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Abstract. Decomposition of every square matrix over an algebraically closed field or over a finite field
into a sum of a potent matrix and a nilpotent matrix of order 2 is considered. This can be related to
our recent paper, published in Linear & Multilinear Algebra (2022).

The question of when each square matrix over an infinite field can be decomposed into a periodic
matrix and a nilpotent matrix of order 2 is also completely considered.
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1. Introduction and conventions

Nilpotent and potent elements in matrix rings is mainly considered in this paper. Let us
recall that an element ¢ of an arbitrary ring R is said to be a nilpotent if there is an integer n > 1
that depends on ¢ such that ¢"™ = 0 (the minimal n with this property is called an exponent for
g; in particular, if n = 2 the non-zero nilpotent is shortly called square-zero). Element p € R
is said to be potent if there is a natural number m > 2 that depends on p and p™ = p (p is
called m-potent). If m = 2, this element is called idempotent. Common generalization of potent
element is periodic element. An element ¢ is said to be periodic if there are two different natural
numbers m,n that depend on ¢ and ¢ = t".

Representation of an arbitrary matrix over a field as the sum of a nilpotent matrix and
an idempotent matrix was considered in pioneering [3]. It was proved that this presentation
is possible precisely when the field contains only two elements. This was further extended
by showing in some cases the exact exponent of the nilpotent matrix [13], [12]. The valuable
discussion on the decomposition of a matrix as the sum of an idempotent and a square-zero
matrix was given [9]. On the other hand, as generalization of the aforementioned main fact
from [3] it was proved that every matrix over any finite field of cardinality d is representable as
the sum of a nilpotent matrix and a d-potent matrix [1]. Furthermore, this representation was
refined by proving that if d is odd then the exponent of a nilpotent matrix is not more than
3 [2]. Moreover, it was constructed a 3 x 3 matrix over the field of three elements which is not
presentable as the sum of a 3-potent matrix and a square-zero matrix |2, Example 6].

Hence the following intriguing problem is considered.

Question 1: When every square matriz over a field K can be expressed as
P+Q,

where P is a potent matriz and Q is a square-zero matrixz?

*danchev@math.bas.bg  https://orcid.org/0000-0002-2016-2336
(© Siberian Federal University. All rights reserved
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Let us consider below two situations, namely, algebraically closed fields (see Corollary 2.4)
and finite fields (see Corollary 3.2). The results can be viewed and treated as the development
of method and ideas presented in [8] and [6], respectively. Some closely related studies can also
be found in [5].

It is well known that any element in finite rings is periodic, so any matrix over a finite
ring is also periodic itself. This immediately rises the question on matrices over infinite rings.
Attention will be concentrated only on infinite fields, so the following interesting problem will
also be examined.

Question 2: When each square matrix over an infinite field F' can be expressed as
T+Q,
where T is a periodic matriz and Q) is a square-zero matriz?

It should be noted that a part of the established here results can be found in [7].

2. Decomposition into potent matrix and zero-square
matrix over algebraically closed fields

As a first approach to the problem, it will be shown that all square matrices over an alge-
braically closed field admit decomposition into a diagonalizable matrix and a nilpotent matrix
of order two. This decomposition will be significantly improved in the next section, where the
same result is proved for non necessarily algebraically closed fields by using the rational canonical
form. Nevertheless, in this section a simple argument is provided in terms of Jordan blocks. It is
included here for the sake of completeness. Moreover, it provides a decomposition for nilpotent
matrices over non necessarily algebraically closed fields.

The construction is based on Jordan blocks and roots of unity. Let us consider the explicit
decomposition for a Jordan block (see Remarks 2.8 and 2.9 from [§]).

Lemma 2.1. Let K be a field and let J be a Jordan block in M, (K), n > 3 associated with
ac K

a 00 0 0
1 0 0 0
=l o1 a 0o o
00 o .0
00 0 1 a

(i) Suppose that char(K) does not divide n. If K contains n (different) roots of the polynomial
2™ — 1 € Klz] then J has the following decomposition

J = (J + €1n) + (—eln)
—_——— N —
D Q

where e1, denotes the nilpotent matriz with 1 in the (1n)-entry and zero in the rest of
entries, and matriz D is diagonalizable. Moreover, if a = 0 then D™ = I.

(ii) Suppose that char(K) divides n. If K contains n — 1 (different) roots of the polynomial
2"t — 1 € K[X] then J has the following decomposition

J = (J + €2n) + (—egn)
—_———— N —
D Q
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where esy, denotes the nilpotent matriz with 1 in the (2n)-entry and zero in the rest of
entries, and matriz D is diagonalizable. Moreover, if a = 0 then D™ = D and D" ! is
similar to the diagonal matriz diag(1,...,1,0).

Proof. (i) If ¢ = char(K) does not divide n, then J can be written as

a 0 O 0 1 0 0 O 0 -1
1 a O 0 O 0 0 O 0 0
J = 0 1 a 0 O + 0 0 O 0 0
0o 0 -. 0 0o o0 - 0
0 0 O 1 a 0 0 O 0 0
D Q

The minimal polynomial of D is p(z) = (z — a)® — 1 and it has n different roots in K (by
hypothesis K contains all roots of p(z) = (x — a)™ — 1 and they are all different because p'(z) =
n(z —a)"! # 0 since q t n). In particular, D is diagonalizable. Moreover, one can see that
Q*=0.

(ii) If ¢ = char(K) divides n then

a 0 O 0 O 0 0 O 0 0
1 a O 0 1 0 0 O 0 -1
J = 0 1 a 0 O + 0 0 O 0 0
0o 0 -. 0 0o o0 - 0
0 0 O 1 a 0 0 O 0 0
D Q

The minimal polynomial of D is p(z) = (z — a)” — (x — a) and its n roots belong to K by
hypothesis and they are all different because p’(x) = —1 # 0 (recall g|n). In particular, it follows
that D is diagonalizable. Moreover, Q? = 0 as required. O

Remark 2.2. The decomposition of each Jordan block into D + @ given in Lemma 2.1 has the
following properties:

e Each D is diagonalizable with no multiple eigenvalues.
e Q% =0 and rank(Q) < 1.

Proposition 2.3. Let K be an algebraically closed field. Then any matriz A € M, (K) can be
written as D + Q, where D is a diagonalizable matriz and Q is a nilpotent matrix for which

Q*=0.

Proof. Since K is algebraically closed and A is similar to a direct sum of Jordan blocks then it
is sufficient to decompose each Jordan block. Let .J be a Jordan block of size m x m for some
m < n and ¢ is the characteristic of K. If m < 2 the decomposition is straightforward (see
Section 1 of [8]). When m > 3 and if ¢ does no divide m then decomposition of J is presented
in Lemma 2.1(i). If ¢ does divide m then decomposition of J is presented in 2.1(ii). O

The assumption of algebraic closeness of the field can be removed when dealing with nilpotent
matrices over a field for which the decomposition into Jordan blocks always holds. Let us notice
that this can be related to [10, Sec. 2] where minimal conditions for a nilpotent element in a ring
are given to admit decomposition into Jordan blocks. As a consequence, any nilpotent matrix
can be expressed as the sum of a potent matrix and a nilpotent matrix of zero square. This result
can be related to [4, Corollary 8] where any nilpotent matrix is decomposed into an idempotent
matrix and a nilpotent matrix.
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Corollary 2.4. Every nilpotent matrix over a field can be written as D+ Q, where D is a potent
matriz (i.e., D= D for a certain ¢ € N) and Q is a nilpotent matriz with Q* = 0.

Proof. Let A € M,,(K) be a nilpotent matrix over the field K. Then A is similar to the direct
sum of Jordan blocks Ji, ..., Js, each of them is associated with the eigenvalue 0. Any of these
Jordan blocks J; € M,,,, (K) is decomposed as in Lemma 2.1: J; = D; + @;. Let us define

o { i if char(K) does not divide m,,
*7 1 my — 1 if char(K) divides m;,

and let ¢ =lem{k; |i=1,...,s} + 1. Then

(éDi)q = éDf = éDi,
i=1 i=1 i=1

ie., @;_, D; is g-potent. Finally, A is decomposed into D + @ as in Proposition 2.3 and D is
similar to @;_, D;. O

It is also worth to notice that the last statement can be proved by using the rational (Frobe-
nius) canonical form [4], [10].

