = (¢b)a = (ab)c = a(be) = c(ab) = ¢(ba).
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Hence S is self- dual AG-groupoid in each case and the theorem is proved. O

Theorem 12. FEvery BC-AG-3-band is commutative semigroup.

Proof. Let S be BC-AG-3-band, and let a,b € S. Then
ab = (a(aa))(b(bh)) = (ab)((aa)(bb))

= (ba)((ab)(ab)) = (ba)((ba)(ab))

= (ba)((bb)(aa)) = (b(bb))(a(aa))

Thus S is commutative and hence is associative. Equivalently S is commutative semigroup. [

)((aa)(bb)) =
)((ba)(ba)) =

a = ab = ba.

(ba
(ba
b

6. Congruences on LC-AG-groupoid

Congruence on various subclasses of AG-groupoids are defined in various papers [23,37, 38].
In this section we discuss some congruence on LC-AG-groupoids. It is observed that if S is an
LC-AG-groupoid and Es # (), where Eg is the collection of all idempotents of S then by medial
law, definition of LC-AG-groupoid and repeated use of the left invertive law, F(S) is semilattice,
that is for any e, f € Eg # () :

ef = (ee)(ff) = (ef)(ef) = (fe)(ef) = ((ef)e)f =
= ((fe)e)f = ((ee)f)f = (ff)(ee) = fe = ef = fe.
This implies that Eg is commutative. Moreover,Va,b € S and e € Eg, we have
e(ab) = (ea)(eb) = ((eb)a)e = ((be)a)e = ((ae)b)e = ((ea)b)e = (b(ea))e =
= (e(ea))b = ((ae)e)b = ((ee)a)b = (ea)b = e(ab) = (ea)bd.

Thus Va,b € S and e € FEg, as a consequences of the above we have the following.

Proposition 2. Let S be an LC-AG-groupoid . Then Eg is a semilattice.

Example 12. LC-AG-band of order 4 that is a semilattice.

[IEUI NI
e R
N NN DN
W W N =W
W N | s

Furthermore, in Example 13, Eg = {1,3} C S is a semilattice.

Theorem 13. Let (S,-) be an LC-AG-groupoid such that Es # ¢, and n be a relation defined
on S as

n=1{(a,b) € S, (ze)a = (ye)b for every e € Es and z,y € (S,-)}.
Then 1 is a congruence on S.

Proof. Given that S is an LC-AG-groupoid and Fg is the set of all idempotent elements in S. A
relation 7 is defined on S as,

n={(a,b) €S, (xe)a = (ye)b for every e € Eg}.
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First, we show that 7 is equivalence relation on S, for this we show that 7 is reflexive, symmetric
and transitive relation. Clearly 7 is reflexive as for any a,z € S (xe)a = (ze)a = anb. Let anb,
then (ze)a = (ye)b & (ye)b = (xe)a < bna. Hence 7 is symmetric. Now, for transitivity let anb
and bnc. Then (ze)a = (ye)b and (ye)b = (ze)c for some z,y,z € S < (ze)a = (ye)b = (ze)c &
(re)a = (ze)c < anc. Hence n is transitive. Therefore 7 is an equivalence relation on S. Now,
we show that n is compatible. First we show that 7 is right compatible, for this let a,b, ¢ and
x,y, z are elements of S, then using left invertive, medial laws, definition of LC-AG-groupoid
and Theorem (7), we get

anb = (xe)a = (ye)b =
= (ca)(ze) = (cb)(ye) = (cx)(ae) =
= (ex)(ac) = (ey)(be) =
=anb = acnbe.

Therefore 7 is right compatible. Similarly, it is easy to show that 7 is left compatible. Hence 7
is compatible and therefore 7 is a congruence on S. O

Theorem 14. Let S be an LC-AG-groupoid and Eg # (. Let p be a relation on S defined as,
p=1{(a,b) €S, ea=¢eb for everye € Eg}. Then p is a congruence on S.

Proof. Let S be an LC-AG-groupoid and Fg denotes the set of all idempotent elements in S.
Assume that Fg # (). A relation p is defined on S as,

p={(a,b) €S, ea =eb for every e € Eg}.

Now, we show that p is an equivalence relation on S. Obviously p is reflexive, as for any a € S
and e € Eg we have ea = ea = apb. Let apb < ea = eb < eb = ea < bpa. Hence p is symmetric.
Now, let apb and bpcs ea = eb and eb = ec for some a,b € S & ea = eb = ec & ea = ec & apc.
Hence p is transitive. Therefore p is an equivalence relation on S. Next we show that p is
compatible.

p is right compatible:

apb < ea = eb< (ea)c = (eb)c
& (ca)e = (ch)e & (ca)(ee) = (cb)(ee)
< (ac)(ee) = (be)(ee) & (ae)(ce) = (be)(ce)
< (ea)(ce) = (eb)(ce) < ((ce)a)e = ((ce)b)e
< ((ec)a)e = ((ec)b)e < ((ac)e)e = ((be)e)e
< (ee)(ac) = (ee)(bc) < e(ac) = e(be)

apb < acpbe.

Hence p is right compatible. Similarly p is left compatible. Hence p is compatible and therefore
is a congruence on S. O

Example 13. Let S = {1,2,3,4}. Then (S,-) with the following table is LC-AG-groupoid.

-1 2 3 4
It 111
201 1 1 1
3/1 1 3 1
411 2 1 1

and Fg = {1,3} define a relation p as apb < ea = eb, Va,b € S and e € Eg, we have
p={(11),(1,2),(1,4),(2,1),(2,2),(2,4),(3,3),(4,1),(4,2),(4,4)} .

Clearly p is equivalence relation and also left and right compatible, hence is a congruence on S.
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Conclusion

In this article, we have introduced some new classes of AG-groupoids that are RC-AG-
groupoid, LC-AG-groupoid and BC-AG-groupoid. We have provided various examples generated
by GAP for the existence of these subclasses. Enumeration of these classes has also been done up
to order 6. We also introduced a procedure to verify an arbitrary AG-groupoid for these classes
and proved some basic results for these newly introduced classes like; every AG*-groupoid is RC-
AGgroupoid, every LC-AG*-groupoid is semigroup and in general LC-AG-groupoid is semigroup
only if, it has a right cancellative element or has a left identity element. We have investigated
that BC-AG*-groupoid is nuclear square AG-groupoid and is left alternative if and only if it is
flexible. We also investigated ideals in these classes. Some congruences have also been defined
on these subclasses.
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Ilepevenns 6u-KomMmmyTaTBHO—A G-TpyIIIION 0B

Myxammen Parmman

Nmruasz Axmas

YuuBepcurer Masakam

Yaknapa, [lakucran

Myxammeq I11ax
IIpaBuTtennpcTBennbrit kKomnemxk [lemasapa
Ilemasap, [lakucran

A. Bopymanjg Caug

[Taxux Baxonapckuit yuuBepcurer
Kepmane, lpan

AnnHoTauus. B 3Toii crarbe Mbl BBommM (CsieBa, cripaBa) GmkoMMyTaTHBHBIE AG-rpynmonisr u npes-
JlaraeM IPOCTON MEeTOJI IIPOBEPKH, SBJISETCs Jiu Tpou3BosbHbI AG-rpynmony 6ukoMMyTaTuBHBIM AG-
IPYIIIOUIOM WU HeT. Mbl TakKe UCCiellyeM HEeKOTOpble obmue cBoiicTBa 3tux AG-rpynmonios. lasee
BBOJIUM ¥ U3y4YaeM HEKOTOPBIE CBOMCTBa uaeasoB B 3Tux AG-rpynmnonjax u pasjaraem JieBble KOMMYTa-
TuBHble AG-TpyIIION b, OIpeiesisisi HEKOTOPble KOHIPy HIuU Ha 3tux AG-rpynmnonax.

KuntoueBsie cioBa: AG-rpynmon, 6ukoMMmyrarusao-AG-rpynmonpl, (cjeBa, crpaBa) KOMMYTATUBHbIE
AG-rpynmoner.
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Abstract. We establish that a sequence (Xj)ren of analytic subsets of a domain  in C", purely
dimensioned, can be released as the family of upper-level sets for the Lelong numbers of some positive
closed current. This holds whenever the sequence (Xj)ren satisfies, for any compact subset L of Q,

the growth condition >, Cpmes(Xi N L) < co. More precisely, we built a positive closed current ©
kEN

of bidimension (p,p) on Q, such that the generic Lelong number mx, of © along each X satisfies

mx, = Ck. In particular, we prove the existence of a plurisubharmonic function v on € such that, each

X}, is contained in the upper-level set E¢, (dd°v).
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Introduction

We consider respectively, a domain 2 in C™, a fixed integer 1 < p < n, a sequence of positive
real numbers (Cy)ren and a sequence (X )ren of analytic subsets of €2, purely dimensioned such
that

forall keN, Codim(Xy)=n—dp>=n—np.

We study the existence of a closed positive current O, such that for all ¥ € N, the generic Lelong
number of © along X}, satisfies myx, = Cj. The existence of a solution will be shown under an
appropriate growth condition on the family (X} )y of the form

ch mes(X;NL) = ch/ Xk] A ﬁdk < 00, (0.1)

[
keN keN L

for any compact subset L C €.
With the above data, we state the main result of the paper as follows:

Theorem 0.1. Let (Ci)ren be a sequence of positive real numbers and (Xi)ren be a sequence
of analytic subsets, purely dimensioned in a domain Q of C™. Assume we have for any open

ball B(a,r) € Q the condition Y Cj mes(X, N B(a,r)) < co. Then there exists a positive closed
keN
(n — p,n — p)-current © on Q, such that for all k € N, X, C E¢, (0).

In particular, for plurisubharmonic functions on €2, we prove the following similar result:

*khediri__h@yahoo.fr
(© Siberian Federal University. All rights reserved
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Theorem 0.2. Let (Cy)ren be a sequence of positive real numbers and (Xi)ren be a sequence
of analytic subsets purely dimensioned in a domain Q of C". Assume we have for any open ball

B(a,r) € Q the condition Y, Cy mes(Xy N B(a,r)) < co. Then there exists a plurisubharmonic
keN
function v on , such that for all k € N, X}, C E¢, (dd°v).

1. Problem statement and description of the objective
of the paper

The study presented in this paper is motivated by J.-P. Demailly during a visit of the author
to the Fourier Institute.

Let 1 < p < n be a fixed natural number and (Xj); be a sequence of analytic subsets of
such that for all k € N, X}, is of pure dimension dj and Codim(Xy) =n —dx = n —p. If (C)x
is a given sequence of strictly positive numbers, then we would like to know the possibility to
find a positive and closed current ©, of bidimension (p,p), globally defined on €, such that the
generic Lelong number mx, of © along each X}, satisfies mx, = Ci?

For convenience, to solve this problem we take essentially the situation where the sequence
(mes(Xy N L))y is lower bounded for any compact subset L with empty interior in €.

Indeed, if a given analytic subset X}, intersects some compact L, then the area of its inter-
section with another compact L’ contained in the interior of L can not has a zero limit.

Furthermore, if for any compact subset L of Q we have limy_,o, mes(X; N L) = 0 then the
analytic subsets (X)x escape to the frontier of 2. So we may suppose that there exists some
compact subset K of {2 and a constant yx > 0 such that

mes(Xy NK) > vk, forallkel,

where I C N is an infinite subset of positive natural numbers. Hence, the sequence (Cj)rer will
have to be convergent to 0.

On the other hand, the presented problem has a solution, as well as the sequence (X)g
satisfies, for any open ball B(a,r) C 2, the following growth condition

ZC"“ mes(X; N B(a,r)) = Z Ck/ [X] A % < 0.

k keNn  JB(ar)

Eventually, The founded solution © will satisfy for all k € N, C, = mx, .
We may note that Theorem 0.1 holds true if the codimension dj, of each analytic subset Xy,
is taken such that di = p. Indeed, in this case, we may take

0= Crl[Xy].

keN

The main tools of the proof of Theorem 0.1, will be based on a beautiful result due to Ben
Messaoud [1] about the intermediate currents associated to a given positive closed current. Such
a result improved an anterior result due to H.Skoda [2] and P.Lelong [3] which is the basis of
the proof of Theorem 0.2.

The originality of our constructions that will appear in the proofs of the main theorems of
this paper, lies in the fact that both results of [1] and [2] can be adapted and applied to each
(n — di,n — di)-current of integration over Xy, k£ € N. The methods of [1] and [2] will offer
practical approaches to construct the current © of Theorem 0.1 and the function v of Theorem 0.2.

The results of [1] and [2] are expressed as follows:
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Theorem (H.Ben Messaoud [1]). Let T be a closed positive (n—p,n— p)-current on an open
set ) in C™. Then for any € > 0 and any natural number 1 <1 < n — p, there exists a closed
positive (I,1)-current T; such that

1. For any point z € B(0,r), we have v(Ty, z) = v(T, z).
2. v(Ti,r) < Av(T,r + er)log® r, where A = A(e) > 0 is a positive constant.
Theorem (H. Skoda [2]). Let T be a closed positive (n — p,n — p)-current on an open set €

in C™. Then for any € > 0, there exists a plurisubharmonic function V- on C" such that for any
point z € B(0,71):

7 —
1. 1/(%53‘/, z) =v(T,z).
2. V(z) < Av(T,r + er)log® r, where A = A(e) > 0 is a positive constant.

This paper is organized as follows:
e in Section 2: some preliminaries;
e in Section 3: the proof of Theorem 0.1;

e in Section 4: the proof of Theorem 0.2.

2. Preliminaries

In this section we shall present some basic notions needed for the rest of this paper. For
more informations related to differential geometry and pluripotential theory, we left the reader
to consulte for examples [1,4,5]. We take Q such that A™ € Q, where A™ is the polydisc in C".
For integers p and ¢ such that 1 < p, ¢ < n, we denote 7, 4)(2) the space of smooth compactly
supported-differential forms of bidegree (p,q) on 2. The dual Q&W) () is the space of currents

of bidimension (p, q) or of bidegree (n —p,n —¢) on Q. A current T of bidimension (p,p) on Q,
is said to be positive if for all y1,...,7, in Z(q,0)(2), the distribution

TN ATLA - Nigp ATy

is a positive measure. The current 7 is said to be closed if d7'= 0 where d= 0+ 0, d°= %(5— 0)

and dd® = i00. We denote respectively 5(z) = dd®|z|? the Kihler form on C™ and o = dd° log |z|.

Following [3] (see also [4]), a well known fact that the coefficients ©7 ; of every positive current

O = > Or,ydz; N\ dzy are complex measures and satisfy ©; ; = O for multi-indices
|I|=|J|=n—p

|I| = |J| = n—p. Moreover, the diagonal coefficients O ; are positive measures and the absolute

values |©7 j| of the measures ©; ; are such that

ArAOr <27 A3Or, InJCMcIulJ (2.2)
M

where )y are arbitrary positive coefficients and A\ = [] A.
Ael
3P
The positive measure cg = OA - is called the trace measure of © and satisfies the inequality
p!

oe < C[0]|
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where ||©]| = Y |07, ;] is the mass measure of © and C is a positive constant.
I,

The limit, as r — 0, of the ratio
B 1

ae(ﬂp(zﬂ”)): s / O ApP
HT P ﬁr P B(z,r)

is called the Lelong number of © at point z and is denoted v(©, z). At point z = 0, we put

_ U@(B(O,’I“)).

V@( )_ LT/,AQP

vo(z,1) =

For any ¢ > 0 the upper-level sets for the Lelong numbers of © are denoted by
E.(©)={z€Q,v(0,z) > c}.

According to [5], the sets E.(©) are analytic subsets. Therefore, following [4], E.(©) are closed
sets of locally finite .73, Hausdorff measure in C".
Finally, if A is an irreducible analytic subset of 2, we set

my = inf{v(0,z2),z € A}

and call m4 the generic Lelong number of © along A.