In what follows, Corollary 2.4 and Remark 2.9 from [8] will be substantially generalized with
the use of another approach.

Proposition 2.5. Fvery nilpotent matriz over a von Neumann reqular ring is decomposable as
the sum of a potent matrix and a nilpotent matriz of order two.

Proof. Let R be a von Neumann regular ring. Then A® is a von Neumann regular matrix for all
s € N for any nilpotent matrix A over R. Hence A is decomposed into a direct sum of Jordan
blocks (see, e.g., [10]). Each of these Jordan blocks can be represented as the sum of a potent
matrix and a zero-square matrix. In particular, it is not too hard to verify that A itself can be
represented as the sum of a potent matrix and a zero-square matrix, as asserted in Proposition
2.5. O

3. Decomposition into potent matrix and zero-square
matrix over finite fields
In what follows the following approach is used [8].

Lemma 3.1. Let K be a field, n > 3 and A € M,,(K) is the companion matriz of a polynomial
p(l‘) =a"+ Cn—lxnil + -+ cix+cg. Then

o Ifc,—1 =0 and |K| = n then A admits decomposition into D+@Q, where D is diagonalizable
with no multiple eigenvalues and Q* = 0 with rank(Q) < 1.

e Ifcho1 # 0 and |K| =2 n+ 1 then A admits decomposition into D + @Q, where D is
diagonalizable with no multiple eigenvalues and Q* = 0 with rank(Q) < 1.

In this section the following assertion which is devoted to a non-trivial property of matrices
over finite fields is considered (see Proposition 3.1 and Corollary 3.2 from [8]).

Corollary 3.2. Let K be a finite field and n € N. Then every matriz in M,,(K) admits decom-
position into the sum of an r-potent matriz, for certain 1 < r € N, and a square-zero matriz.
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Proof. Let Fy be the finite field of ¢ elements and assume that A € M, (F,). Let us consider the
decomposition of A with respect to its invariant factors. Then A is similar to the direct sum of s
companion matrices. Each companion matrix is of size m; < n, i =1,...,s. Let us take for each
companion matrix an irreducible polynomial ¢;(z) of degree m; with the same trace, and write
this block as the sum of the companion matrix C'(¢;(x)) and a nilpotent matrix of zero square
(see Lemma 3.1 and its proof). The decomposition field F' of ¢;(z) is an extension of degree m;
of F,, i.e., F = Fym;. Since matrix C(¢;(x)) is diagonalizable with different eigenvalues in F'
(finite fields are perfect), C(g;(x)) is similar to a diagonal matrix D; € M,,, (F'). Therefore,

Pl _ I if ¢;(0) # 0;
' diag(1,...,1,0), if ¢;(0) =0.

Let us define r = lem{¢™ —1|i=1,...,s} + 1. Since each D] = D; one can express A as the
sum of an r-potent matrix and a square-zero matrix. O

Actually, the more general question is whether or not every square matrix over an arbitrary
(possibly infinite) field is presentable as the sum of a nilpotent matrix and a potent matrix. Let
us notice that for finite fields this was settled independently in Corollary 3.2 and [1]. However,
the answer seems to be definitely "not" as the next example illustrates but such matrix is rather
the sum of a non-singular matrix and a nilpotent matrix (see, e.g., [11]). In particular, this fact
surely implies that the matrix over the field F, is the sum of a potent matrix and a nilpotent
matrix (compare also with Corollary 3.2 and [1]).

Example 3.3. Let us consider matrix A = 21d € M,,(R), and show that A cannot be expressed
as the sum of a k-potent matrix and an r-nilpotent matrix. Otherwise, A = Q + N with Q* = Q
and N = 0 for some natural numbers £ and r. On the one hand this surely implies that
Q = A — N satisfies the polynomial X* — X (because Q¥ = Q). On the other hand, since
0=N"=(A-Q)" =(2Id —Q)", matrix @ also satisfies the polynomial (2 — X)". This means
that minimal polynomial of  must divide both X* — X and (X —2)" but these two polynomials
have no common roots in R. Then the minimal polynomial of @ is 1. This is a contradiction.
The proof is completed.

4. Decomposition into periodic matrix and zero-square
matrix over infinite fields

To begin with, it will be shown that Question 2 is not true even over algebraically closed
fields. Let us consider the following example.

Example 4.1. Let C be the field of complex numbers, and consider the matrix A = 2Id €
M., (C). Let us assume that A = T + N, where N> = 0. Then N = A — T and, therefore,
0 = N? = (A—-T)% = 4Id + T? — 4T. This means that matrix T satisfies the polynomial
2?2 —dr+4=(z—2)%

Furthermore, it is easy to verify that characteristic polynomial of T is of the form (z — 2)™
for some n € N. Then the determinant of T is equal to (—1)"2". Consequently, T cannot be
periodic because either det(P) = 0, det(P) = 1 or det(P) = —1.

One can propose a complete answer to Question 2 as follows.

Proposition 4.2. Let F be a field. Then the next three statements are valid:
(1) If char(F) = 0 then the answer is NO.

(2) If char(F') = p and the extension of F' over its prime field F,, is transcendental then the
answer is NO.
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(8) If char(F') = p and the extension of F over its prime field F, is algebraic then the answer
is YES.

Proof. (1) The unique prime field of zero characteristic is precisely the field of rationals Q. Hence
the matrix 2Id cannot be decomposed into the sum of periodic matrix and zero-square matrix
(compare with the stated above example).

(2) There exists an element a € F' that is not algebraic over F,. Let us consider then the
matrix ald. Using the same argument as in (1), one can obtain that this matrix cannot be
decomposed into the sum of periodic matrix and zero-square matrix.

(3) Indeed, square matrix can be decomposed even into the sum of potent matrix and zero-
square matrix. Let A € M, (F). Let us consider the finite field L generated by F, and by
the entries of A. If L has more elements than the matrix size n then applying the main result
from [8], the matrix A is decomposed into the sum of a diagonalizable matrix over L and a
zero-square matrix. Otherwise, one can extend L by adding elements from F' until some finite
field L' with more elements than n is obtained. Since still A € M, (L") matrix A is decomposed
into the sum of a diagonalizable matrix over L’ and a zero-square matrix. Taking into account
that a diagonalizable matrix over a finite field is always potent and hence periodic, the proof is
complete. O

At the end of the paper let us consider the following interesting question.

Problem. Can any square matrix over the indecomposable ring Z4 be decomposed into the sum
of a square-zero matrix and a potent matrix?

Let us note that it was established in [13] that every such matrix can be decomposed into the
sum of a nilpotent matrix of order at most 8 and an idempotent matrix. So, it is rather realistic
to replace the idempotent matrix by a potent matrix and thereby to expect that the order of the
nilpotent matrix could be decreased to order 2 or, in a worse variant, to order 4.
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HEKOTOPbBIX PA3JIOZKEHMNAX MaAaTPHAI, HAa/ aﬂre6paﬂquKM

3aMKHYTbBIMA 1 KOHE€YHbIMMU I10JIsIMU

Ilerp /lanyesn
WNucruryT MmaremaTruku n nuandopmMmarukn bojrapckoil akajieMun HayK
Codus, Boarapus

Awunorarusi. Mbl J0Ka3bIBaeM, YTO KarkJas KBaJpaTHas MaTPHUIA HAJ aJredpandecKd 3aMKHYTBIM
oJIeM WJIM HaJ, KOHEYHBIM II0JIEM Pa3JI0KMMa B CYMMY ITOTEHTHOM MaTPHIIEl 1 HUJIBIIOTEHTHONH MaTPHIILI
MOpsIZKa 2. DTO OTIACTU TPOJIOJIKAET MCCJIECIOBAHUE M3 HaIlleil HelaBHE!l CTAThHU, OIyOJINKOBAHHON B

Linear & Multilinear Algebra (2022 r.).

MpbI Tak:Ke IMOJHOCTBIO penraeM BOIIPDOC, KOI'Zla KazK/IyIO KBa/JIPpAaTHYIO MaTpUIly Hal OECKOHEYHBLIM

I0JIeM MOZKHO PAa3JIOKUTHh Ha NMEPUOAUIECCKYIO MAaTPUNy U HUJBIIOTEHTHYIO MAaTPUILy HOPAIKa 2.