3. Proof of Theorem 0.1

The proof of Theorem 0.1 follows from several steps and will be complete after proving some
fondamental propositions. We begin by proceeding locally in a neighborhood of a given point
20 € Q such that r < d(zp,0Q) where 7 is a positive real number. Let 7 be a smooth positive
function equal to 1 on B(zo, 3) and has a compact support in B(z,7). We may assume that

zo = 0. Denote by hj the kernel given by

1
(n+dy —p—1)mntde—p

hy(z) = — jap| 72 mp =), (3:3)

For each current of integration over X it is associated an (n —p —1,n — p — 1) differential form
denoted U, [x,] given by the following integral expression

Unia) = [ n@ha(z =8 5771 e =) A XA €) (3.4

Since the kernel given by (3.3) lies in Lj,.(C"), then it is clear that the potential given by

(3.4) has locally integrable coefficients in C". Let xx(x) denote the negative current of bidegree
(n+dp—p—1,n+dr —p—1) given by the expression

k(@) = hi () TP~ (g), (3.5)
Therefore, the current xj defined by (3.5) has locally integrable coefficients.

Proposition 3.1. There are currents respectively denoted T, 1, Ji(n[Xk]), J2(n[Xi]) and
J3(n[Xk]) such that in the weak sense of currents, we have

gwmﬂﬂzﬂk+amwm+bmwm+hmmm.
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Proof. Consider the mappings defined by p; : (x, z) — z and ps : (2, z) — z, they are respectively
the first and the second projections from C™ x C™ to C". Let 7 denote the mapping from C" x C"
to C" defined by 7(z,2) = z — 2. The current U, [x,] can be expressed as a direct image on
C™ x C™ as the following

Up,ix:(2) = pax ((T"xk) A PT(0[XK])) - (3.6)

The representation given by (3.6) makes the computation of %85Un7[xk]7 in the weak sense of

current, easy and gives

200U, = poe(7 (500%) A TN ) + o (7 (5000) APE @I ATXD) -

Tk J1(n[Xk])

— P2 (7'* (%5)@) A pi(On A [Xk])) + Pos (T*Xk A pj (%8517 A [X;J)) )

J2(n[Xx]) J3(n[Xk])

Proposition 3.2. The current Jy(n[X]) has an integral expression as follows
J1(n[Xx]) = Ki(z,2) A on(z) A [Xg](2).
zeCr
The currents Jo(n[Xx]) and J3(n[Xk]) have similar representations.
Proof. 1f K1 (x_, z) denote the component of bidegree (n — p,n — p) in z and (dy,d; — 1) in x of
the form 7* (%8)@), then we get

Ji(n[Xx]) = o Ky (2, 2) A On(a) A [Xi](x). (3.7)

If K(w,2) denote the component of bidegree (n —p,n —p) in 2 and (dx — 1,dy) in x of the form
T (%3)@), then we get

Jo(n[ X)) = o Ko(z,2) A On(x) A [Xi](x). (3.8)

Finally, if K3(z, z) denote the component of bidegree (n — p,n — p) in z and (dg — 1,dx — 1) in
x of the form 7* (%8)@), then we get

J3(n[Xg]) = o Ks(z,2) A0on(z) A [ Xi(z). (3.9)
O

Proposition 3.3. The sum of the modulus of the coefficients of the form Ji(z) + Ja(z) + J3(2),
denoted ||J1(2) + J2(2) + J3(2)||, is such that

(Ianll + [[onl]

||J1(z)+J2(Z)+J3(Z)H<A/ Iz —¢|

n |aan||) hl(z = Odorxy (©) (3.10)
geCn

where A = A(n,p) is a strictly positive constante.
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n
3 |x|—2(n_p+dk)fjdxj A Bn=P+de=1 then we get

Proof. Since 18)@ =
2 =

T* (%ax’“> =D e —a| PP (25 — 75 (dzj — day) AT R TP (3.11)
J=1

In addition, by (2.2), the measures coeflicients of the current [X}] are dominated by the trace
measure o[y,]. So the representation (3.7) implies the following estimate

171(2)]] < Al(mp)/ |z — a| 2O 9y (2)||do x, ) () (3.12)

n

where ||.J1(2)]| is the sum of the modulus of the coefficients of the forme .J;(n[X}]) and ||0n(x)||
is the sum of the modulus of the coefficients of dn(z). Similar procedures for Jo(n[X}]) and
J3(n[Xk]) given by representations (3.8) and (3.9) yield similar estimates as in (3.12). These
estimates provide the following

[19ml] + l|on]]
|z = ¢

where Ay = As(n,p) is a positive constant. The estimate (3.13) allows to measure the default of

1(2) + a(2) + Ta(2)]] < A ( n ||aan|) hal(z — E)dop(€)  (3.13)
gecn

71—
positivity of the current 588Un’[xk]. O
Proposition 3.4. The positive current T, ;. is such that

T = pas (75 (@ 577) A pi (0 X4])) - (3.14)

Furthermore, up to a positive constant, T, has the same Lelong numbers as the current n[Xy].

Proof. To prove the equality (3.14), it suffices to observe that %63Xk is a closed positive

(n+dy —p,n+di —p)-form on C” ~ {0} which is invariant under the action of the unitary
group U(n, C), then following [4], in the weak sense of currents, we get

T* (%85)(0 = 7% (" TdP),

where 7* (%an) is given by (3.11). For the second assertion (equality of the Lelong numbers), a

detailed proof of this fact was given in [1]. Notice that the current 7}, 5 didn’t need to be closed.
However, if we assume that T}, ; is closed, we propose the following proof. We may prove the
equality of the Lelong numbers at point z = 0. Since T}, 1, is assumed to be closed, according

to [4], we have

1
Tp Tn,k A BP == / Tn,k A aP. (315)
" Jlel<r |zl<r

On the other hand, the equality (3.14) means that
Toae) = [ am (e - a) Ana) (Xi(a),
zeCn

Then, if we put I(r) = [ T, A a?, then the equality (3.15) will be as follows
lz|<T

I= QTP () An(x)[Xi](z) A P (2). (3.16)

(z,z)eCn x{|z|<r}
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By the change of variables (2/,2') = (x, z — z), the equality (3.16) can be written as

I(r)= TP () A () [ Xi] (2) A P (2 — ). (3.17)

{(a’,2")€C™ xCm, |z'—a'|<r}

By the Fubini theorem and the change of variables £ = 2/ — 2/, the equality (3.17) can be
transformed as

//ec" l/l —at|< (@’ = 2)[Xxl(2' = 2) A" FETP() AaP (2 — x/)] —

/ l / n(&)[xk]<e>Aa”+dkp(x’—@mf’@].
z'eCn €l<r

Since only components of bidegree (di,d;) in & and of bidegree (n — p,n — p) in a’ of
the form amt4=P(z’ — &) A aP(€) are useful and since by [4], [ «a"(z') = 1 because
z’eCn
[ (dd°log|¢ —al)*=1 for all r >0 and all a € C". Then, by letting r — 0 in (3.18),
|E—al<r
we find that v(T, x,0)= Cv(n[Xk],0) where C' = C(n,p) is a positive constant. O

1(r)

(3.18)

From now, we will proceed globally.

Proposition 3.5. For all k € N, there exist global currents respectively denoted
Uix)> Tk, @1k, Po ks P3,k, Pk such that %aéU[Xk] is decomposed into

i
533U[xk] =T+ Qi+ Do + 3 + Py

Proof. There exists an open cover (£2;); for Q, by relatively compact open subsets such that
Q; C Qjy1 and Q = {J; Q. It is clear that (€2}); such that Q) = Q1 \ Q;, is a locally finite
open cover for {2 that is subordinate to (;);. Let (w;); such that w; € 2,41\ Q; and (w;); still
cover €. Consider {(pJ,Qj),] € N} a partition of unity on Q such that Suppp; C Qg and p; =1
on wj. By sticking the currents U, [x,], we can now construct a global potential defined by

Xk] ij "7]7Xls] ), k e N. (319)

An easy computation, using equality (3.19), in the weak sens of currents, yields

1 —
iaaU[Xk] = ijzaﬁU%
+ Z —0pj ANOU,, (x,) —
(3.20)
- Z aijaU Xt
+

Z 55% AU [X0)-
J
Since %85&”,[)(,@] = T,k + J1(;[Xk]) + Jo(n;[Xk]) + J3(n;[Xk]), then by taking in account
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equality (3.20), the current %BEU[XH can be decomposed into

SO0V = iyt 3 a0y X0 + oy X)) + o, 0) +

Pk

T
i _ i i
> 500 AU, 1,0 = D 5005 NOUy, xg + ) 50005 AUy, x,) -
J J J

+

Do i D3,k Dy x
O

Proposition 3.6. For all k, there exists a positive closed current Oy of bidimension (p,p) on
Q, such that for any € > 0 and any open ball B(a,r) € Q, we have

ve,(B(a,r)) < Asz(e,r,n,p)orx,) (B(a,r +er))
where Az = As(e,r,n,p) is a positive constant.

Proof. We may choice the functions (7;); such that for all j, Supp(n;) C ;. This makes that
each form @, 5, s € {1,2, 3,4}, is smooth in a neighborhood of Supp(p;). Furthermore, following
[1], for any € > 0 and any point z € Supp(p;), the sum of the modulus of the coefficients of the
form

Di(z) = <I>1,k(z) + CPQ,]C(Z) + <I>3,k(z) + @4’]@(2’),

denoted ||®x(2)||, satisfies the following estimate
194(2)[] < Ag(1+ [2) 2Py (1 4+ 5e) (1 + |2]) (3.21)

where A4 = Ay(e,n,p) is a positive constant. The estimate (3.21) is a default of positivity of the
current %GEU (x,]- By adding to %85U (x,] @ smooth and closed form sufficiently positive and of

i,.= \"P
course having zero Lelong number every where, of the form ( §aawk) where wy, is a smooth

strictly plurisubharmonic function (see [6]), the potential Uyx,) provides an (n —p, n— p)-positive
current defined by

n—p

Oy = %85U[Xk] + (%aéwk)”fp =Ty + O + (%851%) : (3.22)

In addition, following [1], the current Oy given by (3.22), satisfies for any ¢ > 0 and any open
ball B(a,r) € Q
ve, (a,r) < As(e)(log 7")2(”*7))1/[;%]((1, T+ er). (3.23)

Consequently, (3.22) provides the following

Wp_dkdk! n— _
76, (B(a.1) < Ao(e) o yag (g r 20 Pr 20 W (Blar o). (324)
P dkdk!
Since for all k£ € N, we have —————— < 7?7 and r2(P~%) < max(1,r?P), the estimation (3.24)
(1 +¢€)2dep!

can be written as
06, ((B(a,)) < Az7(e,r,n,p)orx, ) (Bla, r +er)) (3.25)
where Az(e,7,n,p) = 7P Ag(e) max(1,r%)(log r)?"—2?. O

Proposition 3.7. There ezists a closed positive current © of bidimension (p,p) on 2, such that
for all k € N and any point z € X}, we have v(0,z) > Cj.
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Proof. Put I'y = >, <y CkOy. using the estimates (3.23), (3.24), (3.25) and the condi-
tion (0.1), the mass of the current Iy over a given ball B(a,r) € €, satisfies, for any & > 0, the
following estimate

ITNllB@ar < D, Croo(Bla,r)) <

1<k<N
< Az(g,rym,p) ZCkU[X;«,] (B(a,r +er)) <
k
< Q.

Therefore, (I'y)xy is an increasing sequence of positive closed currents. Further, it is locally
bounded in mass independently of N. Let © denote its weak limit. Following Proposition 3.4,
for any k£ € N and any point z € X}, we have

v(Ok, z) = v([Xk], 2),
then according to [4], we may conclude that, for all 1 < k& < N and any point z € X}, we have

v(0©,2z) = limsupv('y,z) > limsup Z Civ([Xj],z) = C.

N—o0 N—o00 1<G<N

The proof is achieved. O

4. Proof of Theorem 0.2

There are tow mains steps. The first consists of the construction, for all ¥ € N, of a
plurisubhrmonic function 7 on (2, satisfying on every open ball B(a,r) € £, the following
statements as in [2].

v(ddvg, z) = v([Xk], 2). (4.26)

Ve > 0 (small enough), ¥x(2) < A(e)v([ Xk, (1 + &)r)log?r, (4.27)

where A(e) is a positive constant. To do this, we consider a locally finite open covering (w;) of 2
by relatively compact open balls contained in a coordinate patches of (2. We choose concentric

. .T2r . .
balls wf C w} C w; of respective radii -, —-, 7 such that w? still cover 2. According to [2],

for all € > 0, there exists a plurisubharmonic function vy ; on €2 such that, analogous to the
statements (4.26) and (4.27), hold for any point z € w/. By a slight modification on w; \ w’, we
may replace the function vy ; by the function

r r
5 max (ka,A(&)y([Xk],(l—l—E)g) log? §>7 on  wj\ wj
kg =

! Vk,j) on wg.
This modification ensure that statement (4.26) holds for @ ; on w/, and up to a positive constant,
statement (4.27) holds for 0y, ; on w;. Let consider now a partition of unity on €, {(p;,w;),j € N},

such that Suppp; C w} and p; = 1 on @}. Define o), = ijﬁ;w, then the function oy is

J
plurisubharmonic on €2 since p; = 1 on @} and W still cover Q2. In addition, by definition of the
function v ; on w; \ w}, we have Uy # —oo. It also satisfies statements (4.26) and (4.27) on any
small open ball B(a,rg) contained in some open ball of the form wg’o . Moreover, for all £ € N,
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the mass of dd°0y over B(a,ry), satisfies the following estimate

|dd°Ok||B(a,ro) < A1/ dd Ty j, A BT <
w;.:)
<o [ ddtp ng £ 57 <
o (4.28)
3 [ ddpjy Nk, AT <

Wig

A
< Agv([Xg], (1 +€)ro) log?ry <
A

smes(Xy N B(a, 2rg)),

where A; = A;s(e,r), s =1,2,3,4,5 are positive constants.
The second step consists of considering the sequence of plurisubharmonic functions on

- N -
defined by Vy = > Cy0g. It is clear by construction that for all N € N, Vy # —oco. For such a
k=1

sequence, we may find a contant M such that (VN — M)y decreases pointwise. Further, following
(4.28), for all N € N, the mass of dd“Viy, over any open ball B(a,rq) C (2, satisfies the following
estimate
|dd“Viv || B(asro) < As(e.7) Y Crmes(Xi N B(a, 2ry)) < o0, (4.29)
k

where As(e,7) is a positive constant. The estimate (4.29) implies that (dd°Vy )y is an increasing
sequence of (1,1) closed positive current having a locally finite mass. Then it has a weak limit
as N — oo. Put

dd°V = lim dd°Vy,
N—o00

we have in the weak sens of currents dd°V = 3 Crdd@,. In addition, following (4.26), for any
k=1
k € N and for any point z € X}, we have I/(ddcff,z) > () which means that for all £ € N, we
have E¢, (dd°V) D Xj.
The proof is achieved.
In the following example we apply our main results to polynomial functions.

Example. Take n =2, p =1, Q = C? and denote 7 the projection map (21, 22) + z1. Consider
the map F = (f1, f2) such that F/(0) = 0 and fi, fo are polyndmial functions of degree d. For
any natural number k > 2, we denote respectively Fj and G} the composite functions given by

Fp=Fo---0oF (k-times) and Gj = 7o Fj.

Then G is a polynomial function of degree d*. If X = G;l(()), then (Xg)ken+ Is a sequence
of analytic subsets in €, such that for all k, CodimX;, > 1. If we choose Cy = d~*¢;,, where
(ex)r is any sequence of strictly positive numbers such that > e < oo, then by Theorem 0.1,

%
there exists a positive and closed current © of bidimension (1, 1) on €, such that for all k¥ € N*,
the sublevel sets F¢, (©) are such that F¢, (©) D Xj. Moreover, by Theorem 0.2 there exists a
plurisubharmonic function v on €2, such that for all k& € N, the sublevel sets E¢, (dd°v), are such
that Eq, (ddC’U) D Xp.

The author would like to acknowledge the valuable comments and suggestions from the anony-
mous referees.

- 340 -



Hedi Khedhiri On Construction of Positive Closed Currents with Prescribed Lelong Numbers

References

[1] H.Ben Messaoud, Intermediate currents associated with a closed positive current, In:
Séminaire d’Analyse P.Lelong — P.Dolbeault — H. Skoda, Lecture Notes in Mathematics,
Vol. 1028, 1983, 41-68.

[2] H.Skoda, New methods for the study of potentials associated with analytical sets, Séminaire
P.Lelong, Lectures Notes in Math, Vol. 410, 1972, 117-141.

[3] P.Lelong, Sur la structure des courants positifs fermés, Séminaire Pierre Lelong, Lecture
Notes in Math., Vol. 578, Springer, Berlin, 1977, 136-156.

[4] J.-P.Demailly, Complex Analytic and Differential Geometry, 2012, available at http://www-
fourier.ujf.-grenoble.fr/ demailly/books.html.

~T.51u, Analyticity of sets associated to Lelong numbers and the extension of close
5] Y.-T.Siu, Analytici f iated Lel b d th i f closed
positive currents, Invent. Math, 27(1974), 53-156.

[6] H.Skoda, Sous ensembles analytiques d’ordre fini ou infini dans C", Bull. Soc. Math. France,
100(1972), 353-408.

O IIOCTPOEHNHN ITIOJIO2KUTEJIbHBIX 3aMKHYTBIX IIOTOKOB
C 3aJaHHbIMHA 4YM1CJIaMHA JIemona

Xenu Xeaxupu
YuuBepcurer Monactupa
Momnactup, Tynunc

AwnnoTtanmsi. Mbl ycTaHABIMBAEM, 9TO MOCIEIO0BATENBHOCTD (X )keN AHAIMTUIECKAX MTOAMHOXKECTB 00-
gactu 2 B C", paccunTanHast 110 pa3sMepy, MOXKET ObITH BBIIYIEHA KaK CEMEHCTBO HAOOPOB BEPXHETO
YPOBHsI JiUisT ducesi JIeJoHa HEKOTOPOTO IOJIOKUTEIHHOTO 3aMKHYTOIO TOKA. DTO BEPHO TOT/A, KOTIA
MOCJIEOBATENBHOCTD (X)) keN YAOBIETBOPSET JJIs JTI000r0 KOMIIAKTHOrO noaMHoKecTBa L B 2, yeaosue

pocra Y. Crmes(Xy N L) < co. Tounee, Mbl HOCTPONUIH [OJOXKUTEJBLHBIA 3aMKHYTBHIH TOK © nByMep-
kEN
Hocru (p,p) Ha Q rTak, 4ro0bl OOwee uucio Jlesona myx, u3 © BAOIbL KaxKaOro Xj yJOBJIETBODSLIO

mx, = Ck. B gacTHOCTH, MBI JOKa3BIBaEM CyILIECTBOBAHUE IITIOPHCYOrapMOHUYECKONH DyHKInNU v Ha §2
TaKOl, ITO KaxKAbli Xj CONEPIKUTCS BO MHOXKECTBE BepxHero yposHs Ec, (dd°v).

KuroueBblie cjI0Ba: 3aMKHYTHIH MOJOXKUTETBHBIN TOK, IUTIOPUCYOrapMOHUYIecKasi (OyHKITHS, TIOTEHITHAIT,
AHAJUTUIECKOE MHOYKECTBO, YuCyIo Jlemona.
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Abstract. Magnetic susceptibility, microstructure and EPR of cobalt-containing solid solutions
with layered perovskite-like structure BisNbsz_3,Co3,0O15-5 have been studied. Solid solutions of
BisNbs_3,C03,015-s (£<0.005) can be crystallized in tetragonal syngony (sp. gr. P4/mmm), as cobalt
content increases, monoclinic distortion of the unit cell emerges at 0.005 < z < 0.04 (sp. gr. P2/m).
The formation of exchange-bound aggregates of Co(III) and Co(II) atoms predominantly with antifer-
romagnetic exchange types has been found in the solid solutions. EPR indirectly confirms that cobalt
ions are in octahedral positions of substitution of Nb(V) ions.
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The majority of bismuth-containing compounds with layered perovskite-like structure, ana-
logues of the so called Aurivillius phases, are of practical and theoretical interest owing to their
ferroelectric properties [1]. The composition of such compounds is described by the general for-
mula (Bi2O32)(A,,—1B,,03;,+1), where the bismuth-oxygen layers Bio Oy consist of BiO4 pyramids
bound to each other by base edges and A,,_1B,,Os,+1 are perovskite-like fragments consisting
of BOg octahedra bound by vertices. The large cations A are located in the cubic octahedral
sites between them [2,3]. The coefficient n in the formula corresponds to the number of BOg
octahedra forming the thickness of the perovskite-like fragment. Alongside with the layered
compounds which contain the uniform perovskite-like fragments, there are the so-called mixed
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or hybrid layered compounds (BizO2)(A,-1BrO03n41)--. (BiaO2)(Am—_1BmOsm+1) [4-6]. Their
structure consists of alternating perovskite-like fragments of various widths. Bismuth niobate
BisNb3O;5 belongs to the group of mixed layered compounds. Its structure is characterized by
the ordered alternating of fragments formed by one and two niobium-oxygen octahedra. There-
fore, its structure can be described as (BizO2)(NbOy4)(BizO2)(BiNbeO7), with n =1 and m = 3.
Oxygen-niobium octahedra are bound by side vertices and are arranged in the a-b plane of
the crystal, the Nb-O-Nb bond angle is 180°. The layers of the octahedra are separated by the
bismuth-oxygen layers Bis Oy formed by the BiO4 pyramids and joined by the base edges (Fig. 1).
The present work discusses the results of the EPR-spectroscopy and static magnetic susceptibil-
ity measurements of electron state and the nature of exchange interactions between cobalt atoms
in the solid solutions of bismuth niobate BisNbsO15 with layered perovskite-like structure, which
were obtained by heterovalent substitution of niobium (V) with cobalt atoms (II).

1. Experimental

The synthesis of the solid solutions was carried out by the standard ceramic procedure from
special-purity grade bismuth(III), niobium(V), and cobalt(II) oxides at 650, 850, 950 and 1050 °C
Phase composition of the products was determined by means of electron scanning microscopy
(using a Tescan MIRA 3LM electron scanning microscope and a X-ACT energy-dispersive spec-
trometer) and X-ray diffraction analysis using a DRON-4-13 diffractometer (CuKea radiation).
The cell unit parameters of solid solutions were calculated using the CSD software package [7].
The quantitative measurement of the composition of the solid solution samples was performed
by atom-emission spectrometry (a SPECTRO CIROS ISP spectrometer). The magnetic sus-
ceptibility of the samples of the solid solutions was measured by the Faraday method in the
temperature range of 77 — 350 K at 15 fixed temperatures and at the magnetic field strength of
724, 633, 523, and 364 mT. The semicommercial installation created in the laboratory of magne-
tochemistry of St. Petersburg State University and consisting of an electromagnet, an electronic
balance, and cryostate was used for the magnetic susceptibility measurements. The accuracy
of relative measurements was 5%. EPR measurements of finely crushed ceramic samples of
the BisNbs_3,Co3,015_s solid solutions were carried out in the X-band RadioPAN SE/X 2547
spectrometer (IG Komi SC UB RAS) with 100 kHz field modulation at room temperature. The
amplitude of the modulation was 0.25 mT, the microwave field power was 35 mW. A sample
(near to 100 mg) was put into a thin-walled quartz test tube (internal diameter of 2.5 mm)
together with the reference sample (anthracite, singlet line go = 2.003, peak to peak distance
ABpp = 0.5 mT) in a ampoule. For each sample, the spectrum in the magnetic field range of
0—700 mT and the reference line gy = 2.003 in the scan range of 5 mT were separately recorded.
The intensity of the reference line served as a measure of the gain of the instrument and, when
processing spectra, was used to accurately remove background signals from the test tube and
ampoule. The spectra were normalized to the reference line intensity and then to 100 mg of the
sample.

2. Results and discussion

The cobalt-containing solid solutions BizNbs_3,Co03,015_5s have been studied with
0.005 < < 0.04. The single-phase nature of the samples was proved by the methods of scanning
electron microscopy and X-ray analyses. Solid solutions of BisNbs_3,Co3,015-5 (z < 0.005) can
be crystallized in tetragonal syngony (sp. gr. P4/mmm), unit cell parameters with x = 0.005 are:
a= 0.5464, c= 2.093 nm (BisNb3Os5, sp. gr. P4/mmm, a=0.547, c= 2.097 nm [6]); as cobalt
content increases, monoclinic distortion of the unit cell emerges at 0.005 < z < 0.04 (Fig. 1).
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Fig. 1. The unit cell of BisNb3O15 and a possible type of distortion of the polyhedron of cobalt
(IT) atoms

Fig. 1 shows the (BizNb3O15 unit cell, a possible type of distortion of the polyhedron of cobalt
(IT) atoms is seen to the right of the crystal lattice, given the fact that it represents Jahn-Teller
ions. Monoclinic distortion of the tetragonal cell of the solid solutions BisNb3O15 was established
in previous works [6, 8] and is associated with formation of atomic defects in the structure. The
X-ray patterns of the solid solutions were interpreted based on the space group P 2/m [6]. The
unit cell unit cell parameters with x = 0.04 are: a= 0.5463 nm, ¢ = 2.084 nm, b= 0.5454 nm, the
« angle changes from 90° to 90.7°. Fig. 2 shows the surface of samples of BisNbs_3,C03,015_4
(x=0.01, 0.02, 0.04) obtained as secondary or elastically reflected electrons.

Based on the scanning electron microscopy data, the samples are porous compacts with
merged melted fine grains 1-3 pm. Using the measured magnetic susceptibility of the solid so-
lutions, we calculated the paramagnetic components of the magnetic susceptibility and effective
magnetic moments of cobalt atoms at various temperatures and concentrations of the solid so-
lutions. The isotherms of paramagnetic component of magnetic susceptibility of cobalt atoms in
BisNbs_3,Co3,015_5 are typical for antiferromagnets, their comparison is shown in Fig. 3a.

The effective magnetic moments of single cobalt atoms calculated by extrapolating concen-
tration dependencies of [xP?'*(Co)] to infinite dilution of the solid solutions exceed pure-spin
values and increase as the temperature increases from 6.18 pp (90 K) to 6.69 up (320 K). The
magnitude of the magnetic moment exceeds the pure spin values of high-spin cobalt atoms Co(II)
(tefr = 3.89 pp) and Co(III) (pess = 4.92 pup, therm °Ey), which may indicate the formation
of exchange-coupled aggregates with the antiferromagnetic type of exchange out of cobalt atoms
in infinitely dilute solid solutions. The formation of aggregates out of paramagnetic atoms in
highly dilute solutions did not turn out to be unexpected, it was previously observed in solid
solutions of BisNb3zO15 containing manganese or iron [8] atoms and is displayed in case of dis-
torted coordination polyhedron caused by heterovalent substitution. Monoclinic distortion of
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Fig. 2. Surface photomicrographs of the sample BisNbs_3,Co3,015_5 at x=0.01 (a), 0.02 (b),
0.04 (c) in the mode of secondary and elastic backscattered electrons

the tetragonal structure of the solid solutions of bismuth niobate associated with the incline of
the crystallographic axis ¢ to the plane of perovskite layers indirectly indicates such distortions.
Apparently, the formation of aggregates of paramagnetic atoms near the oxygen vacancies results
in stabilization of the structure of the solid solutions.

The decrease of the paramagnetic component of magnetic susceptibility of the atoms with
increasing concentrations of solid solutions may be also associated with low-spin atoms of Co(III)
(fteff = 0 up, *A1,) and increase of the portion of cobalt clusters with antiferromagnetic type of
exchange between atoms [9]. Reduced magnitude of the magnetic moment in more concentrated
solid solutions testifies in favour of the suggestion on the described clustering. Growing with
higher temperatures dependence of the effective magnetic moment on cobalt atoms in solid
solutions of various concentrations indicates the antiferromagnetic type of exchange between
atoms (Fig. 3b). The antiferromagnetic type of exchange is supported by cobalt atom electrons
in 3d-orbitals and layered perovskite structure of bismuth niobate ensuring indirect exchange
between atoms at the angle of 180° and accessibility of exchange channels d. || p, || duz,
dy2_y2 || py || dp2—,2 and between the layers through the channel — d.= || p. || d.2. Earlier, the
validity of this suggestion was shown at the example of iron-containing solid solutions with layered
perovskite structure [8]. The suggestion on diamagnetic cobalt (III) atoms in concentrated
solutions can be explained by a number of reasons. The oxidized state of cobalt is likely to
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decrease the destabilizing effect of oxygen vacancies on the structure of solid solutions; cobalt
(IIT) atoms in the high-spin state, with their significant magnetic moment, cannot ensure such a
sharp reduction of magnetic susceptibility of solid solutions, and, what is more, the accumulated
distortions of oxyden polyhedra caused by heterovalent substitution of Nb(V) atoms by cobalt
atoms contribute to higher tension of the crystal field of paramagnetic atoms and stabilized
low-spin state of cobalt atoms.
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Fig. 3. a — Isotherms of paramagnetic component of magnetic susceptibility of the cobalt-
containing solid solutions BisNbs_3,Co3,015_s at 77 K (1), 120 K (2), 180 K (3), 240 K (4)
and 293 K (5); b — Temperature dependencies of the effective magnetic moment of cobalt in
the Bi5Nb3,3wC03w015,§ at x= 0.010 (1), 0.015 (2) and 0.04 (3)

At the top of Fig. 4 shows the EPR spectra of the BisNbg_3,Co3,015_s solid solutions for
x = 0.005, 0.02, 0.04, and 0.06, reduced to standard registration options. Only one compo-
nent is reliably established in all spectra. This is an asymmetric narrow line with the value of
ABpp = 17—19 mT and a g-factor of about 4.3. The integral intensity of this line monotonously
decreases almost twice as x increases from 0.005 to 0.06. For a nominally pure compound, this
signal could be attributed to the high-spin state (S = 3/2) of Co?" ions in a weak, slightly dis-
torted octahedral crystal field at Nb>* substitution positions. In the limit of a weak crystal field
of an ideal octahedral coordination, Co?* ions in the EPR spectra give an isotropic line with
g = 4.33 and the magnitude of hyperfine splitting on °?Co nuclei around 300 MHz, the spin-orbit
interaction depending on the strength of the crystal field decreases these values [10,11]. The
asymmetry of line 4.3 can be explained by small distortions of the octahedral coordination, and
its width corresponds to the unresolved hyperfine structure from ®?Co. However, due to the pe-
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culiarities of the splitting of the energy levels of the octahedral Co?t complexes in a weak crystal
field, their EPR line 4.33 can be observed in the EPR spectra only at very low temperatures.
At room temperature, the spectra of Co?* ions are observed for low-spin states (S = 1.2) in a
strong or strongly distorted crystal field, and the EPR lines are grouped in the g-factor region
2.0, rather than 4.3.