KirroueBble cjioBa: HUJIBIIOTEHTHAS MaTpulia, IIOTEHTHasA MaTpUIla, 2KOPJaHOBa HOPpMaJibHad (bopMa7

panpoHajibHast dpopma, IoJIe.
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Abstract. Three-dimensional elliptic boundary value problems arising in the mathematical modeling of
quasi-stationary electric fields and currents in conductors with gyrotropic conductivity tensor in domains
homeomorphic to the spherical layer are considered. The same problems are mathematical models of
thermal conductivity or diffusion in moving or gyrotropic media. The operators of the problems in the
traditional formulation are non-symmetric. New statements of the problems with symmetric positive
definite operators are proposed. For the four boundary value problems the quadratic energy functionals,
to the minimization of which the solutions of these problems are reduced, are constructed. Estimates of
the obtained quadratic forms are made in comparison with the form appearing in the Dirichlet principle
for the Poisson equation.
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Introduction

The tree-dimensional elliptic boundary value problems with asymmetric operators arise, for
example, in mathematical modeling of quasi-stationary electric fields and currents in the global
conductor, consisting of the Earth’s ionosphere and atmosphere, using the domain decomposition
method [1]. In such models as [2], a significant simplification of the description of the D-layer
of the Earth’s ionosphere, lying at heights of 50 — 90 km, is used. It is in this layer that the
two-dimensional model, which is adequate for higher layers, is inapplicable, and the conductivity
ceases to be a scalar, as in the underlying atmosphere. Therefore, in this layer, bounded by two
surfaces close to concentric spheres, it is necessary to solve a three-dimensional problem of current
continuity with a gyrotropic conductivity tensor. Within the framework of the decomposition
method [1], the boundary conditions arise at the selected boundaries of subdomains. In the case of
interest to us, they are mixed: the condition of ideal conductivity at the upper boundary of the D-
layer and the condition on the ideal insulator on the bottom. Both conditions are heterogeneous.
This boundary value problem is studied in detail in this work. For three problems which differ
from the main problem by the boundary conditions, the necessary changes in the formulations

*denisen@icm.krasn.ru  https://orcid.org,/0000-0002-3024-3746
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and proofs are described. We use the approach previously used for the problem in a simply
connected domain with a given normal component of the current density on the boundary [3].

Note that mathematical models of thermal conductivity or diffusion in moving media can be
reduced to the same boundary value problems [4,5], and the equations of heat conduction or
diffusion in stationary gyrotropic media differ from the electric current continuity problem only
in notation.

In the present work, the quadratic energy functionals are constructed, which makes it possible
to reduce the solution of the boundary value problems for a three-dimensional elliptic equation
with asymmetric coefficients to minimisation of functionals. It is shown that the energy norm
is equivalent to the norm of the space WQ(”(Q). The corresponding estimates are obtained with
specific values of the constants that will allow us to estimate the condition number of the matrix
of a system of linear algebraic equations, which will arise in the numerical solution of the problem.

1. The electric current continuity problem

In the three-dimensional domain 2 occupied by a conductor, the electric field strength E
and the current density J in the quasistationary approximation satisfy Faraday’s law, charge
conservation law and Ohm’s law:

rtotE=G, divI=Q, J=0E, (1)

where G # 0, if there is a given magnetic field that varies with time, Q) # 0, if there are external
currents, ¢ is the conductivity tensor. We assume that the norms of the given functions, @ and
the Cartesian components of G, are bounded in the space Ly(£2). All vectors in this paper are
considered as column vectors, which are transformed into row vectors by transposition, denoted
by the symbol *. The system (1) with proper boundary conditions is referred to as the electric
current continuity problem [6].

The conductivity of some substances in a magnetic field, for example, plasma in the Earth’s
ionosphere, is a gyrotropic tensor. In Cartesian coordinates x,y, z with the z axis directed along
the magnetic induction vector, the conductivity tensor has the form:

o, —o, O
o=\ o0, o, 0 |. (2)
0 0 o

Its components are called field-aligned (o), Pedersen (o, ) and Hall (o) conductivities [6].

P
We also use the Cowling conductivity

oo = (0% +02)/o,.

In the article [3] a more general form of & is considered. Here we use the form (2), to
obtain more accurate estimates which are important for the numerical solution of the problems.
Since the passage of electric current is accompanied by dissipation of the electric energy with
density J*E, the symmetric part of & is positive definite. For a tensor of the form (2), this
means the positiveness of the diagonal elements. Excluding ideal conductors and insulators
from consideration, we assume uniform in the domain 2 boundedness of all coefficients of & and
uniform positive definiteness. It is convenient to write these conditions in the form:

o1 <o, < 09, o1 <o, <o, (3)
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where o1, 09 are positive constants.

We assume that the domain € is bounded and homeomorphic to the spherical layer. Its outer
I' and inner + boundaries are twice continuously differentiable surfaces homeomorphic to the
sphere. Normal (positive outward direction) and tangent to the boundary components of vectors
are marked with indices n and 7.

To carry out all the proofs by simple means, we assume the convexity of the surface I and the
boundedness of the curvature of v. We also consider the differences of both surfaces to be limited
from two spheres with a common center and not too different radii. We will give a concrete form
to all these restrictions in Section 2.

As the main problem, consider a problem with boundary conditions arising in mathematical
modeling of the D-layer of the ionosphere [1]. If the domain under consideration borders on an
ideal insulator, then at the boundary, the normal component of J equals to zero. On the border
with the ideal conductor the tangent components of E equal to zero. The conditions can be
heterogeneous:

Inly = 4, E;r=g, (4)
where ¢, g are given functions. Assume that the norms of these functions are bounded in the
spaces Lo(T') and Lo(7y), respectively, that is, the boundedness of the integrals of the squares of
the moduli of these functions over the surfaces on which they are given.

For the solvability of the problem (1), (4) the right-hand sides must satisfy some constraints.
First, it is necessary

divG =0, (5)

since div of rot is identically equal to zero, and without (5) the first equation (1) cannot hold.
Let us calculate the components of rot normal to the boundary from the left and right sides
in the second boundary condition (4):

rot, E; [r=rot, g |r .

The resulting left side also satisfies the first equation (1). This imposes on the given functions
the second condition necessary for the solvability of the problem

Gn |F: rot, g |F . (6)

In Section 4, a new problem will be formulated with an conjugately factorized operator by
definition [7], the solution of which is the solution to the original problem (1), (4). The existence
of the solution to the new problem implies the existence of a solution to the original one, but
the uniqueness must be proven independently. It does not differ from the proof given in [3] for
the problem in a domain homeomorphic to a ball. Heuristic considerations are also given there,
allowing us to propose a new formulation and to construct a quadratic energy functional.

2. The energy scalar product

We consider the set of pairs of smooth functions F', P, satisfying the conditions:
Flr=0, P,|r=0, P,[,=0. (7)

We denote with square brackets the symmetric bilinear form:
[ LoSer a8
U ’ F _ / grad u o OA' o) O'A grad F' +divvdivP | do, (8)
v P rotv —S6* a,S rot P
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where u, v and F, P are the pairs of smooth functions satisfying conditions (7), Sisa symmetric
positive definite matrix, which we will choose later, as well as the value of the positive constant .
This bilinear form will be used as the energy scalar product. Let us check that it has the necessary

properties for this.
Consider the corresponding quadratic form. We start with the auxiliary integral

/(grad F)*rot P dSQ. (9)
We transform the integrand:
/(div (FrotP) — Fdivrot P) dQ.

The second term is identically zero. The remaining integral is transformed using the Gauss—

Ostrogradsky theorem:
7{ Frot,Pdl' + ]{ Frot,Pdy.
r v

Both integrands are equal to zero due to the first and third conditions (7), respectively.
Therefore, the integral (9) is equal to zero, and therefore it can be added with any coefficient to
the corresponding (8) quadratic form without changing its value.

The matrix appearing in (8) is degenerate, since its upper blocks are obtained from the lower
ones through multiplication by —§/0,. By adding the doubled integral (9) the matrix of the
integrand quadratic form becomes equal to

JEp P co T
=656 —6S+1
K= %9 . . ,
—S6*+1 0,95,
where I is the identity matrix.
To get more accurate estimates than in [3]|, we use a special form & (2) and constraints (3),
taking
o, =\/0102, St=(6+5%)/2. (10)
With this choice, S is a diagonal matrix, and the symmetric matrix K in the same local
Cartesian coordinates as (2) takes the form:

q

e 0 0 0 % 0
0 - - P
0 Ze 0 -2 0 0
0 o P
. o o L o o0 o0
- o o o

0o -2 o0 = 0 0
o P P [og
0 0 0 = 0
P P o
o o0 o0 0 o0 2

The eigenvalues of the matrix do not change with the simultaneous permutation of rows and
corresponding columns. This allows us to reduce the matrix K to a block-diagonal form with
blocks

9¢ Iu 9%¢ %

% Op T Tp 9 % (11)
Oy g, ’ _OH g, ’ 007 o'”

o, O, o, O,
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The eigenvalues of the two matrices are equal. The bigger of them \,,,, does not exceed the

matrix trace that is equal to

CTC
<+
UO

o

Op

Due to (3), the eigenvalues of blocks and the last two numbers (11) do not exceed

)\ma$§2\/(1’2/0'1. (12)

The determinants of the blocks (11) are equal to one, which means that smaller eigenvalues

)\min — 1/)\max 2 V 01/02/2~ (13)

Since the eigenvalues are not changed when the coordinate system is rotated, the parameter
(12) for all points of the domain €2 estimates the eigenvalues of the matrix K from above, and
the inverse value from below. Therefore, the condition number of the matrix K does not exceed
40’2/0’1 .

By adding an auxiliary integral (9), we have not changed the value of the quadratic form (8).
Therefore, from (12), (13), the upper and the lower estimations follow:

[( ﬁ )( ﬁ H S \/?/«gradF)Q + (10t P)? + (div P)?) dQ2, (14)
[( i > ’ < g >} > \/g/((gradF)z + (rot P)? + (divP)?) dQ. (15)

Now consider the functions F' and P separately in order to estimate the right-hand side (15)
from below. Since the function F is equal to zero on the surface I' (7), it satisfies the Friedrichs
inequality

/F2 dQ < ¢ /(grad F)2dQ, (16)

where the constant ¢g is determined only by the shape of the domain and does not depend on
the specific function F. Usually this inequality is formulated for functions equal to zero on the
entire boundary, however, it suffices equality to zero on a segment of finite area (the theorem
on equivalent norms [8]). For the spherical layer under consideration, it is possible to obtain a
specific value of the constant ¢y by the same method, which is used for the more complex case
of vector functions in [9].

In [9] for the functions P satisfying the boundary conditions (7), the following inequalities
are proved

/|P|2dQ < c1/|gradP|2dQ, (17)
02/|gradP|2dQ < /((rotP)2+(divP)2)dQ, (18)

where |grad P|? is the sum of the squared moduli of the gradients of all Cartesian components
of P, and the constants c1, co are determined only by the shape of the domain 2 and do not
depend on the specific function P.

The first inequality is similar to the Friedrichs inequality for the scalar functions which are
equal to zero at the boundary. If the entire vector P is equal to zero at the boundary, for each
of its Cartesian components one can use Friedrichs inequality to obtain the required inequality.
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However, of interest are the functions with only normal or only tangent components equal to
zero at the boundary. In [10], both inequalities were proved for the functions with one of these
conditions posed at the entire boundary of an arbitrary multiply connected domain. For mixed
boundary conditions (7) new proofs are required.

To restrict ourselves to simple means, in [9] the additional restrictions are imposed on the
domain shape: convexity of the surface I' and bounded curvature of +, and also the limited
difference of both surfaces from two spheres with a common center and not too different radii.
Let R denote the minimum radius of curvature of v. Let the surfaces I' and v be defined in
spherical coordinates using the functions Rr (¢, ) and R+ (6, ). We assume that

0< Ry <R7(9,np) < Ro, O<RF(9,§0)—RV(9,§0) < OR,

and the constants R, Ry, Ry, R will be subject to one more general restriction.

Another condition limits the angle between the boundary normal and the radial direction at
each point. Let us write it down in a convenient form as a constraint on the radial component
of the unit vector of the outer normal:

Ner 2 Elv Ny 2 51-

We also require that the scalar product of the normals n. and n_, calculated on one ray is

positive:

~ )

n.(0,¢)-n (0,0) 2 & > 0.
Then the constant obtained in [9],

2R25R
=" e (19)
The inequality (18) makes sense only for positive cg, which gives one more general constraint
on the values of geometric parameters. In mathematical modeling of the D-layer of the iono-
sphere, this condition is satisfied by a large margin: the fraction in (19) is less than 0.02. If the
boundaries v and I" are the spheres with radii Ry and Ry +0R, then Ro = R=R1, §&1 =& =1,
and the only condition 20 R < R; is enough.
Denoting by ¢4 the lesser of the constants 1/cg, ca/cy in the inequalities (15)—(18) we obtain
an inequality that means positive definiteness of the bilinear form (8)

Kf;)(g)] 204\/?/(F2+|P|2)d9.

The same set of inequalities gives a lower estimate for (8) in terms of the sum of the squares
of the norms of F' and the Cartesian components of P as elements of the space WQ(I)(Q).
It is easy to prove the inequality:

3
(rot P)* 4 (divP)> < 3 ) _ |grad P|*. (20)
i,j=1
We expand the expressions on the left, immediately replacing the products with the sums of
squares, without decreasing the value of the entire expression. Bringing similar terms, we get

the sum, in which the squares of all derivatives of all components of the vector P enter with the
coefficients 2 or 3, while on the right-hand side (20) they all appear with coefficient 3.
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With (14) and (20) the energy norm is estimated in terms of the same norms of F; P from
above.

The upper and lower estimates mean the equivalence of the introduced energy norm to the
norm of the space Wz(l) (Q). In particular, this allows for the numerical solution of the problem
to use the same approximating functions, as for the Poisson equation.

3. The energy functional

In accordance with the energy method [11], we define the energy functional:

W(F,P):% K f; >( g )] —Ulo/FQdQ—/P*Gdﬁnt/FP*ngnLUlo/qudw. (21)

We use the Cauchy-Bunyakovsky inequality to estimate the linear functionals:

2 2
‘/FQdQ‘ g/F2dQ/Q2dQ, ‘/P*GdQ‘ </|P|2d9/|G|2dQ, (22)
2 2
[Faa| < [rar [ i | [prgar] < [ppar [ jgpar. (23)
vy v Y r r r

Due to the inequalities (16), (17), the right-hand sides (22) are estimated from above by
the energy norm with some factor independent of F,P. The second factors are bounded due to
belonging of @ and Cartesian components of G to the space Lo (2), specified in the formulation
of equations (1). Therefore, the first two linear functionals are bounded.

The integral |P|? over the boundary T is estimated from above in terms of the integral
|grad P|2 over the domain © in [9]. It is not difficult to estimate in a similar way the integral of
F? over the boundary 7 in terms of the integral of |grad F'|?. Since the functions F', P from the
energy space are elements of WQ(I)(Q)7 the right-hand sides of the inequalities (23) are estimated
from above by the energy norm of the pair of F, P with some factor independent of F,P. The
second factors in (23) are bounded due to ¢ and Cartesian components of g belonging to the
spaces Lo(I") and Lo(7), respectively, which was as agreed in the formulation of the boundary
conditions (4). This means that the last linear functionals in (21) are also bounded.

By F. Rees’s theorem, any bounded linear functional can be represented in the form of a scalar
product by some uniquely defined element of Hilbert space. Therefore, the energy functional (21)

T e G)E)

where a, b is some element of the energy space.
This expression can be transformed by highlighting the square of the difference:

ver=s(eo ) ()] e l(6) () e

The second term does not depend on F,P, and the first is positive definite. Therefore the
minimum of W (F,P) is attained at F' = a, P = b.