BisNb3(1.x)C03x015
X ig=427
0.06 :

2.003

x0.16 BisNb3(1.0.02)F€3+0.02015

0.06 BisNb3(1.x)C03x015 - k*BisNb3(1.0.02)Fe3:0.02015 056
0,04 ‘ 0.1
0.02 3 0.16
0.005 0.16

9402 MHz, 300 K
T T T T T T T T T T T T
100 200 300 400 500 600 B, mT

Fig. 4. EPR spectra of solid solutions BisNbs_3,Co03,015_5 for x = 0.005 — 0.06 in compari-
son with the Fe?* spectrum of the compounds BisNbsz_3,Fe3,015_s from [8]. The residues of
subtraction from the BisNbjs_3,Co3,015_5 spectra of the BisNbs_3,Fe3,O15_s spectrum with
a weight coeflicient k are shown in the bottom. The narrow line with g = 2.003 is the signal of
the reference sample

A more adequate explanation of the EPR 4.3 signal in the spectra of cobalt ceramics of
the BisNb3Oq5 follows from our results of the EPR studies of a similar compound doped with
Fe3* ions [8]. In the EPR spectra of BisNbs_3,Fe3,O15_ s at small x, the asymmetric line 4.3
with ABpp = 20 — 22 mT dominates. This is typical EPR signal for a strongly rhombic
distorted octahedral oxygen environment Fe3* ions. We relate it to the NbOg octahedra of the
compound. At high concentrations, the Fe3* ions in the EPR spectra increase the intensity of a
wide band with g = 2.0 from the clusters of these ions. With an increase in the concentration
of Fe3t ions, a wide band g = 2.0 of their clusters develops. A comparison of the EPR spectra
of ceramics shows that the spectrum of BisNbs_3,Co03,015_s is identical to the spectrum of
Fe?t ¢ g = 4.3 of the BisNbz_3,Fe3,015_s ceramics with a low iron content (Fig. 4, bottom).
The difference in the shape of the line is reduced only to a slightly larger line width of 4.3
in the ceramics BisNbs_3,.Fe3,O15_5. Since the line width 4.3 increases with an increase in
the Fe?t content in the compound, we can assume that BisNbs_3,Co3,O15_s ceramics contain
uncontrolled traces of Fe?t ions causing weak 4.3 signals in the EPR spectra. The marked
decrease in the integrated intensity of the line g = 4.3 of the minor content Fe?* in cobalt ceramics
with an increase in the cobalt content is explained by the competing occurrence of both iron and
cobalt ions in one structural position of the BisNb3O15 compound, namely NbOg. Here is a Fig. 5
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Fig. 5. Isotherms of the paramagnetic component of the magnetic susceptibility of the
BisNbs_3,Fe3,015_5 [8] and BisNbz_3,Co3,015_s solid solutions at 77 K (1), 120 K (2),
180 K (3), 240 K (4) (the solid line is xP***(Co), the dashed line is P2 (Fe))

obtained by applying isotherms of the paramagnetic component of the magnetic susceptibility
of the Bi5Nb3_3mF63x015_5 [8] and Bi5Nb3_3m003m015_5 solid solutions at 77 K (1), 120 K (2),
180 K (3), 240 K (4) (the solid line is x?*?(Co), the dashed line is xP*"?(Fe)). Comparison of
magnetic susceptibilities of both series of solid solutions shows 0.815 to 1 correlation between the
susceptibility values of cobalt- and iron-containing solid solutions. Assuming that the magnetic
susceptibility of BisNbg_3,Co(Fe)3,O15_5 is mainly caused by the presence of impurity iron
atoms, for any x the proportion of iron atoms should be approximately 4/5x, which can hardly
be seen as an impurity. It remains to admit that the absorption band in the EPR spectrum
(g = 4.27) can belong to Co(II),—3/ ions.

Conclusions

Thus, it was shown that the magnetic behavior of cobalt doping bismuth niobate solid so-
lutions with perovskite-like layered structure is generally similar and is determined mainly by
the crystal structure of the solid solutions, the symmetry, and the strength of the crystal field
formed by ligands. The cobalt (III), (II) atoms in solid solutions of heterovalent substitution
aggregate forming strong clusters of cobalt atoms predominantly with the antiferromagnetic type
of exchange, which not disintegrate even at infinite dilution. EPR indirectly confirms that cobalt
ions are in octahedral positions of substitution of Nb(V) ions.
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HNccaenoBanme MarHuTHON BOCHPUUMYUBOCTH

n DIIP Bi5Nb3_3x003x015_5

Hanexnga A. 2Kyk

ChIKTBIBKAPCKUIT rocy1apCcTBeHHbI yHuBepcurer uM. [Intupuma Copokuna
CoikreiBKap, Poccniickas Peneparus

Baamgumup II. JIroToeB

WucruryT reomorun Komu nayunoro nenrpa ¥YpO PAH

CoiktbiBKap, Poccniickas Peneparust

HAmurpmit C. BesHocukos

CBIKTBIBKAPCKUIT rOCyIapCTBeHHbINH yHuBepcuTer uM. [Tntupuma Copokuna
CrikTbiBKap, Poccniickas Pemeparus

Annpeii H. HuzoBiien

WNucruryr 6uosorun Komu nayunoro nenrpa YpO PAH

CrikTbiBKap, Poccuiickas Pemepartus

JIro6oBb B. PrrukoBa

CBIKTBIBKAPCKUIT rOCyIapCTBeHHbINH yHuBepcuter uM. [Intupuma Copokuna
CrikTbiBKap, Poccuiickas Pemepartust

Awnnoranus. VccinenoBanbl MarHuTHas BOCIPUUMYUBOCTD, MUKPOCTPYKTypa u DIIP kobasbrcomepka-
X TBepbix pacTBopoB BisNbs_3,C03,015_5 €O c/IoMCTOI 1EPOBCKUTONOI06HON CTPYKTYpoii. TBep-
npbie pacTBopbl BisNbz_3,C03,015-5 (z < 0.005) KpUCTA/UIU3YIOTCA B TETPATOHAJBHON CHHTOHWH (TIp.
rp. P4/mmm), ¢ yBenuuennem copep:kanns KOOGAIbTa BO3HUKAET MOHOKJIMHHOE MCKAYKEHHUE JIEMEHTAP-
Hoit sivefiku npu 0.005 < z < 0.04 (up. rp. P2/m). B TBepapix pacTBopax oGHapy>KeHO o0pasoBaHUE
o6MeHHO-cBsi3aHHbIX KitacTepos u3 aromoB Co(I11) u Co(1I) npenmyiecTBeHHO ¢ aHTH(EPPOMATHUTHBIM
Tunom obmena. DIIP KocBeHHO MOATBEPXK AAET, YTO MOHBI KOOAIbTA 3aMEIIAIOT OKTA3APUIECKHE TIO3UIIAN
nosnos Nb (V).

KuroueBble cjioBa: KepaMuKa, MarHUTHbBIE CBOiicTBa, DIIP.
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1. Introduction and preliminaries

Let S C R3 be a smooth surface and ¢ € C§°(S) be a smooth function with compact
support on S. Consider the measure du = 1»do, where do is the surface-carried measure. Fourier
transform of the measure is defined by:

A(e) = /S D) gy,

It is well-know that /i is an analytic function.

In this paper the following problem is considered: find v := inf{p : 4 € LP(R®)}. This
problem has a long history [1,2]. Recently L. Erdés and M. Salmhofer [2] considered the problem
for partial class of non-convex surfaces in R3. The main class of such surfaces was level set of
dispersion relation of discrete Schrédinger operator on the lattice Z3. It should be noted that
the phase function of the corresponding oscillatory integrals has singularities of type Ay, As, As
or Dy. In particular, except the case D, one of the principal curvatures does not vanish at every
point. The case Dy type singularities was excluded in [2]. A more general class of hypersurfaces
for which the Gaussian curvature has only simple roots was considered [3]. However, it was
assumed that only one of the principal curvatures can vanish. The case when both principal
curvatures vanish at a point of the surface in R? is still one of the open problems.

We consider the problem for hypersurfaces in R3. More precisely it is assumed that the phase
function (7, w)|s (where w € S? is the unite sphere centred at the origin) is small perturbation of
the so-called D, type singularity (see [4] for definitions and basic properties of such singularities).

*niginasol@yahoo.com
© Siberian Federal University. All rights reserved
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It is shown that in this case v = 3. It can be shown that for any hypersurface S C R3,
i ¢ LP(R3) for p < 3, whenever Supp(u) # 0.

The main result is the following.
Theorem 1.1. Let S be an analytic hypersurface in R3. If S has Dy type singularities at the
origin then there exists a neighborhood U of the origin such that for any ¢ € C3°(U) the inclusion
f € LP(R3) holds for any p > 3.

Moreover, if S is any smooth surface in R? and (0, 0) # 0 then i ¢ L3(R3).

The paper is organized as follows. In Section 2 the problem for the model case is considered.
In this case the result is obtained with the use of simple methods. The Section 3 is devoted to
special function with D, type singularity at the origin.

In Section 4 the general case is considered. Main theorem is proved in Section 5.

2. Model case D,

Let us consider a measure supported on hypersurface x3 = x123. The singularity of that
function is called to be D, type singularity at (0,0). The Fourier transform of the measure can
be written as

fle) = [ etemiemendy, s,
R

where 91 (21, 12) = (21, 22, 1123)/ /1 + 25 + da3x2.

Following B. Randol [3], we define the following maximal function:

M(w) = supr|f(rw),

r>0

where r = |¢| and w € S?, 2 is the unite sphere centred at the origin.

Let us note that (&) = O(|¢|™V) (as |¢] — oo) provided |¢3] < max{[&],[&2|} and 7 is a
smooth function concentrated in a sufficiently small neighbourhood of the origin [5]. It is also
assumed that |€5| > max{|&1], |€2|}. Let us consider the associated oscillatory integral

J@@z/émWWMwm
R2

where ®(z, s) = 2123 + $171 + S22, A = &3, 85 = g, ji=12.

One can define the Randol type maximal function [3| associated with the oscillatory integral
J(A\, s) as
M(s) = sup |A|[J(A, 9)|.
A#£0

Now, the following statement is proved.
Theorem 2.1. The inclusion M € L} °(R?) holds true.

Taking into account that v has a compact support and using integration by parts, the integral

Jl()‘aslaxQ):/ei)\wl(wg—‘r(gl)w(ml?mQ)dxl
R

can be estimated by

C”d’”ﬁ

J1(A, s1,22)| < .
R VI EE
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Consider the following integral

Jl()\,Sl) :/ de
R

1+ [M2|23 + s1]2°

First, we prove the auxiliary statement.

Lemma 2.1. The following estimate holds true:

Cc

[T sl <
[Al]s1]2

Proof. First consider the case Alsi| < 1. If s; = 0 then there is nothing to prove. Let us assume
that s; # 0. In this case we use change of variables x5 = |s1|2y and obtain

1 dyo
JY\, 51) = |s %/ .
Aos) =11l | TR P2 1 senGP

For the sake of definiteness we assume that sgn(s;) = —1, e.g. s; < 0. Actually the case
sgn(s1) = 1 or equivalently s; > 0 is much more easy to prove. Thus, we have
1 dy>
J(A, s1) = |s1|2 / .
Ao =l T R 1P

It is easy to see that the following estimate

dy2 1
_W2 sy}
/ -1 < Pl

[As1]ly3—1]>1

dya dys
2 - 2 2 -
lys — 1 y; —1

holds. Indeed

‘y%_1|>>\i1 Y2 > 1+Mé1\
[ Ga-am)m-nis]
= —_ y2 = =
y2—1 y2+1 Y2+ 1 o
e

1
T+ o+l 1 1
=ln|—— | =In (| Xs1]{ 2+ — + 241+ — ] | =
1_,_\)\1 -1 ‘)\81| |)\$1|

=1In (1+2As1] 4+ 2v/|As12 4 [As1]) < 2[As1] + 2¢/[As1]? + [As1| =
= VPV P+ 2V/TF Porl) < Vst +2v3) = ey/Phsi]

for [As1| < 1. An analogical estimate holds true for [As1| < 2.

Also p{ys : |As1]ly3 — 1] < 1} < (M% Hence the inequality
S11)2

c

[J(A, 51)] < ;
Als1]?

holds true provided A|s;| < 2.
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Now, we consider the case |As1| > 2. In this case, we have

/ dyo _c
[As1[?lys — 117 |Asef*

ly3—1|>1

It is easy to see that the following estimate

dya
2 2
‘?Jz - 1|
1>[y3—1|>[As1|?

< | As]

holds. Indeed, using symmetry of arguments, the last integral can be estimated as

dyQ dy2
————— <2 <
/ lys =112 / ly2 — 1[2[y2 + 1|2
12[y5—1|>[As1| 72 ly2—1|>|As1| 1
dy dy
<2 1P _21|2 <4 ﬁ = 4Asq].
ly2—1[>[Xs1| 71 ly2a—1|>|As1|—1

On the other hand the inequality u{ya : [y3 — 1| < [As1]7'} < ¢|As1|7! holds true for the
measure of the set {y : |[y3 — 1| < |As1|~!}. Hence we obtain

PACHOIIES -
Alsi]2

Lemma is proved. O
Tt is easy to see that the oscillatory integral J(A, s) can be estimated as follows:

N

IO 9) </ O\, 5, )| da,
N

where the number N is
N = max{|za| : there exist x1, such that (z1,22) € Suppe}. (1)

Hence
[T(A,8)| < cll@lle2| TN, ).

Consequently, it follows from the Lemma that

0y s)) < Ml
Al

because 9 has a compact support. If |s| > m, where m is a big positive number depending on
the support of ¢, then the phase function has no critical point. Hence we can use integration by
parts and obtain

c
A 8) < —.
J( ’S) )\|8|
Therefore we have
c o0
X{Js|>m}(8)M(s) < W © L®(R*\B(0,m)), (2)
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where B(0,m) is the ball of radius m centred at the origin, and X{|s|>m} 18 the indicator function
of the set {|s| > m}. Let us denote the indicator function of the set A by x4, e.g., xa(z) =1
for z € A otherwise xa(x) = 0.

The relation (2) suggests that it is sufficiently to consider the oscillatory integral and the
associated maximal function on the set {|s| < m}. Let us assume that x = 2° € Supp (¥) is a
critical point, and s = s® € B(0,m) is a fixed point. If x¢ is not a critical point of the phase
function ®(x, s") then one can use integration by parts and obtain better estimate than needed.
Equations for critical points are

(29)* + 50 =0, 22929 + s =0.

Let us assume that s3 # 0. Then 2929 # 0. Hence z{ # 0 and also 29 # 0, s # 0. Let us
consider the integral

POs) = [N p(a)y(a)da,
RQ

where y is a smooth cut-off function defined in a sufficiently small neighbourhood of z° and s is
close to s°. One can use stationary phase method in two variables because

Hess®(2?,5%) = —4(2§)% # 0.

Therefore for |s — s°| < e we have the estimate

X8l < 5

A
provided x is a smooth function defined in a sufficiently small neighbourhood of 0. If 20 is
not a critical point then one can use integration by parts and obtain the same type of estimate
(even better estimate than needed). Hence M(s) is a bounded function in V(s°), where V (s°)
is a sufficiently small neighbourhood of s° # 0. Let us consider the case when s° = 0, e.g., when
s belongs to a sufficiently small neighbourhood of the origin. This case will be considered in the
next section.

3. Case {|51|% > [so]}

Then trivial estimate for J(\, s) is

c c
(A, 8)] < <
sl [Ml]sa]3 [so|3
1
and the estimate is obtained because W € L379(V), where V is a bounded neighbourhood
S1|3|s2|3

of the origin.
Let us assume that |sa| > |s1]2.
Let us consider the one-dimensional integral

JQ()\,S2,$1):/eM(wlwgﬂzm)lD(xl,$2)d$2~
R

If |Az1| < 1 then we have the trivial estimate

|J2(A, 52,I1)|d£€1 g C|/\‘71.

(0,A71]
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Hence we may assume |[Az1| > 1. If [Az1] > 1 and |z1]| < |s2| then the phase function has no

critical point on the support of ¥ provided N < ok where N is defined by relation (1). Then one

can use double integration by parts and obtain

cl[y|lca
Jo (A < .
| 2( ,32,$1)| |>\$1|2
Therefore
[ Ja(N, sz, 21)|dzy < C”rﬁ'f@.