Since the element a, b belongs to the energy space and is defined uniquely, it is proved that
in the energy space there exists, and the only one, an element that supplies the energy functional
with a minimum value.
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4. The generalized solution
Let us introduce the notation

1 A ~
E=-——2S5"grad F + Stot P, J = GE, (25)

00

where F, P are the functions which provide the minimum value to the energy functional. Let us
prove that these J, E are the solution to the original boundary value problem (1), (4).

The condition for the minimality of the energy functional, taking into account the nota-
tion (25), can be written as an identity valid for arbitrary smooth functions u, v satisfying the
conditions (7):

/ (— (gradu)*J /oo + (rot v)*E + divvdivP — uQ /oy — v*G) dQ +

1
+f/uqd7+/v*gdf. (26)
00 J, r

If we additionally assume the smoothness of all functions, we can use integration by parts,
for transformation of this identity to the form:

L u(diVJ*Q)dQﬁ*/V*(I‘OtE*G)dQ+/diVVdiVPdQ +
o0

1
+— [ u(=Jp+q)dy+ / v (-E;+g)dl' =0. (27)
g0 v r

Take u = 0 and the function v of the form
v=gradV, V|r=0, V|,=0. (28)

Then the identity (27) takes the form:
/(grad V)*(rotE — G) dQ) + /div grad V div P d§2 = 0. (29)
The first integral by the Gauss—Ostrogradskii theorem is
?g V(rotE — G), dl' + f V(otE — G), dy — /V(divrot E + div G) dQ2.
v

The integrands are equal to zero, since V is equal to zero at the boundaries ', v due to (28),
divrot is identically zero, and the function G satisfies the condition (5).
Therefore, from (29) we obtain the identity

/ divgrad VdivP dQ2 = 0,

which is valid for any function V equal to zero on the boundary.

This identity allows us to prove the equality to zero divP in the usual way. Assuming the
opposite, take a point in £, where div P # 0, and its neighborhood, where div P is sign-preserving.
We construct V' as a solution to the Dirichlet problem for the Poisson equation with the right-
hand side, equal to 1 in the selected neighborhood, and zero for the rest of 2. Substituting such
a function V', we obtain the nonzero value of the last integral, which contradicts the identity.
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Proving that
divP =0, (30)

the third integral in (27) can be eliminated. After that, using the arbitrariness of the functions
u, v, it is easy to prove that all factors for u, v are equal to zero. Since E and J are used in the
present section only for the abbreviated notation of the expression (25), the following equations
are fulfilled:

1,4 1
div <—26Sfr*gradF+ &SrotP) =Q/oy,
00

90
1 - ~
rot (—S&*gradF+Srot P> =G, (31)
o0
1 4., 1,4
(—2050 grad F' + —&Srot P> =q, (32)
o 90 nly
1 .. .
(—Sa*gradF + Srot P) =g. (33)
g0 TIT

The converse statement is also easy to prove: the solution of the problem (30)—(33), (7) gives
the minimum value in the energy space to the energy functional. Indeed, let F, P be a solution
to this boundary value problem. Let us write down the energy functional for the sum of the
functions F' + tu, P + tv, where ¢ — an arbitrary number, u, v are smooth functions satisfying
the conditions (7):

W<F+tu,P+tv>=W<F,P)+t;[<3)(3””([(3)’@”_

—/(uQ/mH—v*G)dQ—l—/uq/aod7+/v*gdf> . (34)
¥ r

Since F,P is a solution to the boundary value problem, the identity (27) is satisfied for
arbitrary u,v. By integrating by parts from (27) we obtain the identity (26), which means
equality to zero of the factor of ¢ in the square trinomial (34).

The coefficient of ¢2 is positive, since the positive definiteness of the energy quadratic form
has been proved, and we are interested in u, v, which are not identically zero. Therefore

W(F +tu,P +tv) > W(F,P),

and equality is obtained only for ¢ = 0, that is, the minimum of W is attained at the element
F.P.

As can be seen from (27), the constructed functions E and J satisfy equations and boundary
conditions of the original boundary value problem (1), (4). As already noted, the uniqueness of
the solution is proved in almost the same way as in [3].

Thus, we have proposed a new formulation of the problem (30)—(33), (7), which, unlike the
original problem, has a symmetric positive definite operator.

At the beginning of the section, an additional smoothness assumption was made. If this
condition is not satisfied, the identity (26) cannot be transformed into (27). In this case, the
pair of functions F, P, providing the energy functional the minimum value, we consider as the
generalized solution to the problem (30)—(33), (7), and the pair E, J constructed from them by
formulae (25) is the generalized solution of the original problem (1), (4).
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The existence and uniqueness of the generalized solution of the problem (30)—(33), (7) have
been proved, therefore the existence of the generalized solution of the original boundary value
problem (1), (4) is proved, and the principle of the minimum of the energy functional is substan-
tiated for it.

5. Other boundary value problems

Consider three problems which differ from the main problem by the boundary conditions. In
the first problem, we swap the parts of the boundary v and T in the boundary conditions (4).
Then, naturally, the condition of the form (6), that is necessary for the solvability of this first
problem, is moved to 7.

As described in [3] and demonstrated above when constructing the generalized solution (26),
the conditions for the set of pairs of smooth functions F, P, are the conjugate ones to the
boundary conditions of the original problem. Therefore, in the conditions (7) and in the energy
functional, all changes are limited to the permutation of v and I'. Note that the value of the
constant in the inequalities (17), (18) [9] varies.

As the second boundary value problem, consider the domain 2 surrounded by an insulator.
Then the first of the conditions (4) is set on both sections of the boundary v and I'. From
the charge conservation law, integrated over the entire domain, a necessary condition for the
solvability of this problem arises:

/QdQ—Aqdv—Aquzo. (35)

The conditions for the pairs of functions F', P (7) take the form
P, |r=0, P.[,=0, /FdQ =0. (36)

The last condition is the conjugate one to the condition (35). It has to be added, since
without the equality F' = 0 on the boundary that was in (7), the Friedrichs inequality cannot
be used for the function F. The inequality (16) with a different constant is now fulfilled as
Poincare’s inequality. The condition in question can be replaced by fixing some other average
value of the function F, for example, the average over « or I'. Then the inequality (16) will
be true as a consequence of the equivalent normalization theorem [8]. In fact, such a condition
should eliminate the ambiguity of the solution corresponding to the addition of an arbitrary
constant to F. Inequalities (17), (18) for the vector functions P whose tangent components are
equal to zero on the whole boundary (36), were proved in [10] for bounded multiply connected
domains of general form, however, without specifying the values of the constants.

The third boundary value problem describes the domain €2 surrounded by an ideal conductor.
Then, on both sections of the boundary v and T', the second of the conditions (4) is set. In
contrast to the second boundary value problem, the additional solvability condition does not
arise. It would arise if the domain 2 is, for example, a torus, in which this problem has a nonzero
solution for zero right-hand sides. For isotropic constant conductivity in an axisymmetric torus,
this would be an azimuthal electric field, not changing with displacement in the direction of
the axis of symmetry and decreasing in inverse proportion to the distance to the axis, and the
current density proportional to it. Of course, the nonzero Joule dissipation of such a current
system must be compensated by some external sources. In this example, the energy source is a
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time-varying magnetic field in the domain encompassed by this torus. For multiply connected
domains of general form, the ambiguity of solutions to similar problems is analyzed in [10].
The conditions for the set of pairs of functions F', P in the third boundary value problem
have the form
F|lyr=0, P,|,r=0.

The inequality (16) for the function F' remains the Friedrichs inequality, and for the vector
functions P with zero normal component on the entire boundary the inequalities (17), (18) are
also proved in [10].

Thus, for three boundary value problems, new formulations of problems are proposed, which,
in contrast to the original problems, have symmetric positive definite operators, and the principles
of the minimum of energy functionals are justified for them.

Taking into account the notation (25), with the tensor S chosen in accordance with (10), the
quadratic form, corresponding to the energy scalar product (8) can be written in terms of the
original electric current continuity problem (1), (4):

1 * : 2
- (E*J + (divP) ) ds). (37)

The product E*J is the Joule dissipation density, that is, heat release accompanying the
passage of the electric current. Since the minimization of the energy functional means satisfaction
of the equality (30), the quadratic form (37) is equal to the total Joule dissipation in the domain
Q, which justifies the name "energy". Thus, the introduced energy norm makes sense from the
point of view of nonequilibrium thermodynamics.