[0,]s2]]
Finally, let us suppose that |z1]| > |s2|. Then we use stationary phase method in x5 and obtain

2
%2 89
Jo (N, 82, = Toq ( ,7—> R(\ x1, s2).
2(A, 52, 21) \)\xl\%e Y@ 52, + R(\, 1, 52)
For the remainder term R(A,x1,s) we have |R(A z1,82)] < % Then
1+|)\.’IJ1|§

J IR\, @1)|dzy < ﬁ Thus, it is sufficiently to consider the integral

) 2
1/\32(—4;1 +§7;x1)

e S9
JNs)= | —m8 —— ——= )dz;.
14 9) /R \x1|% 1/}(3317 2:171) 1

If |As3] < 1 then we have |J;| < Hence we assume |As3| > 1. Let us estimate the

c
R
integral

ixs2(— -1 ystoyp(wy, — 22
Jf()\7s) :/ el 32( 4wy s%ajl)Mdml.
Ry

xT

o=

Using the change of variables z1 = y?, we obtain

iAs2(— L5 +o1y?
J1+()‘v‘9) = 2/ € 2 4y%+ lyl)w(yi_ﬁ)dylu

R, 2y3

S
where o1 := —;
55
The phase function has no critical points provided 1 is a smooth function defined in a suffi-
ciently small neighbourhood of the origin so one can use integration by parts.
Thus, we obtain

| J1(A, 8)] <
Let us show that

X{‘Sl‘gsg} c L370(V)
S9 '

/1 ds2 /S2ds —/1 ds < 400
452 L= _ @52 )
o Is2/” Jo o |s2[P2

Combining the obtained estimates for the Rendol maximal function for oscillatory integral,

Indeed for p < 3 we have

we obtain

X{js1/>s3}(8) N X{sézsu}(s))
|81|% |82 '

M(S) < c(

Since M € L}, °(R?) our consideration is completed.
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4. The general case

The following proposition holds true.
Proposition. Let us assume that ®(x1,z2) has D, type singularity at the origin
O(x1,12) = z122 + R(z1, 22),
where R(z1,72) = O(|z|?).
Then there exist analytic functions ¢, and b such that function ¢ can be written as
O(a1,22) = b(wr, w2) (21 — p(2)) (w2 — (1)),
where (0) = ¢'(0) = 0, $(0) = ¥/(0) = 0, b(0,0) # 1 (see [2] and [6]).
Let us assume that 1(z1) = 27 (z1), ¥(0) # 0 and o(z2) = 252@(22), $(0) # 0. Then
®(x,5) = b(x1,x2) (21 — p(x2)) (w2 — P(21))? + 5121 + 590,
Using the change of variables
z1 —p(x2) — 21, T2 —Y(T1) — T2,

we obtain
O(z,s) = b(wr, z2)w12 + s1(x1 + (22)) + s2(w2 + Y(21)).
Let D be the annulus D = {1 < |z < 2} and Supp x C D with x € C*°(D) satisfying

oo

Z x(252) =1 for x #0, |z] << 1.

K=K

Then we have

) :/a(th)ez‘/\%(m,s)dx: Z /a(xhSEQ)X(Q%x)ei’\‘pl(f”’s)dm.

K=K0o
Let
J = /a(xl,x2)x(2%x)ei/\%(“"’s)dx.

Let us use scaling 25z — x and obtain
J,=2"7% a(2752)x(x)e? V@) gy
U(z,s) =b2 5x)w x2 + 2%31@1 + a2 5= D 5978 1))+

+ 2%32(332 + x’f12_%(m1_1)1ﬁ(2_%x1)).

Note that 2 € D. If [2% s,| >> 1 or |25 s5| >> 1 then using integration by parts, we obtain

‘JKI <c 25 prs :
[A277[([27 s1] + 2% |s2])

/ 25Pds
(2% 51|+ 2% |sal)?’
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After the change variable 2% s = o we have

/ om—4 40 _ xp-a) / o _550-4),
o] |of? :
|o|>1 |o|>1

K 2K
. - 23X|273 5]
Thus, if p < 4 then the series > — o
K=K0 |2T51| + 2% |52|
Now, we use compactness arguments.
Let us assume that 0 = 0® # 0 and (29, 29) is a critical point of the phase function.

Then @, (x,0) can be considered as a small perturbation of the function

converges in LP. Let 2% s = o and lo| < 1.

® = b(0,0)z122 + 0%z, + 0o,
where (z1,22) € D. If (69,09) # (0,0) then 23 # 0. Hence

0 229

2 (0272
209 2x0 V(0,0 = —48)*(0,0) £ 0.

Hess® = ’

Then we can use stationary phase method in two variables and obtain

C

EAIES
A

in a neighbourhood of ¢°.

Finally, let us consider the case when (09, 0f) = (0,0). Since (z1,72) € D, then 3 = 0 and
29 #0. Thus 29 ~ 1.

K

b(28 x)z 22 4 oy (251278 (M2 D275 10)) 4 ooy,
2y =—-—g(27 53,27 50m Vo)

Using stationary phase method in x9, we obtain oscillatory integral with phase g(0,0) # 0.

2 -~ s
O, (0,21) 1= 40—26*(2*%:01, 2*%(’”271)01) + o1y 4 o927 5 M2V (278 1))
T
x1 ~ 1, 03 ~ 027 5m2m 125 M=)y 1,
Let us consider the following one-dimensional oscillatory integral

Je(A o) = —z/ei’\zfﬁ‘b"(”’“)a(xl)dxl
2

2
A
R
where [A277| > 1.
We prove the following Lemma.

Lemma 4.1. Let 2§ # 0 be a fized point. Then there exist a cut-off function x supported in a
neighborhood of 9, kg, co, ¢ such that for any k > ko the following estimate holds true:

17X] < 230( 1 Xlall<ca§(01’o2)l>.
1

A2z

0|5 02|35 |oa|Z|o1 — cood
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Proof of the Lemma follows from the results presented in [7]. It is easy to see that for any
p<3 Vg€ Ll (R?), where

loc

! 201,02
\110(0—130—2) = X|01|<caz( )

oldoalt  foallor — cooB|i
Corollary. There exists kg such that for any x > kg the following estimate holds true:

U(oy, 02)2%

Je(A\,0)| <
1) < H

)

where ¥ € L3°(R). The following theorem holds true.

loc

Theorem 4.1. Let s be an analytic hypersurface such that it has Do type of singularity at the
origin. Then there exists a neighbourhood U C R3 such that for any ¥ € C§°(U), M € L37°(S5?).

5. Summation of the Fourier transform of measures
Let S be an analytic hypersurface and
dp = P(x)dS.
We prove the following Theorem.

Theorem 5.1. Let S be an analytic hypersurface. If S has Dy type of singularity at the origin
then there exists a neighbourhood U of the origin such that for any ¥ € C§°(U) the inclusion
it € LP(R3) holds for any p > 3.

Proof. Tt is well known that there exists a neighbourhood U of the origin such that for any
U € C5°(U) the following estimate holds true (see [8])

c
(1+1¢D)?
According to Theorem 4.1, there exists a function ¥(w) € L379(s?) such that

u(6)] < (3)

Y(w)
L+7) @)
r)
Let p > 3 be a fixed number. Let us take ¢ < 3. We interpolate estimates (3) and (4) and
obtain

la(rw)| < (

ldp(rw)| < —— =W (w)?.

(1+7r)z+h
If p > 3 one can choose a and 3 such that p(% + 5) > 3 and pf < 3.
For instance, we take a sufficiently small positive number § > 0 and set 5 = =9 and
a= ]%;’_5 Then it is easy to see that
[wtere<e [T Tl [ @ < o
R? 0o (1+2)EH0P Jg
Theorem 5.1 is proved. O
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LP-ontenku mmpeodbpazoBanus Pypbe MOBEPXHOCTHBIX Mep,
COCP€/IOTOYEHHBIX HA TMIIEPIOBEPXHOCTIAX C OCOOEHHOCTBHIO
tuna D,

Huruna A. CojeeBa
CaMapKaHICKUH rOCYIapCTBEHHBII yHUBEPCUTET
Camapkanj, Y3bekucran

Amwnnorarnusi. B a70it ctaThe paccMaTpuBaoTCs OleHKH TpeobpasoBanus Pypbe Mep, COCPEIOTOUEHHBIX
Ha HEBBIIYKJIBIX IOBEPXHOCTIX TPEXMEPHOI'O €BKJIMIOBA TPOCTPAHCTBA. M bl HAIEM TOYHBIHM TOKO3aTE b,
J71sl KOToporo npeobpasoBanne Oypbe Mep ¢ ITON CTENEHbI0 NHTEMPUPYEMO TI0 TPEXMEPHOMY MIPOCTPAaH-
CTBY. DTOT Pe3y/bTaT JAeT OTBET HA BOIIPOC, MOCTaBIEeHHBIN DpmomeM u Cammxodepom.

KuaroueBrnle cioBa: npeobpazoBanne Pypbe, OCIUIISTOPHBIN HHTErpaJs, IOBEPXHOCTHAS MepPa.
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Introduction

In connection with the problem of describing holomorphically homogeneous real hypersurfaces
of 3-dimensional complex space the technique was developed in the articles [1-4] for studying
holomorphic realizations of 5-dimensional Lie algebras in the space C3.

Under this, according to the result of [2], the orbits of nilpotent 5-dimensional Lie algebras
in the space C? can be either Levi degenerate hypersurfaces, or non-degenerate spherical ones,
i.e. holomorphic images of non-degenerate quadrics

Im 23 = |21]> + |20

In the present work, a similar technique is used for study of holomorphically homogeneous
hypersurfaces in the space C*. In particular, below we consider the orbits of holomorphic real-
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izations in this space of nilpotent 7-dimensional Lie algebras (representations of these algebras
in the algebra of germs of holomorphic vector fields in C*).

Note that situations with 5-dimensional and 7-dimensional Lie algebras significantly differ
from each other in the number of algebraically different objects. So, according to [5], there are
only 9 nilpotent 5-dimensional Lie algebras (6 indecomposable and 3 decomposable). And the
family of 7-dimensional indecomposable Lie algebras contains (see [6]) 140 isolated nilpotent
algebras and 9 one-parameter families of nilpotent Lie algebras. In [6], these families are denoted
by

147FE,1357TM,1357N, 13575, 12457N, 1234571, 147F,,1357Q RS1, 12457 N,. (1)

Below 6 such families are considered with the aim of comparing situations with holomorphic
homogeneity of hypersurfaces in 3-dimensional and 4-dimensional complex spaces. The main
interest of the article is related to nondegenerate orbits of Lie algebras; the main results are
presented in the following two theorems.

Theorem 1. Each 7-dimensional orbit in the space C* of any algebra of four families 1357N,
12457N, 1234571, 12457 Ny must be degenerate in Levi sense.

Theorem 2. The two families 1357M, 1357TQRS1 have algebras, admitting holomorphic real-
izations with Levi non-degenerate non-spherical 7-dimensional orbits in the space C*. Up to
holomorphic equivalence, all such orbits of the 1357M family are described by the formulas

1
Ya = y1ys + v5 + yiv2 + Dyi, D # o (2)

among Levi non-degenerate nonspherical orbits of the 1357TQRS1 family there are holomorphic
images of the surfaces

1
Ys = y1y3 + s + T1y1y2 + Dy, D # I (3)

The families 13575, 147E, 147E; also contain algebras whose orbits in C* are non-degenerate
nonspherical hypersurfaces. However, all such surfaces are described by formula (2). Due to the
limited scope of the article, we do not discuss these three families.

1. Families of 7-dimensional nilpotent Lie algebras

The existence of the families of nilpotent algebras depending on the real parameter, distin-
guishes the cases of 7-dimensional algebras and 5-dimensional ones. We denote this parameter by
the common symbol A and discuss the families of 7-dimensional indecomposable algebras men-
tioned above. Each of them is described in some basis ey, ..., e7 by the following relationships:

1357M (XA #0) :[e1,ea] =es, [e1,e3] =es, [e1,eq] = eq, [e1,e5] = e,
le2, e4] = €5, [e2,e6] = Aer, [es,eq] = (1 = Ner.

(4)

1357N : [61,62] = es3, [61763] = €5, [61764] = €¢, [61765] = €7,
(5)
[e2, €3] = Aer, [ea,eq] = es5, [e3,eq] = e7, [eq,e6] = e7.
12457N : [61,62] = es3, [61,63] = €4, [61764] =€, [61765] = €6, [61766] = e,
2, €3] = €5, [e2, €4] = €6, [ea,€5] = Aer, [e2,e6] = €7, [e3,e4] = €7, [e3, 5] = —e7.
1234571 : [e1,ez] = e3, [e1,e3) = eu, [e1,e4] = €5, [e1,65] = eq, [e1,€6] = e,

[627 63} = €5, [627 64} = €¢, [627 65} = )\673 [637 64] = (1 - )\)67‘
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135TQRS, (A #0) : [e1,e2] =e3, [e1,e3] =es, [e1,eq] = es, [e1,€5] = e, s)

[ea, e3] = —eq, [e2,e4] = €5, [e2,e6] = Ner, [e3,eq] = (1 — Ner.
12457Ny : [e1,e2] = e3, [e1,e3] = e4, [e1,e4] = —eg, [e1,e5] = €7, [e1,e6] = e, (9)
le2, €3] = e5, [e2,e4] = €7, [e2,e5] = —eg + Aer, [e3, e5] = —er.

The main point of [1-4], as well as of this article, is the use of large Abelian subalgebras of
studied algebras and simplification of bases of these subalgebras.

It can be noted that for nilpotent Lie algebras of arbitrary dimensions the existence of such
subalgebras (and even Abelian ideals) follows from Morozov’s known statement [7].

In the case of algebras from the families (4)—(9) it is easy to make sure that each of them
contains a 4-dimensional Abelian ideal with the following basis:

12457N, 12457Ny, 1234571 : Iy =< ey, e5, €4, €7 >,

1357M, 1357N, 1357TQRS, : Li =< ez, e€5,€6,7 > .

Remark. For some of the families (4)—(9), each algebra contains several different 4-dimensional
Abelian ideals. For instance, in every algebra from the family of 1357M there are (in addition
to the above ideal I} =< e3, e5, eq,e7 >) also Iy =< ey4, e5,€6,e7 > and I} =< eq, e3,€5,e7 > .

2. Degeneracy of the orbits of 7-dimensional Lie algebras

A scheme for constructing realizations of 7-dimensional Lie algebras as the algebras of holo-
morphic vector fields in space C* essentially repeats a similar scheme implemented in [1-4] for
5-dimensional algebras. The main technical idea here is to simplify the form of basis vector fields
of distinguished ideal (and then basis of the whole algebra under discussion). Algebras with
simplified bases can be integrated (with overcoming certain technical difficulties).

So, write each element of the basis ey, ..., e7 of the discussed Lie algebra g in the form of a
holomorphic vector field in space C*:
0 0 0 0
= — + bp(2)=— — 4 di(2)=— (k=1,...,7). 10
ek ak(2)3Z1 + k(Z)aZ2 +Ck(z)823 + k(2)824 ( ) (10)

In this entry, ax(z), bp(2), cx(z), dr(z) are holomorphic (near the discussed point of the
surface) functional coefficients, z = (z1, 29, 23, 24) is a vector of complex coordinates. We will
also use entries of the form e, = (ag, bk, ¢k, di) to shorten the formula (10).

A real hypersurface M = {® = 0} is the orbit (or integral surface) of a holomorphic realization
of the algebra g if for each base field e of this algebra the condition of tangency M is satisfied
in the form

Re (ex (®)[5,) = 0. (11)

Lemma 1. Let a real hypersurface M C C* be Levy non-degenerate near some of its point Q
and let it be the orbit of the 7-dimensional Lie algebra g of holomorphic vector fields in this space.
Let also Iy be a j4-dimensional Abelian subalgebra in g with a fixed basis ey, €5, eg, €7.

This basis can be reduced to one of three forms by holomorphic change of coordinates of the
space C* (defined near the point Q):

eqs = (1, 0, 0, 0), (0, ba(z1), ca(z1), da(z1)), (0, 1, 0, 0),
1) €5 (07 ]-7 07 0)7 2) (Ou ]-7 07 0)7 3) (07 07 05(21)7 dS(Zl))7

es = (0, 0, 1, 0), (0, 0, 1, 0), (0, 0, 1, 0),

er : (0, 0, 0, 1), (0, 0, 0, 1), (0, 0, 0, 1).
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Remark 1. One can use the Abelian ideals mentioned above as Abelian subalgebras for the
studied families of Lie algebras (4)—(9).