This work is supported by the Krasnoyarsk Mathematical Center and financed by the Ministry
of Science and Higher Education of the Russian Federation in the framework of the establish-
ment and development of regional Centers for Mathematics Research and Education (Agreement
no. 075-02-2020-1631).
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SHepI‘eTI/I“IeCKI/Iﬁ MeTod AJId SJIJIAIITUNYEeCKHNX KpPpaeBbIX 3a/a4
C HeCUMMETPpUYIHbIMU OIllepaTopaMM B IIIapOBOM CJIOe

Banepwnit B. /lenucenko

Cemen A. Hecrepos
WNucturyT BeraucaunreasHoro mojenupoanns CO PAH
Kpacnosipck, Poccuiickaa Penepariust

Amnnoranusi. PaccMoTpeHbl TpeXMepHBIE SJUITUITHYECKIE KPaeBble 3a/1a11, BO3HUKAIOIINE [IPU MaTeMa-
TUYIECKOM MOJEJTUPOBAHUY KBA3UCTAIIMOHAPHBIX JIEKTPUYECKUX IMOJIEHl U TOKOB B IPOBOJIHUKAX C THPO-
TPOMHBIM TEH30POM IIPOBOJIMMOCTHU B 0BJIACTAX, TOMEOMOP(MHBIX IMAPOBOMY CJIOI0. AHAJOTUYHBIE 38491
GbOPMyYJIUPYIOTCSI IPU MOJIEJIMPOBAHUYU TEILIONPOBOIHOCTH i Juddy3un B ABUKYIIUXCS WJIA TUPO-
TpomHbIX cpenax. OmepaTopsl 3a/ad B TPAJUITHOHHON (DOPMYIUPOBKE SIBJISTFOTCS HECUMMETPUYHBIMU.
IIpenmoxkennsr HOBBIE (POPMYJIMPOBKH 33/1a9 ¢ CHMMETPUIHBIMU TOJOKUTEIHHO OMPE/IETEHHBIME OITe€Pa-
Topamu. s geThIpex KpaeBbIX 3aji@d IHOCTPOEHbI KBaJpATHIHbIE (PYHKIMOHAJBI SHEPIUNA, K MUHUMH-
3aI[Ui KOTOPBIX CBEJIEHO PEIIeHNe 3TUX 3aJ1a49. BBITOTHEHBI OIEHKN MOJTyIYeHHBIX KBaIPATUIHBIX (HOPM
B cpaBHeHNH ¢ GOPMOii, durypupyromieit B npunnune upuxsie mis ypasuenus llyaccona.

KirroueBblie cjioBa: MareMaTHyecKoe MOIeJMpoBaHue, SHepI‘eTI/I‘—IeCKI/Iﬁ METO/L, IJIJIMIITUICCKOE YpaBHE-
Hue, HeCI/IMMeTpI/I‘IHI)Iﬁ oreparTop.
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Introduction

Nonassociative structures in modern algebra is not only mathematical curiosity but actively
developed direction. The subtraction on a set of integers is not associative. Indeed, 3—(2—1) = 2,

b
and (3—2)—1 = 0. On the set of real numbers we introduce the averaging operation axb = a _2|_ ,
then ,
at
=5 tc
b =2
(a*b)*c 5
and ,
a+ Y
ax(bxc)= 2

The vector product in three-dimensional space is nonassociative. Recall that
a x b= (a2bz — asby, azby — aibs, a1by — azby),

where a = (a1,a2,a3) and b = (by, by, b3) are three-dimensional vectors.
Multiplication of octonionic imaginary units, see Tab. 1, does not have the property of asso-

ciativity.
Therein
2= 2= %= 1.
Jz=2"T;
hqJ) = (gh)T, (hT)q = (hq")T, (hT)(qT) = —q"h,
*fdp@bk.ru

© Siberian Federal University. All rights reserved
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Table 1.
1 2 J 1] J 1J JJI WJT
1 1 ? J 1] J 1J JTI WJT
7 ? -1 2 —J 1] -J —=JJ JTJ
J J —J -1 v JJT WJT -J —uJ
1J 1J J —1 -1 JJ -JJ WJ =T
J J =g =JJ —JT -1 7 J 1J
WJ WJ J —=JT JTJ —1 -1 —1J J
JJ | JT 1J T J —J —J 1] -1 —1
WJI | WJT —JT 1J J —uJ —J 1 -1

where z is an arbitrary complex number, and h, g are quaternions. Also z* and ¢* are conjugate
quantities, see, for example, [1]. If we add a fourth imaginary unit W with the property W? = —1
and expand the system of relations

2=Jr=g2=02=_1,
Jz=2"T;
h(qT) = (gh)T, (hT)q = (hq*)T, (hT)(aT) = —q*k;
o(pW) = (po)W, (oW)p = (op™ )W, (oW )(pW) = —p~o;

then we get a set of sedenions, therein o,p € Q. These are hexadecimal numbers. Thus we have
a sequence of embeddings of hypercomplex number systems

RcCcHcCcOcCSC...,

obtained one from the other using the Cayley—Dickson doubling procedure. Here R and C are
fields of real and complex numbers, respectively, H is algebra (body in Russian) of quaternions,
O is analytic Moufang loop of octonions, see for example [2], and S is loop of sedenions.

In Sections 1 and 2 we recall the basic concepts from the theory of quasigroups, and also
point out the close relationship between quasigroups and finite automata. The application of FA
in the theory of periodic groups was discussed in the article [3].

In Section 3 we discuss the reductant of the dihedral group D,, consisting of axial symmetries.
Thus, we illustrate the main ideas proposed in [4]. Following Sabinin we call by a reductant an
arbitrary subset of a group. Very close questions are discussed in the paper [5], where twisted
subsets of the dihedral group are considered. The authors of the paper call a subset K of the
group G twisted if e € K and zy~ 'z € K for all 2,y € K. An example of a twisted subset in
D,, is given by the involutions together with the unit.

In section 4 we show that the sphere S? is a reductant of the group SU(2, C).

1. Quasigroups
The set @, considered together with some binary operation *, will be called a groupoid (or
magma) (Q, ).

Definition 1. The groupoid (Q, ) is called a quasigroup if for any elements a and b of the Q
equations
axxr=>b yxa=>=

are always uniquely solvable.
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The Definition 1 is equivalent to the invertibility of the % operation on the right and left, see,
for example, [6, Chapter I]. In the finite-dimensional case this means that each row and column
of the Cayley table of the groupoid (Q, *) are permutations of elements from . The quasigroup
(@, *) with a unit will be called a unital quasigroup or a loop. Note that in the definition of a
quasigroup, the binary operation, in general, does not require associativity. In other words, a
finite quasigroup is a nonassociative Latin square.

By a reductant R of the group (G,o) we will call any subset of it. We introduce, quite
naturally, the law of composition on R, see, for example, [4].

my * mg = proj (my o ma),

where m, and mso are arbitrary elements of R, and proj : G — R is a projector on a reductant.
We know this concept from the works of Sabinin.
In this paper we show that if we consider the set of axial symmetries in the dihedral group
D,, as R, and arrange proj as
pI'Oj *Tonk/n — Mak/n,

kE=0,...,n—1, then R will be endowed with the unital quasigroup structure. Here 7, is a
counterclockwise rotation of ¢, and m, is an axial symmetry relative to a straight line with an
angle of inclination .

2. Quasigroup on a finite automaton
Let K4 be a complete graph, whose numbered vertices are represented by beads moving along

the edges. The symbol 0 denotes an empty position where any of the beads can be moved. Fig. 1
shows the complete graph Ks.

Fig. 1

Let A = (Q,A,d,q0,F) be a deterministic finite automaton with the transition function
0:QxA = @, and S = (Q,A,0d) be a semiatomaton see, for example, [7]. Consider
a semiautomaton S whose state set () coincides with the permutation group Sy of vertices
{1,2,...,d—1,0} of the graph K, and the input alphabet A is equal to the set {1,2,...,d—1}
with 0 : (s,j) — o, where the permutation o € Sy is equal to s up to the permutation of the
elements j and 0, j =1,2,...,d— 1.