Proof of Lemma 1. First, we note that the assertion being proved is a simple generalization
of Lemmas 3.1-3.4, formulated and proved in [4] for algebras of holomorphic vector fields in a
3-dimensional complex space. As in [1,4], reduction the basis of the subalgebra to one of the
desired types is possible by a step-by-step procedure.

For example, in the space C™ of any dimension n, a separate holomorphic vector field can
be (locally) rectified, i.e. reduced by a holomorphic change of coordinates to differentiation with
respect to one of the variables. In the situation discussed in Lemma 1, we bring thus the field e
to the form 9/9z4 = (0,0,0,1).

For another basis field eg of the subalgebra I we consider its components (ag, bg, ¢g, dg) in the
new coordinates. Firstly, due to the commutation of the fields eg and ey, these components are
independent of the z4 variable. And secondly, the truncated set (ag, bs, ¢g) cannot be identically
zero, because a linear dependence over C (at each point of the surface M) of two fields eg and
er would mean Levy degeneracy of the discussed orbit.

Then the "truncated" vector field (ag(21, 22, 23), bs(21, 22, 23), ¢s(21, 22, 23)) can be (locally)
straightened by a holomorphic change of three variables z1, 29, 23. Accordingly, the field eg will
take the form (0,0,1,dg(z1, 22,23)), and the field ez = (0,0,0,1) will remain rectified. The
reduction of the field eg to the rectified form is completed (with preservation of the rectified
field e7) by another holomorphic change of coordinates zf = z4 + (21, 22, 23), with an arbitrary
function (21, 22, 23) satisfying the condition

0¢/0z3 = —dg(21, 22, 23).

Further, when passing to the simplification of the field es, several cases arise. A common
fact for all such cases is independence of e; components of two variables zs3,z4 (due to the
commutation of e5 with the fields eg, e7).

In the first case, with a nonzero "truncated" field (as(z1, 22), b5(21, 22)) it can be straightened
(just like the whole field e5) due to operations similar to those described when rectifying the field
eg. The basis of the algebra I, takes then form

es  (aa(z1), ba(z1), ca(z1), da(21)),

€5 (07 17 07 0)7

12
es @ (0, 0, 1, 0), (12)
er : (0, 0, 0, 1).

Note that the components of the field e4 in this situation can depend on no more than a
single complex variable z; due to the commutation of all fields in 4.

The second case is also possible, in which (after straightening the fields eg, e7) the basis of
the subalgebra I, has the following coordinate representation

eq : (as(z1,22), ba(z1,22), ca(z1,22), da(21,22)),

€5 (07 07 65(21722)7 d5(21722)),
es : (0, 0, 1, 0),
er : (0, 0, 0, 1).
Note also that in the case of identically zero components a4, b4, the four fields ey, ..., e; turn

out to be linearly dependent over C at each point on the surface M, and the equation of the
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surface (due to the tangency conditions for these fields) get rid of the variables z7, z5. Because in
a Levy non-degenerate case this is impossible, the components a4, bs cannot be both identically
Zero.

Now, using the inequality (a4(z1,22),b4(21,22)) # (0,0), we can, as in the discussion of the
field eg, straighten such a "truncated" field by a holomorphic change of two variables zi, zo.
Then the field ey is rectified to the state (0,1,0,0). The fields es, eg will retain under this their
rectified appearance.

In this case, the whole base tetrad of the subalgebra I acquires the third of the possible forms
indicated in the lemma that we are proving. The first two possibilities arise when completing
simplifications of a basis of the form (12).

If, for example, the coefficient a4(z1) is not identically zero, then turning it into unity and
after that straightening the field e; using the procedures already described, we get the "fully"
rectified subalgebra Iy, i.e. case 1) from the lemma being proved. If as(z1) = 0, we get the
form 2) for the basis of the algebra I;. Lemma 1 is completely proved. O

Further, it is proposed to consider for each algebra three possible cases from this lemma.
Under this, one can significantly simplify such considerations using the following two statements.

Proposition 1. Suppose that a 7-dimensional real Lie algebra g has a basis eq, ...,e; with the
following properties:

1) Iy =< ey, e5,e6,e7 > is an Abelian ideal in g;

2) for h =< ey, ea,e3 > and Iy, the set of commutators [h, I4] is contained in the linear span
< es,€6,e7 >,

3) [61,62] = €4.

Then a holomorphic realization of the algebra g in the space C* with the "straightened” ideal
14 is impossible.

Proof. Suppose, on the contrary, that in the space C* there exists a holomorphic realization
of the algebra g with a "straightened" basis of the ideal I4, satisfying conditions 1)-3).

Consider a nonzero element e; of three-dimensional subspace h of the Lie algebra g. Due to
conditions 1)-2) of the proposition under discussion, we have

[e1,€4] =0-eq + Ases + Ages + Azer = (0, As, Ag, A7) (13)

with some real constants As, Ag, A7.
0
But for a rectified holomorphic vector field e4, the commutator [e1, e4] is equal to —a—(el).
21

This means that, by virtue of equality (13), the field e; can be represented in coordinates in
the form

e1 = (a1(22, 23, 21), —Asz1 + b1 (22, 23, 24), —Aez1 + C1(22, 23, 24), —A721 + d1(22, 23, 24)).  (14)

Similarly to (13), the commutators [e1, es], [e1, €s], [€1, 7], of the field e; with differentiations
with respect to variables zs, 23, z4 also do not contain e4 in its expansions. This means that one
can refine the form of the four functional coefficients

(a1(22, 23, 24), b1 (22, 23, 24), 1. (22, 23, 24), d1 (22, 23, 24))
in formula (14) and write the field e; as follows:

e1r = (A1, L12(21, 22, 23, 24) + B1, L13(21, 22, 23, 24) + C1, L14(21, 22, 23, 24) + D1). (15)
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Here, all linear forms Lij(21,22,23,24) (K = 2,3,4) have only real coeflicients, and
Ay, By,C1, Dy are some complex constants.

It is clear that any vector field from the subspace h has the form (15). Consider in such a
situation a commutator of the field e; with a similar field

eg = (Ag, Laa(21, 22, 23, 24) + Ba, Las(21, 22, 23, 24) + Ca, Laa(21, 22, 23, 24) + Da).

It is clear that the z1-component of such a commutator is zero, which contradicts condition 3)
of the proposition under discussion. Consequently, this proposition is proved. O

Proposition 2. For each of the discussed algebras of all siz families (4)—(9) there are bases
satisfying conditions 1)-8) of Proposition 1.

Proof. The 1357M and 1357QR.S; families contain the ideal I, =< e3,es,eg,e7r >. Under
this decomposition [eq, I4], [es, I4], [e4, I4] do not contain ez component, and [eq, es] = e3.

In the 1357N family with the same ideal Iy =< e3, e5, eg, €7 > the expansions [eq, L4], [e2, 4],
[e4, I4] do not contain eg components, and [e, e4] = eg.

Finally, the families 12457N, 1234571, 12457N5 have the same structure from the point
of view interesting to us: the 4-dimensional Abelian ideal in algebras from these families is
Iy =< ey, e5,e6,e7 >; decompositions of [eq, Iy], [ea, I4], [e3, 4] do not contain es-component
and at the same time [e1, e3] = e4. Proposition 2 is proved. O

Recall that the main interest of the paper is related to Levi non-degenerate orbits of nilpotent
Lie algebras. Application of Propositions 1 and 2 to each of the six families of algebras (4)—(9)
(with the basis vectors ordering in 4-dimensional ideals corresponding to the Proposition 2)
allows in all cases to reduce the meaningful discussions to the points 2) and 3) of Lemma 1.

3. An analogy with the case of 5-dimensional algebras

Proposition 3. Realizations of the algebras 1357N, 12457N, 1234571, 12457 Ny with the fized
bases of their Abelian ideals simplified to types 2) or 3) can have only Levi-degenerate orbits in
the space C*.

Remark. We discuss Proposition 3 only for the 12457 N-family described by the maximal num-
ber of nontrivial commutation relations. The three remaining families (with the corresponding
renumbering of the base fields) can be considered similarly.

Proof. Proposition 1 prohibits the existence of Levi-non-degenerate orbits for this family in
case 1) of Lemma 1. We show that the 21 commutation relations (10 of which are trivial) in the
7-dimensional Lie algebra of the 12457 N-family also contradict cases 2) and 3) of this lemma.

In case 2) of Lemma 1 we have a triple of rectified fields

€5 = (O, 1,0,0), €6 = (0707 130)’ €7 = (0,0,0, ]-) (16)

and the field eg = (0,b4(z1), ca(z1),da(z1)).

We note, first, that the six pairwise relations for the four basis fields of the ideal have already
been used (verified) for the obtaining a simplified form of the basis of the ideal I,. Second,
consideration of nine commutators of each of the triple rectified fields es, eg, e; with each of the
three fields eq, €5, e3 from the complement to the ideal I, allows as to we get a simplified form
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of these additional fields:
e1 = (a1(z1),b1(#1), —22 + c1(#1), —23 + d1(z1)),
es = (az(21),b2(71), c2(21), —23 — Aza + da(z1)), (17)
es = (as(z1),b3(#1), c3(21), 22 + d3(21)).

Next, we move on to more "subtle" verification actions. For example, by coordinate-wise
writing the relation [eq, e4] = eg, we get

ag(O, bﬁl(zl), 02(21), dﬁl(zl)) - (b4(07 0,0, —)\) + 04(0, 0,0, —1)) = (O, 0,1,0).
The second and the third components of this vector equality have the form
as(z1) - 0y(z1) =0, aa(z1)-cj(z) = 1.

This means that az(z1) is nonzero (near the origin). In this situation, one can use the
"linearization lemma" proved in [1] (see also [4], Remark 3.2). This lemma, applied to the field
eo, allows us to bring it after a holomorphic change of coordinates to the form

€9 = (1, 0, 0, —Z3 — )\22)

instead of the more complicated form fixed in formulas (17). The rectified fields e, eg, e7 will be
preserved; the fields ey, ez, e4 will also retain their simplified structure.

Considering further the equalities [e, e4] = [es, e4] = e7, one can obtain the next simplifica-
tions of the first four basis fields:

e1 = (1,b1(21), —22 + c1(21), —23 + di(21)), €2 =(1,0,0,—23 — Az2),

e3 = (0,b3(21), c3(21), 22 + d3(21)), es= (0, -1, ?, L _; /\zl + D4), 18)
where D, is a complex constant.
Finally, we check the remaining three commutation relations
[e1,e2] = €3, [en,es] =es, [z, €3] = es. (19)
The last of them contains restrictions on the field e3, which now takes the form
5 = (0,214 Bs, G, 22 — 5 (21 + B)” + Cilea + By) + D) (20)

with arbitrary complex constants Bs, Cs, Ds.
Then the first of relations (19) leads to a rather complicated form of the field

1 9 A 3
e = (17 —5(21 + Bg) + By, —2z0 + (—032’1 + Cl), —23 — 5(21 + Bg) — Nz + Dl), (21)

where N = (AB; 4+ C2Bs + D3 — C4), and By, C1, Dy € C are arbitrary constants.
Taking into account formulas (20), (21), the left-hand side of the second relations (19) can
be written in a form

[61,63] = ((0, 1,0, —)\(2’1 =+ Bg) =+ 03) =+ (— %(21 + 33)2 + Bl) . (0,0,0, 1)) _

- ((21 + Bg) . (0, 0, —1,0) + Cg(o, 0,0, —1))
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The second component of this vector field equals to 1, contrary to the fact that the equal
field e4 has —1 in the second component. Thus, in the second case of Lemma 1, algebras of the
family 123457N do not admit holomorphic realizations.

Now discussing case 3) of Lemma 1, we have:

es : (0, 1, 0, 0)

€5 ( 0, 07 65(21)7 d5(21))

€6 ( 07 07 17 0 ) - (22)
ez : (0, O, 0, 1)

Using the nine commutation relations [e1,e4] = e7, [e1,es] = e7, [e1,e7] =0,
[e2,e4] = eg, [e2,€6] = €7, [e2,e7] =0, [e3,e4] =e7, [e3,e6] =0, [e3,e7] =0,
we obtain formulas
e = (al(Zl), bi(z1),c1(21), —22 — 23+ dl(zl))a
€y = (0,2(21), ba(21), —22 + c2(21), —23 + dg(zl)), (23)
es = (as(21),b3(21), c3(21), —22 + ds(21)),

similar to the collection (18) from the case 2.

We now note that in the case of identical vanishing of any two of the three coefficients
a1(z1),a2(z1),a3(z1) the six basic fields of the algebra under discussion turn out to be linearly
dependent over C. This leads to Levi degeneration of all orbits of the Lie algebra with a basis
of the form (22)—(23).

Therefore, the search for algebras with such bases admitting non-degenerate orbits can be
reduced to two subcases:

subcase 3.1. az(z1) # 0;

subcase 3.2. az(z1) =0, ai(z1) #0.

Applying the linearization lemma in each of these subcases, we can, in addition to the rectified
triple of fields from (22), significantly simplify one another field. In subcase 3.1, we can regard
the field es having a simplified form ez = (1,0,0, —z3), and in subcase 3.2 we have

er = (1,0, 0, —2z9 — Z3)7 e3 = (O, b3(21)703(2’1), —29 + dg(zl)) (24)

Given this simplification, we consider in subcase 3.1 three commutation relations [e;, e5] = 0,
[e2,e3] = €5, [e1, e2] = es.
The first of these relations has the expanded form

b1(030?07 _1) - (allvbllvcllvdll) = (0707070)

It means that e; = (A1,B1,C1,—22 — 23 — B1z1 + D;) with some complex constants
Ay, B1,Cq, Dy. Similarly, from [es, e3] = e5 we get

ez = (A2, Ba, —22 4 c2(21), —23 + da(21)), €5 = (0,0, —ch(21), —db(21) — Bs)

with complex constants As, Ba and holomorphic functions ¢a(z1), d2(z1).
But taking into account the formulas obtained for the fields ey, eo, the first component of the
commutator

le1, e2] = (A1(0,0,c5(21),d5(21)) + B1(0,0,—1,0) + C1(0,0,0,—1))—
— (AQ(0,0,0, —Bl) + 32(0,070 — ].) + (—22 + 62(21))(0, 0,0, —1))
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is zero, contrary to the fact that e3 = (1,0,0, —z2).
A similar contradiction also arises in subcase 3.2. Here, from the equality [e1,e3] = 0 we
obtain the formula
€3 = (0, B3, C3, —2z9 — (B3 + 03)21 + Dg).

Then a refined form of the field ey is derived from the relation [eq, e3] = es:
ey = (AQ,Bng + By, —2p + C321 + Ca, —23 + (B3 + C3)2% + (D3 — By — Ca)z + D2).
And the field es, equal to the commutator of these two fields, will now take the form
e5 = (0,0, B3, —Bsz1 + (—C3 — By — A3 B3 — A5C3)). (25)

In this subcase, the last three commutation relations were not considered: [e1,e5] = eg, [e2,e5] =
= )‘677 [63765] = —er.
Taking into account formulas (24) and (25), the first of them leads to a contradiction, since

[61765] = (07070a 7B3) - B3(0707 03 71) = (0’ 07 070) 7é €6-

Proposition 3 for the family of Lie algebras 12457N is proved. a

4. Integration of the 1357M and 1357QRS1 families

The technique of the previous section allows us to obtain similar conclusions in the study
of other algebras. The description of all possible holomorphic realizations of algebras from the
families 1357M and 1357QRS1 was received exactly in such manner. We omit here technical
details of reasonings (close to fragments of Section 3) and note only the following two points.

1) The descriptions of holomorphic realizations of the two families 1357M and 1357TQRS1
almost coincide, because descriptions (4) and (8) of these families themselves have the only
difference: the trivial commutator [es,e3] = 0 in the family 1357M is replaced by a nontrivial
relation [eg, 3] = —eg for the 1357QRS1 family.

2) This description is connected with the ideal I} =< ey, €5, eq,e7 >, which is most often
found in the six (and even in nine) algebra families under consideration, but not with the ideal
14 =< ez, e5, €6, e7 > distinguished in Proposition 2. Thereby, all three cases of Lemma 1 were
directly verified, while Proposition 1 was not used.

Proposition 4. Holomorphic realizations of the families 1357M , 1357TQRS1 connected with the
ideal Ij =< ey, e5, €6, e7 > and admitting Levi non-degenerate orbits are possible only in case 3)
of Lemma 1. The bases of such realizations have the form (Im Bs # 0, ImCys #0):

er:( 1, 0, —29, 0 ),
ez : ( —AC5, Bszi + Ba, c2(z1, 22) do(z1, 22, 23) ),
es: (0, Bs, (Cs — B3)z1 +C3, 22/2+ Dsz1 + (A —1)z0 + D3),
es: (0, 1, 0, 0 ), (26)
es: (0, 0, Cs, 21+ Dy ),
e (0, 0, 1, 0 ),
er:( 0, 0, 0, 1 )
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where
62(21, 22) = (C5 — 233)2%/2 + (Cg — Bg)Zl — Crsz9 + Oy,

d2(2’1, 22, 23) = Z:f/6 + D5Z%/2 + D3z — (2’1 + D5)22 — Az3 + Ds.
Conditions for the 1357TM family:

—AC5 + ()\ + 1)B3 =0, —-AC5D5+ BQ()\ — 1) + BsDs + CsA = 0.
Conditions for the 1357TQRS1 family:
—)\05(05 — Bg) + B3Cs = —1, —A\C5D5 + BQ()\ - 1) + B3Ds + C3A = 0.

To complete the proof of Theorem 2, it remains to integrate the algebras of vector fields,
obtained in Proposition 5 and present non-degenerate nonspherical orbits of these algebras.

Recall that the defining function for the orbit of an arbitrary algebra of holomorphic vector
fields with basis e, ..., ey in C* is a solution to a system of seven partial differential equations
of the form (11) for k=1,...,7.

Given the presence in the realizations of all the algebras discussed, the triple of rectified
fields and being interested only in non-degenerate orbits, one can consider that each of them is
described by an equation of the form

ya = F(x1,y1,Y2,93)-

But even with such simplification the integration of the system of (only) four equations
presents, generally speaking, considerable technical difficulties.

Proposition 5. For A # —1 Levi non-degenerate orbits of algebras with bases (26) from the
family of 1357M are (up to local holomorphic transformations) only algebraic tubular surfaces
with affine-homogeneous bases

ya = y1ys + Ays + Byiys + Cyf, (27)
where Lo ) .
A= = - — . 2
21+’ 1+ X ¢ 414+ N) (28)

Proof. We use another Abelian ideal I =< eq,e3,e5,e7 > in the algebras of the 1357M
family. Coordinate description in C* of the basis of this ideal (in the holomorphic realization
from Proposition 4) is upper triangular:

e2: ( —ACs, Bsz1 + B, ca(21, 22) da(21, 22, 23) ),
es:( 0, Ba, (Cs — B3)z1 + C3, 2}/2+ Dsz1 + (A —1)22 + D3), 29)
es:( 0, 0, Cs, 21+ Ds )s
er:( 0, 0, 0, 1 ).

Moreover, Im Bs # 0, Im Cs # 0. Then after complex dilation of variables
z1 = —AC52], 2o = Bsz;, z3=C52;

each of the four diagonal elements of the matrix (29) will be equal to unity.
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We apply to the fields (29) the sequential straightening procedure described in Section 2
above using the commutation of any pair of these fields. Then the basis of the 1357M family
will take much simpler affine form

;0,0 90 9 _9 . _0
= 2621 “1 822 =2 823 3 (924’ 2= 6217 = (92’27
. 0 0 0]
64——Z(1+>\)8722+21872:3+(1—>\)226724, (30)
0 0 0 0
65—8723, €6—-ZA672:3+>\218724, 67_8724.

For A # —1, integration of an algebra with such a simplified basis leads precisely to equa-
tion (27) with coefficients of the form (28).
Note also that by dilation the variables

* * * *
z1 =tz1, zo =rla, 23 =823, 24 = (qz4

with real coeflicients t,r, s, ¢ the three nonzero coefficients (4, B, C') from equation (27) can be
transformed to the form (1,1, AC/B?).
With this in mind, for A # 1, equation (27)—(28) can be reduced to

Y4 = y1ys + Y5 + Yy + Dy, (31)

where D = CA/B? = (1 - )\)/8.

Concluding the proof of Proposition 5, we note that the quadratic form y;ys + y2 from the
right-hand side of equation (31) turns in complex coordinates into indefinite nondegenerate Levi
form

H(z1,22,23) = 2123 + 2371 + |22|%

Therefore, for A # +1 all the orbits of (4) are non-degenerate. Proposition 5 is proved. O

Remark 1. For A = —1, all orbits of such an algebra in the space C* are affine equivalent to a

Levy degenerate hypersurface y; = y3.

Remark 2. According to [8], the surface with equation (4) is spherical, i.e. holomorphically
equivalent to the corresponding quadric

Ys = 2173 + 2371 + 22|,
only for A =1/12, i.e. with A =1/3.
Thus, the first part of Theorem 2 is proved, and the family of surfaces (4) illustrates the
difference between the situation in C* and the 3-dimensional case.
Remark 3. For A = 1, the surface (27)—(28), i.e.

1 1
Ya =1 <y3 + §y1y2 + gy%) (32)

is Levi degenerate.

Remark 4. Any surface from family (31) admits a consistent expansion of variables that pre-
serves both the surface and the origin of C* lying on them. This means that an algebra with
basis (30) is a subalgebra of an 8-dimensional algebra, the additional basis field of which is

68721821 22822 23823 24824'

The following statement completes the proof of Theorem 2.
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Proposition 6. For arbitrary A > 1 and for the following parameter values

A
33:05:i, D5:ﬁ, BQZC3ZD3:0
the orbits of any algebra from the family 135TQRS, with a basis of the form (26) are affinely
equivalent to the surfaces

5
2 4
= — . 33
Y4 = Y1y3 + Y2 +x1y1yz+48()\71)y1 (33)

Proof of Proposition 6. Let us consider a system of partial differential equations corresponding
to an algebra from family 1357QRS;. Due to the specified restrictions on the parameters four
meaningful equations for the determining function of the surface y4 = F(x1,y1,¥y2,y3) acquires
a relatively simple form:

8i_ al_o ai_m + A +()\_1) al_
axl Y2 8y3 —Y, ayQ =T N\ — 1y1 Y2, 8y3 = Y1,
OF OF 1 oF
_)\7 el - 2,2y —
8y1 + T ayQ + ( 2(‘/1’.1 yl) ‘T2> ayg (34)
1 A 1 A
= (253%1/1 oo 6y%> - <($1 + ﬁ)yz + y1$2) — Ays.
A step-by-step solution of the individual equations of this system leads to its final solution
of the form
2 5 4 A
F=yys + 5(/\ — Dys + 1y (@ + i) — YL C, C =const, u= T

Due to affine transformations and, in particular, consistent coordinate expansion of the com-
plex space C%, the equations of the desired orbits in this case can be written in the form (3),
which is very close in form to (2). Proposition 6 and Theorem 2 are proved. i

Remark 1. It is also possible to write out and integrate the equations corresponding to algebras
from the family 1357Q RS, with arbitrary parameter values (the authors did this using the Maple
package). The resulting equations of the orbits are very cumbersome, but in all non-degenerate
cases they are reduced by holomorphic transformations to equations (3).

Remark 2. Currently, the authors are not aware of the answer to the question of holomorphic
equivalence (or nonequivalence) for the surfaces (2) and (3). In multidimensional complex analy-
sis, the task of practical verification of holomorphic equivalence of specific varieties is often hard
enough to solve. Therefore, the study of the (possibly simple) question about the surfaces (2)
and (3) can be be considered as going beyond the scope of this article.

This work was supported by the Russian Foundation for Basic Research (projects no. 17-01-
00592, 20-01-00497).
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O6 opbuTax HMJIBIIOTEHTHBIX 7-MepHBIX ajreop JIn
B 4-MepPHOM KOMILJIEKCHOM HPOCTPAHCTBE

Anekcanap B. Jlo6ona

Boponexcknit rocyiapcTBeHHbBI TEXHUYECKUNA YHUBEPCATET
Boponex, Poccuiickas Peneparust

Purnicume C. Akonsian

MUPIA, Poccuiickuil TeXHOJIOIMYECKUN YHUBEPCUTET
Mocksa, Poccuiickast @enepariust

Baaagunciaas B. Kpyrckux

Bopomezxkckuit rocy1apcTBEeHHBIN YHUBEPCUTET

Boponex, Poccuiickasa Peneparus

Awnnoranusi. B pabore u3ydensr ogHOMapaMeTPUIECKHE CEMENCTBA 7-MEePHBIX HUJIBIIOTEHTHBIX HEPA3-
JIOKUMBIX ajredp JIu m opouThbl roIoMOpMHBIX peajin3aliii TaKuxX ajaredp B 4-MepHOM KOMILJIEKCHOM
npocrpancTie. [lokazaHo, 94TO B oT/indre OT OpOUT 5-MEpPHBIX HUJIBIIOTEHTHBIX aiarebp JIu B 3-mepHOM
IPOCTPAHCTBE J[BA TAKMX CeMEHCTBa (M3 MMEIOIMMXCS JEBATH) JIOIYCKAIOT OPOUTHI, ABJISIONIAECS HEBBI-
POKJIEHHBIMU 110 JIeBu (OZHOPOAHBIMK) BENIECTBEHHBIMU HechepUIeCKIMHU runeproBepxuoctamu. C rod-
HOCTBIO JIO TOJIOMOP(HOM IKBUBAJEHTHOCTH BCE TOJIYIE€HHBIE HEBBIPOXKIEHHBIE HeC(hepuIecKne OpOUThI
SABJISIOTCS TPadUKAMA MHOTOYIEHOB 4-11 CTEleHu.

KuaroueBrie cioBa: anrebpa JIn, KoMIsIeKCHOE IIPOCTPAHCTBO, BEKTOPHOE II0JIe, rojioMopdHast PyHK-
I[1s1, OJHOPOHOE MHOI000Opa3ue, BHIPOXK/IeHMe 110 JleBn.
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Abstract. The main task of the theory of phenomenologically symmetric geometries of two sets is the

classification of such geometries. In this paper, by complexing with associative hypercomplex numbers,
functions of a pair of points of new geometries are found by the functions of a pair of points of some well-
known phenomenologically symmetric geometries of two sets (FS GDM). The equations of the groups
of motions of these geometries are also found. The phenomenological symmetry of these geometries
is established, that is, functional relationships are found between the functions of a pair of points for
a certain finite number of arbitrary points. In particular, the s 4+ 1-component functions of a pair of
points of the same ranks are determined by single-component functions of a pair of points of the FS
of GDM ranks (n,n) and (n + 1,n). Finite equations of motion group and equation expressing their
phenomenological symmetry are found.

Keywords: geometry of two sets, phenomenological symmetry, group symmetry, hyper-complex num-
bers.
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Introduction

0.1. In the works [1-3] the definition of one-dimensional phenomenologically symmetric
geometry of two sets (PS of GTS) of rank (n+1, m+1) is given, which is given by a differentiable
non-degenerate function of a pair of points with open and dense in R™ x R™ domain:

f:R™xR"— R.
The axiom of phenomenological symmetry is fulfilled: the functional relation

D(f(u1,v1), flpr,va)y ooy f(fnt1, Vms1)) = 0,

for an open and dense subset of the sequences (11, 2, - . -, fhns fint1; V1, Y2, - « - s Vi, Vm+1) Of length
n+m+2 from neighborhood V' ({(iu1, i, - . .y fn, fhn 15 V1, V25 - - s Vs V1)) © R™HD s grim+1),
The function ® is differentiable and rang® = 1. Points from the first set are denoted w, u1, po - . -,
and points from the second set are v, vy, vs ...
In the coordinates, the function of a pair of points of the PS of GTS of rank (n+ 1,m + 1)
is given as
f(/‘v v)= f(xl(ﬂ)v s wm(ﬂ)agl(y)7 s &(W),

*kyrovVA@yandex.ru  https://orcid.org/0000-0001-5925-7706
(© Siberian Federal University. All rights reserved
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where (z'(p),...,2™(u)) are the coordinates of the point u € R™, and (£'(v),...,£"(v)) are
the coordinates of the point v € R"™.

There is a complete classification of one-dimensional PS of GTS [4], according to which there
are PS of GTS only of the ranks (n + 1,n+ 1), (n 4+ 2,n+ 1) and (4,2), where n > 1.

PS of GTS rank (n+1,n+ 1):

flv) =2 (e W) + -+ 2" (g (v); (1)

Flpv) =2l (e ) + -+ 2" (e" T (v) + 2™ (1) + € (v), (2)
where n > 1;
PS of GTS rank (n+2,n+ 1):

f=Ffuy) =2 (We W)+ + 2" (We" (v) + " (v), (3)

where n > 1;
PS of GTS (4,2):

2t (p)Et(v) + (v
f= flpy) = TE LS W) (1
zt(p) + & (V)
0.2. As above, one can define a s-metric PS of GTS of rank (n+ 1,m + 1), which is given by
a differentiable non-degenerate function of a pair of points with open and dense in R*™ x R*"

domain:
f/ . RS'HL X RSTL — RS.

The axiom of phenomenological symmetry is fulfilled: the functional relation

O (f (1, 1), f1(pa,v2), oo f (g1, Vmg1)) = 0,

for an open and dense subset of the sequences (fi1, 2, . . ., ln, fnt1; V15 V2, - « - s Vi, V1) Of length
n+m 42 from V({fu1, (12, - fhns Bng 15 V15, V2, -+ Viny V1)) C RE™HD 5 Rsn(mA1) (3] The
function @’ is differentiable and rang®’ = s. There is no complete classification of s-metric PS
of GTS.

0.3. This work is a continuation of the research published in the article [3]. Here, complex-
ifications of one-dimensional PS of GTS of ranks (n + 1,n 4+ 1) with n > 3 and PS of GTS of
ranks (n + 2,n 4+ 1) with n > 2 by associative commutative hypercomplex numbers of rank are
constructed s. For example, hypercomplex numbers of rank 2 are: ordinary complex numbers
(i = —1), double complex numbers (i> = 1) and dual complex numbers (i? = 0) [3,5, 6], asso-
ciative but noncommutative hypercomplex numbers of rank 4 are quaternions [5]. As a result of
complexification, functions of a pair of points of s-metric PS of GTS are obtained. This method
was tested in [3] and [5].

Note that the cases n = 1 and n = 2 for PS of GTS rank (n + 1,n + 1), as well as the case
n = 1 for PS of GTS rank (n + 2,n + 1) was previously considered in [3] over the algebra of
associative hypercomplex numbers.

1. Algebra of hypercomplex numbers and matrix algebra
over hypercomplex numbers

1.1. The results of this item are given by article [3]. Consider the real associative commutative
algebra L of hypercomplex numbers of order s ( [7], p. 462). An arbitrary hypercomplex number
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has the form: x = xg + 191 + - -+ Ts_195_1, where xg,z1,...,2s_1 € R, g =1, 41,...,1,_1 are
imaginary units. Addition and multiplication by a real number are component determined, and
the product is written so: for arbitrary z,y € L,

n
xy = E TRY1ikll.
k,1=0

The product of imaginary units ixi; € L is defined by a special table. Denote by U(L) C L the
set of invertible elements. The set U(L) is open and dense in L and is a group by multiplication.

1.2. Let M,, be the set of matrices of size m x m over the algebra of associative commutative
hypercomplex numbers L, m > 1. The addition of such matrices and multiplication by a hyper-
complex number is determined in the usual way. The product of matrices is also determined by
the rule "row by column". One can prove that M, is a linear associative algebra ([7], p. 184).

Consider the matrix A = (a;;) € M,,, where ¢, = 1,...,m. Denote by |A| the determinant
of this matrix, and by A;; — the algebraic complement of the element a;;. Further we use the
well-known statement from linear algebra.