For d = 3 we get the graph, which can be depicted in the way shown in Fig. 2.

Here a, b, ¢,d, e and f are elements of the symmetric group Ss, where a = (1,2,0), b= (1,0, 2),
c=1(0,1,2),d = (2,1,0), e = (2,0,1), f = (0,2,1). It is easy to see that the set S = {a,c, e}
is a normal subgroup in S5. On the set of involutions R = {b,d, f} C S3 we can introduce a
quasigroup multiplication by the rule

m; * m; = proj (m;m;),
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Fig. 2

where proj is the projection operator on R along the Hamiltonian cycle highlighted in red in
Fig. 2, and m;m, is the product in the group S3. We get a nonassociative multiplication table
(Tab. 2).

Table 2.

S ST N

b d
b d
fob
d_f

- R/ T ¥

Indeed, different ways of placing parentheses lead to different results (fd)b = d, and f(db) = b.
We have obtained a third-order quasigroup.

3. Reductant of a dihedral group

Consider a regular n-gon. The group of its symmetries (dihedral group) consists of a subgroup
of rotations S = {715} and axial symmetries R = {myp/n}, ¥ = 0,1,...,n — 1 which are
represented by matrices

cos2mk/n  —sin2wk/n
( sin2rk/n  cos2wk/n ) ’

and
cos 2rk/n sin 27k /n
sin27k/n  —cos2nk/n

respectively. It is easy to see that the projector proj : S — R just throws the minus sign in the
second column from the first row to the second. More strictly, the projection is carried out by
multiplying the rotation matrix by the Pauli matrix on the right:

i ( ) = cos2mk/n —sin2wk/n 1 0
PrOJ{Tamk/n) = { * gin 2rk/n  cos2mk/n 0 -1

[ cos2mk/n sin 27k /n
~\sin27k/n  —cos27k/n
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Obviously, proj? = id, where id is an identical transformation. Multiplying the matrices of two
axial symmetries, we get

( cos 2k /n sin 27k /n ) ( cos 2wl /n sin 27l /n )

sin2wk/n  —cos2nwk/n sin2xwl/n  — cos2wl/n

B ( cos2m(k —1)/n  —sin2n(k —1)/n )
~ O\ sin2r(k—10)/n  cos2w(k—1)/n )’

Let 0 < a < m, then my = myyq and m_q = my_qo. If K —1> 0, then

Mak/n * Mei/n = Mry(k—1)/n>
if k—1<0, then
Mayk/n * Myi/n = Mg(ndk—1)/n-

Let’s write out the multiplication table of the axial symmetries of the dihedral group D,
(Tab. 3). For more elegance, instead of my/y, k € ZN[-n+1,n— 1] we will simply write the k.

Table 3.
* 0 1 2 3 4 5 ... n-1
0 0 n—-1 n—-2 n-3 n—4 n-5 1
1 1 0 n—1 n—2 n—-3 n—4 2
2 2 1 0 n—-1 n—2 n-3 3
3 3 2 1 0 n—1 n-—2 4
4 4 3 2 1 0 n-—1 5
5 5 4 3 2 1 0 6
n—1|{n—-1 n—-2 n-3 n—-4 n—-5 n—=6 0

4. S? sphere

Calculate the product of the points w = (wy,ws,ws) and v = (vy,vs,v3) from sphere S? C
SU(2,C) represented by complex matrices

1w —W2 — W3 11 —Vg — 1U3
w2 — W3 —1W1 Vg — W3 —1W
_ ( —(w, v) + 1(wavg — W3v2) —(w3vy — wrvs + 1(wive — wav1)) )

w3v] — w3 — t(wrve — wavy)  —{(w,v) — 1(wavsz — w3va)

_ ( So+16r —(&2 +3) )
§a — 183 &o — 161

=&

where the norm of a vector ||(&,&1,&2,&3))||rs coincides with the determinant of the matrix &
and is equal to one (||| =det& =1).
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Now we project £ € SU(2,C) back onto the reductant. To do this, we will twist the £ as
follows:

0 a— b & —1&3 §o — 1
( alo — b&1 +2(ady +b8o)  —(ala — b3 +1(ad3 + bE2)) )

<a+zb 0 )(§0+Z§1 —(§2+Z§3))

aky — b&z —1(a&s + b&2) a&o — b&y +1(a&y + &)

_( mot+wm —(n2+u)
M2 — U3 Mo — M

where a? + b* = 1. We are looking for a and b such that 1y = 0 (a&, = b&;) and

L=ni+n5+n5
= (a&1 + b&o)® + (a&a — b€3)? + (a&s + b&2)?
=a’(1-&)+ b (1+&).

Some location configurations of an arbitrary ellipse and circle a? + b> = 1 are shown in Fig. 3.

OC

Fig. 3

The solution of the system

a®(1-&3) + (1 +€7) =1,
a?+b =1

have the form

b= —VI—a?, a?—140, & =-—2%0_.
b= —V1-@, a®— 140, &=
70, & i

b=+/1-a2 a®>—1#0, :—7(150 ;
V #0, & —

b=+1-a2 a®>—1#0, :ai&);
#0, & T

a=—1, b=0, &=0;
a=1, b=0, &=0.

- 571 —



Dmitry P. Fedchenko, Vitaly A.Stepanenko. .. On Reductants of Two Groups

This work was supported by the Krasnoyarsk Mathematical Center and financed by the Min-
istry of Science and Higher Education of the Russian Federation in the framework of the establish-
ment and development of regional Centers for Mathematics Research and Education (Agreement
No. 075-02-2020-1631).

References

[1] N.Jacobson, Lie algebras, Courier Corporation, 1979.
[2] A.L.Maltsev, Analytic loops, Matematiceskij sbornik, 78(1955), no. 3, 569-576 (in Russian).

[3] S.V.Aleshin, Finite automata and the Burnside problem for periodic groups, Math. Notes,
11(1972), 199-203. DOI: 10.1007/BF01098526

[4] L.V.Sabinin, Loop geometries, Mathematical notes of the Academy of Sciences of the USSR,
12(1972), no. 5, 799-805. DOI: 10.1007/BF01099069

[5] A.L.Myl'nikov Minimal non-group-like twisted subsets with involutions, Siberian Mathe-
matical Journal, 48(2007),no. 5, 879-883. DOI: 10.1007/s11202-007-0090-5

[6] V.D.Belousov Foundations of the theory of quasigroups and loops, Nauka, Moscow, 1967
(in Russian).

[7] A.Ginzburg, Algebraic theory of automata, Academic Press, 2014.

O peayKraHTaX AByX I'PYIII

Jmvurpuii I1. Peguenko
Burannii A. CrennaneHko
Pycram B. Bukmyps3una

BukTopus B. Ucaesa
Cubupckuii deiepalibHbIi YHUBEPCUTET
Kpacnosipck, Poccuitickas ®enepartust

AnaHoTanusa. B pabore paccMaTpuBaioTCs peLyKTAHT JAIPAJILHON rpynibl [y, COCTOSIINAN U3 MHOYXKe-
CTBa OCEBLIX cuMMeTpHit, u cdepa S? kak peaykrant rpymmnt SU(2, C) (rpymib! e MHIaHbIX KBATEPHHI-
OHOB). BBensi cabuHMHCKOE YMHOXKEHUE Ha PEyKTAaHTE U3 Dy, MBI MOJYyIUM KBA3UTPYIITY C CIUHATCH.