Proposition 1.1 ([8], p. 50). A square matriz A with elements from a commutative ring K
with unity has an inverse matriz with elements from K when and only if the determinant of the
matriz A is invertible into K.

From this statement it follows that over an algebra of associative commutative hypercomplex
numbers L, the matrix A is invertible if and only if |A| € U(L). The set of invertible matrices in
M,, is denoted by UM,,). This set is open and dense in M,,. The inverse matrix to the matrix
A € U(M,,) is denoted A~! = (a;;) and its element ayy, is calculated by the formula ([9], p. 26):

Qi = Aki‘A|_1.

2. Classification of one-metric phenomenologically
symmetric geometries of two sets (PS of GTS)

2.1. In the introduction, the definition of a one-metric PS of GTS of rank (n + 1,m + 1) is
given, and the functions of a pair of points for a PS of GTS of rank (n+1,n+1), of a PS of GTS
of rank (n + 1,n) and PS of GTS rank (4,2). For them, functional connections are known [1]
and [4]:

For PS of GTS rank (n+1,n+ 1):

first solution (function of a pair of points (1)):

flpr,vn)  flpa,ve) oo flua,vn)

fluz,v1) - flpz,v2) oo flpz,vn) -0 (5)
[, v1)  flpn,v2) o fpn, vn)
second solution (function of a pair of points (2)):
0 1 1 1
Flp,v) - flpa,ve) oo fp,vm)
L fluz,vn)  flpz,ve) - flpz,vm) | =0. (6)
L flun,vn)  flpnsva) o fins vn)
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For PS of GTS rank (n+ 1,n):

f(,ulayl) f(:ulvVQ) f(.ulal/n—l) 1

S B ®
f Nn,Vl) f(:unaV2) f(Mnaanl) 1

For PS of GTS rank (4,2):
flprvn)  flunsve)  flpa,vn) f(pa,ve) 1
Flpzsvn) - f(pz,ve)  fluz,v) f(pzsve) 1| 8)
flus,vn)  flus,v2)  flps,vi)f(ps,ve) 1 .
flua,ve)  flpa,ve)  flpa,vi) f(pa,v2) 1

2.2. The concept of motion in GTS is introduced as a set of locally diffeomorphic transfor-
mations

x' = )\(1’)7 6/ = 0(5)

of R™ and R'™ varieties preserving the function pairs of points:

f@', ) = f(Mx), o(&)) = f(x,8). (9)

Relation (9) is a functional equation for a group of motions, solving which are the equations of
this group:

For PS of GTS rank (n+1,n+ 1):

first solution:

X' =AX, = =A"'g, (10)
IL‘/l 1171 fll 51 all - CLln

where X' = ’X: 75/: e, 2= ’A: is nonde-
z'm " é-/n gn anl oo g

generate matrix;
second solution:
X' =AX+B, 2"=a2"+CTX +b",

2 =AY E-0), ¢"=¢"-BTATN(E-0)-V, (11)
2/ ol ¢n ¢l pl
where X' = ], X = ], B = |, 2= .|, B= ]
=1 21 g1 gn-1 pn—1
P all . agln=1)
c=|.--- |, A= e e e nondegenerate matrix.
en—1 am=D1 . g(n=1)(n—1)

For PS of GTS rank (n + 1,n):

X' =AX+B, Z=A"1g, ¢n=¢"—-BTA 5, (12)
2/ ! €/1 51 bl
where X' = ], X = , 2= ], 2= - |, B= o
m/n—l xn—l g/n—l gn—l bn—l
all o qln—1)
A= . o .. nondegenerate matrix.
ar=D1 .. g(r=1)(n-1)
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For PS of GTS rank (4,2):
ol = (az' +0)/(cx’ +d), €' =(dg" —c€?)/(d ~ ),
€% = (ag? = b€")/(d — &), € = (a&® ~b)/(d~c£’),

where ad — bc = 1.

(13)

It should be noted that group and phenomenological symmetries for PS of GTS are equivalent
in the following sense: by the function of a pair of points, you can find a group of motions, and
by a group of motions — a function of a pair of points [1,2,4].

3. Complexification of one-metric PS of GTS
rank (n+ 1,7+ 1) hypercomplex numbers

3.1. Consider a one-metric F'S of GDM rank (n + 1,n + 1), which exists in two variants
([1], p. 63), defined by the functions of a pair of points (1) and (2) in R™ x R™. For n > 2
these options are not equivalent. For the first solution, the functional relationship is expressed
by equation (5).

The group symmetry of degree n? is determined by the n2-parametric group of motions with
equations (10) for the function of the pair of points (1), which satisfies the identity (9).

3.2. We carry out the complexification of the function of the pair of points (1), passing to
the corresponding hypercomplex functions and coordinates, assuming

S S S
F=0 ek, @ = axin, €= Ckik.
k=1 k=1 k=1
As a result, we obtain the s-component function of a pair of points
fK:$1£1+"'+l’"§n7 (14)
where 2!, ..., 2" &', ..., ", fi € L. Phenomenological symmetry, as is easily seen, if we use the
formula (14), is given by the identity:

fK(/,Ll,Vl) fK(,ulvVZ) fK(/J’hVn)

fK(,LLQ,l/l) fK(,LLQaV2) fK(,u‘27V7L) = 0.

fK(,uanI) fK(:un7V2) fK(/Man)

3.3. Let us find the group of motions for the complexification PS of GTS rank (n+1,n+1).
To do this, we solve the functional equation

I/1€/1+.“+Z‘/n€/n:$1€1+“'+xn§n (15)
on a set of motions.

Theorem 1. The group of motions of the complexification PS of GTS of rank (n+1,n+1) with
the function of a pair of points (14) is given by the equations

X' =XA, = =A"'g, (16)
¢ ap --oaf

in which X = (' --- a"),E= |-+, A=[-+ -+ - | =const € U(M,).
e a
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Proof. We write the identity (15) for n pairs of points (uvy),. .., (uv,):
.Z‘/l /1(V1) N +l'm€m(l/1) _ $1§1<V1) 4. +l‘n§n(V1),
xllf/l(l/n) S ZL'/nf/n(Vn) _ :lel (Vn) R xngn(l/n)

For convenience, the last equalities are rewritten in a matrix form:
X'D =XD,

&) o &)
where D = S € U(M,). Resolving, we have

') o €M)

X' =XDD'™.
at - ay
It can be seen that the variables are divided. Therefore A = DD'"! = | ... ... ...| =
al .- a?
= const € U(M,,). In this way,
X' = XA.
Similarly, identity (15) is written for the sequences (1v), ..., (unv), and then rewritten in a
matrix form:
U'E' =U=
at(pn) - 2™ (m)
where U = e U(M,), U =UA. Then
et (pn) o 2™ (pn)
UAZ =UE, = =UA)'UWE=A"'U'U=E=A4""'E.
Thus, we obtain (16). a

2 real

Obviously, the group of motions (16) is a sn?-parametric group, which includes sn
parameters.

3.4. For the second solution, the functional relationship is expressed by equation (6). The
group symmetry of degree n? is determined by the n2-parameter group of motions with equa-
tions (11) for the function of the pair of points (2), which satisfies the identity (9).

3.5. When passing to hypercomplex coordinates in expression (2), we obtain the s-component

function of a pair of points
fe=algl 4o 4TI a4 (17)

where 2!, ..., 2™, &', ..., €, fi € L.
Phenomenological symmetry, as is easily seen, if we use the formula (17), is given by the
identity:

0 1 1 1

L felpr,vn)  felpn,ve) oo fulpa, vn)

1 fK(U%Vl) fx(ﬂ27V2) fK(,UQaVn) =0.
1 fK(NmVl) fK(Nan2) fx(:um’/n)
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3.6. We find the group of motions for the second complexification PS of GTS rank
(n+1,n+ 1). For this, we solve the functional equation

m/lf’l N _i_aj/n—lgln—l =+ m/n +£ln _ wlgl N —i—a:"_lf"_l +x7L +€n
on a set of movements.

Theorem 2. The group of motions of the complexification second PS of GTS of rank (n+1,n+1)
with the function of a pair of points (17) is given by the equations

X' =XA+B, z"=a"+XCT +b™;

E=ATNE-0"), ¢"=¢"-BATNE-CT) -0, (18)
fl bl Cl
in which = = ,X:(x1 x”fl),B: = const, C' = = const,
gnfl bnfl Cnfl
a% . aj”lq’_l
b =const, A= -+ - - | =const€ U(M,_1).
al an=l
n—1 n—1

The proof of this theorem is similar to the proof of Theorem 1; therefore, it is omitted.
It is obvious that the group of motions (18) is a sn?-parametric group, which includes sn?

real parameters.

4. Complexification of one-metric PS of GTS rank (n+1,n)
hypercomplex numbers

4.1. We now turn to a one-metric FS of a GDM of rank (n + 1,n), ([1], p. 63) defined by
the function of the pair of points (3) in R"~! x R". The functional relationship is given by
formula (7). The group symmetry of degree n(n — 1)2 is determined by the n(n — 1)-parametric
group of motions with equations (12) for the metric function (3), which satisfies the identity (9).

4.2. In the transition to the hypercomplex coordinates in expression (3), we get the s-com-
ponent function of a pair of points

fK:xlfl_F._'_'_xnflgnfl +§n’ (19>

where z!,..., 2"t &1, ..., €7, fc € L. Phenomenological symmetry, as is easily seen, if we use
the formula (19), is given by the identity:

Jelpr,vn)  felpn,v2) o fulpa,vn—r) 1
Slpz, 1) fulpz,v2) - flpo,vn-r) 1| 0.
fK(:umVl) Jx(pn,v2) -+ fK(/‘manl) 1

4.3. Let us find the group of motions for the complexification PS of GTS rank (n + 1,n).
For this, we solve the functional equation

x/lg/l L x/n—lgln—l < g/n — .%'1§1 L xn—lfn—l _|_€n

on a set of movements.
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Theorem 3. The group of motions of the complezification second PS of GTS of rank (n+1,n)
with the function of a pair of points (19) is given by the equations

X' =XA+B, Z=A71'g, ¢"=¢"—-BA'E, (20)
El bl
in which the notation is entered = = | --- |, X = (acl x"_l), B=| - = const,
gn—l bn—l
a% e a’f’_l
A= AR = const € U(Mp_1).
I

The proof of this theorem, as well as the previous one, is similar to the proof of Theorem 1;
therefore, it is omitted.

It is obvious that the group of motions (20) is a sn(n — 1)-parametric group, which includes
sn(n — 1) real parameters.

5. Complexification of one-metric PS of GTS rank (4,2)
hypercomplex numbers

5.1. Finally, we turn to a one-metric PS of GTS of rank (4,2), ([1], p. 63) defined by the
function of a pair of points (4) in R x R3. The functional relationship is given by formula (8).
The group symmetry of degree n(n — 1)2 is determined by the n(n — 1)-parametric group of
motions with equations (13) for the metric function (3), which satisfies the identity (9).

5.2. In the transition in expression (4) to hypercomplex coordinates, we obtain the s-
component function of a pair of points

fo= (@€ + €)@ + )7, (21)

where o, 1,62 €3 f. € L, 2! +¢% € U(L). Phenomenological symmetry, as is easily seen, if we
use the formula (21), is given by the identity:

felprsvn)  fulpr,sve) o felpns va) f(pn,v2) 1
Flpz,vn) - flpz,ve) - ficlpz, vi) fi(pz,ve) 1)
felps, v1)  flps,v2)  fu(ps, v1) fu(ps,ve) 1 '
Jelpa,v1)  filpa,v2)  fi(pa, v1) f(pa, vo) 1

5.3. Let us find the group of motions for the complexification PS of GTS rank (4,2). For
this, we solve the functional equation

(:L,llgl/ +52/)(391/ +£3/)71 _ (58151 +§2)(1‘1 +§3)71 (22)
on a set of movements.

Theorem 4. The group of motions of the complexification second PS of GTS of rank (4,2) with
the function of a pair of points (21) is given by the equations
oV = (ax! +b)(cat +d)7L, &V = (d¢r — e€?)(d — c£3) 7, (29)
€ = (ag® = b&')(d - c€®)7", &% = (ag® —b)(d — €)1,

where ad —bc =1, a,b,c,d € L, cx'+d,d—c&* € U(L).
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Proof. Identity (22) is solvable with respect to 2!/, after which we fix the coordinates of the
points of the second set. After redefinition, we obtain the first equation of system (23).
Further, the identity (18) we write for sequences (u1v), (uav), (usv):

(@ ()€Y 4+ ) (" (u1) + €)1 = (2" ()€ + ) (@' () + &%) 7,
(" (u2)€" 4+ €2 (x" (n2) + €¥) 71 = (2" (n2)€! + &) (@' (u2) + &%),
(2" (u3)€" + E¥) (" (us) + €¥) 7" = (" (us)&" + &) (a" (us) + %)~

Then the resulting system is resolved with respect to £V, €% and £, whereupon fix the coordi-
nates of the points of the first set and go to the identity (22). As a result, after redefinitions, we

get equalities (23). |
Obviously, the group of motions (23) is a 3s-parametric group, which includes 3s real param-

eters.

Conclusion

Complexification by ordinary complex numbers PS of GTS rank (2,2), (3,3), (4,4) and (5,5)
are interpreted by Yu.S. Vladimirov in the theory of physical interactions [10,11]. They are given
the definition of spinors through the PS of GTS rank (2,2), which are used to describe elementary
particles. Complex PS of GTS high ranks are used to describe the fundamental interactions of
elementary particles.

In works [12-14], respectively, the complexification affine group and the complexification
projective group are investigated as the PS of GTS.
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KOMMYTaTI/IBHbIe IruilepKOMILJIEKCHbIE€ YM1CJIa 1 I'eoMeTpud
ABYX MHOX>KeECTB

Baagumup A. KsipoB
TopHO-AJrTaiicKuii TOCYIApCTBEHHBIN YHUBEPCUTET
Topno-Aurraiick, Poccuiickast @eneparust

Aunnorauus. ['asHoii 3a1adeii Teopun (heHOMEHOJIOTMYECKU CUMMETPUYHBIX €OMETPUH IBYX MHOYKECTB
SABJISIETCSA KJIacCuUKAIMA TaKUX reomeTpuit. B mamnuoit pabore mo (pyHKIMSAM Hapbl TOYEK HEKOTOPBIX
M3BECTHBIX (PEHOMEHOJIOTMYECKH CHMMETPHUHBIX reomerpuii aByx muoxects (®@C [ZIM) c¢ momorbio
KOMILIEKCUDUKAIIUN aCCOIMATUBHBIMUA TMIIEPKOMILIEKCHBIMU YUCJIAMU HAXOAUM (DYHKIMHA Tapbl TOYEK
HOBBIX reoMerpuii. Haxomum Tak»kKe ypaBHEHUsI MDY JBUXKEHUI 9TUX reoMeTpuii. YcranasiuaeMm ¢e-
HOMEHOJIOIMYECKYIO0 CUMMETPHUIO ITHX I'€OMETPHil, TO €CTh HAaXOAUM (DYHKIMOHAJIbHBIE CBS3U MEXK/Ly
GYHKIMSAMA Tapbl TOYEK JIJIsI OMPEJIEIEHHOTO KOHEYHOIO YHCJIA ITPOU3BOJIBHBIX TOYEK. B 1YacTHOCTH,
0 OJTHOKOMIOHEHTHBIM (DyHKImsaM napbl Touek ®C I'JIM panros (n,n) n (n+1,n) onpexnensiem s + 1-
KOMITOHEHTHbIe (DYHKIIUU [1apbl TOYEK TeX Ke paHros. Jjis HUX HAXOJUM KOHEYHbIE YPaBHEHWSs DYIII
JBUKEHUN W ypPaBHEHUsl, BhIpaXkarolye ux (heHOMEHOJIOIMIECKYI0 CUMMETPHUIO.

KuaroueBrbie ciioBa: reomerpusi IByX MHOYKECTB, (DEHOMEHOJIOTHYECKAS CHMMETPHs, I'PYIIIOBAas CHM-
MeTpHus, TUIEePKOMIIJIEKCHbIE YHCIA.
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