KuroueBrbie ciioBa: peqyKTaHTBI IPYII, KBA3UTPYIIIHL.
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Abstract. The continuous-time Markov Branching Process with Immigration is discussed in the paper.
A critical case wherein the second moment of offspring law and the first moment of immigration law are
possibly infinite is considered. Assuming that the non-linear parts of the appropriate generating functions
are regularly varying in the sense of Karamata, theorems on convergence of transition functions of the
process to invariant measures are proved. The rate of convergence is determined provided that slowly
varying factors are with remainder.
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1. Introduction and preliminaries

The discussion of the population growth model called the continuous-time Markov Branching
Process with Immigration (MBPI) which was considered in [5] is continued in this paper. Recall
that this process has simple physical interpretation: the population size changes not only as
a result of reproduction and disappearance of existing individuals but also as a result of the
random influx of "extraneous" individuals of the same type from the outside. Namely, the process
develops according to the following scheme. Each individual existing at time ¢t € T := [0, +00)
independently of his history and of each other for a small time interval (¢,¢ + ¢) is transformed
into j € No\{1} individuals with probability a;e + o(¢), and with probability 1+ a1e+ o(e) stays
to live or makes evenly one descendant (as € | 0). Here Ny = {0} UN and N is the set of natural
numbers, and {a;} are intensities of individual transformation, a; > 0 for j € No\{1} and 0 <
ap < —a1 = Y. a; <oo. Independently of these for each time interval j € N new individuals

JENo\{1}
enter the population with probability b;e+o(e), and immigration does not occur with probability
1 + boe + o(e). Immigration intensities b; > 0 for j € Nand 0 < —by = > b; < oo. Newly
jEN
arrived individuals undergo transformation in accordance with the reproductijon law generated by
intensities {a;}; see [11, p. 217]. Thus, the process under consideration is completely determined
by infinitesimal generating functions(GFs)

f(s):= Z ajs’ and g(s):= Z bjs’ for se€l0,1).

JENy JENy

*imomov _azam@mail.ru  https://orcid.org/ 0000-0003-1082-0144
(© Siberian Federal University. All rights reserved
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Let us denote the population size at the time ¢ € 7 in MBPI by X (¢). This is homogeneous
continuous-time Markov chain with state space S C Ny and transition functions

pij(t) =P {X(t) =j} =P{X(t+7)=j|X(7) =i}

foralli,j € Sand 7,t € T.
Only critical case is considered in the paper, i.e., f/(1—) = > ja; = 0, and limit behaviours
JEN

of transition functions p;;(t) as t — oo is observed. Pakes [9] was one of the first who studied

invariant measures for MBPI with finite variance and found an integral form of GF of invariant

measures. He has proved that limits 7; := tlim t*pi; (t) exist independently on j, iff 3 a;j2Inj <

oo and Y bjjlnj < oo, where A = 2¢/(1—)/f"(1-), besides the set {r;,j € S} presents an
jEN

invariant measure for MBPI. The invariant measure of MBPI can also be constructed by the

strong ratio limit property of transition functions but slightly different [7]. Namely, the set of

positive numbers {Uj = tlim Po; (1) /poo(t)} is an invariant measure. Moreover one can see a

—00
close relation between the sets {r;,j € S} and {vj,j € S}, and their GFs n(s) = Y ;5 and
jes

U(s) = > v;s?. In fact, they are really only different versions of the same limit law. So, it is
JjE€S

easy to see that U(s) = 7(s)/m(0), and this is consistent with uniqueness, up to a multiplicative

constant, of the invariant measure of MBPI.

An estimation of the rate of convergence to invariant measures is of exceptional interest.
The rate of convergence of t*p;;(t) to m; for all i,j € S was studied under the condition
max{ f"”(1-),¢"(1-)} < oo [5]. It was found that the convergence rate is O(Int/t) as t — oco.

Throughout the paper, the following Basic assumptions for f(s) and g(s) are used

ro = -e (). 1.

and

o) === 9 (1) o4

for all s € [0,1), where 0 < v,0 < 1 and L(:), £(-) are slowly varying at infinity (SV) in the
sense of Karamata (see, for instance, [2] and [10]). Basic assumptions imply that the offspring
distribution belongs to the domain of attraction of the (1 4+ v)-stable law, and the immigration
distribution belongs to the domain of attraction of the J-stable law. In the critical case assump-
tion [f,] implies that 2b := f”(1—) = oco. If b < oo then representation [f,] holds with v =1
and L(t) — b as t — oo. Similarly, GF g(s) of the form [gs] generates the immigration law with
the J-order moment. However, if ¢’(1—) < oo then assumption [gs] is fulfilled with 6 = 1 and
Lt) — ¢'(1-) as t — oc.
An additional requirement for £(z) and ¢(x) is introduced:

£ (\z)
L(z)

=1+ 0(a(z)) as z— o0 (L,]

for each A > 0, where a(z) is known positive decreasing function so that a(z) — 0 as z — oo.
In this case £(z) is called SV with remainder O(a(x)) (see [2, p. 185, condition SR1]). When
employing condition [£,] it is assumed that

alz) =0 <£(f)) as @ — oo.

T
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Similarly, the condition
¢ (Ax)
()

is also allowed for each A > 0, where

fta) =0 (

It was shown that the asymptotes of the transition functions depend on the sign of the
parameter v := ¢ — v [3]. In addition, the limit functions U(s) := tlim P(t;s) for v > 0 and
—00

=1+0(B(z)) as z— o0 [€5]

l(x)

3 as T — OoQ.
x

m(s) = tli>1rolo eTWP(t;5) for v < 0 and for some T'(t) were found.

In this paper the rate of convergence is determined provided that conditions [£,] and [¢s]
hold.

The rest of this paper is organized as follows. Section 2. contains main results. Auxiliary
statements that are used in the proof of theorems are considered in Section 3.. Proof of main
results is presented in Section 4..

2. Main results

Let us consider GF P;(t;s) := > p;;(t)s7. It is not difficult to see that (see [9])
JES

Pit;s) = (F(t;S))iexp{/Otg(F(u; 8>)d“}7 (1)

where F(t;s) is GF of Markov Branching Process initiated by single individual without immi-
gration. Since F(t;s) — 1 as t — oo uniformly in s € [0,d], d < 1 (see Lemma 1 below), it is
sufficient to consider P(t;s) := Py(t;s). Then taking into account Basic assumptions and the
Kolmogorov backward equation 0F /0t = f (F), it follows from (1) that

F(t;s)
u

P(t;s) = exp / ?EU; du p . (2)

Taking into account Basic assumptions, the integrand is

%(1u)71L(1iu), (3)

where 7 := 0 — v and
L(t) := ﬁ((?)

State space S can be classified in accordance with the sign of v. By virtue of (3), integral
1

Jlg(w) /f(u)] du converges if v > 0, and diverges if v < 0. It was shown that S is positive-
recurrent if ¥ > 0, and it is transient if v < 0. The special case v = 0 implies that g(s) = f’(s) and
L(t) — 14 v as t — oo. It is another population process called Markov Q-process (see [4], [6], [1,

pp. 56-58| and [8] for the discrete-time case).
Main results are formulated only for the case v # 0 in the following two theorems. Let

VLY
T(t) == (./\t/)(t) and T(t) := (7’(75))'“7

where AN (z) is SV defined in Lemma 1 below.
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Theorem 2.1. Let v > 0. Then P(t;s) converges to the function U(s) =
1

= exp {f [g(w)/ f(u)] du} for s € [0,1), and its power series expansion U(s) = > u;s’ gener-
s jJES

ates an invariant distribution {u;,j € S} for MBPI. The convergence is uniform over compact

subsets of [0,1). In addition, if assumptions [L,] and [(s] hold then

P(t;s) =U(s) (1 + A(t; s)lC(T(t))) , (4)

where K(x) = L7V (x)0(z), function N (x) is SVu defined in (13) below and

1 1 o (m [A(1 — $)A(t; s)]> 45t o0,
7 (A:9)"" (At 5)""

where \(t;8) = vt + A=Y (1 — s) and A(y) = y’L (1/y). The transition functions are

pi)=u; (140 (52)) et 5)

/v

A(t;s) =

where K(t) is SV.

Another asymptotic property comes out for P(¢;s) when v < 0. Taking into account Basic
assumptions, one can easily verify that

_Inpeo(t) 1

() mL(T(t)) as t — oo.

This asymptotic relation shows that (T(t))_lln poo(t) is asymptotically SV.,. Then one
should consider the limit of the function e”VP(t;s) as ¢t — oo. First one needs to consider
SV property of L(t). In accordance with the slowly varying theory, functions ¢(-) and L(:)
are positive. Then by virtue of [2, p. 185, Theorem 3.12.2 (SR1)|, one can obtain the following
propositions:

> L) < L(z)=C,+0(a(z)) as t— oo, [Cr]
> 6] = lx)=Ci+0(B(x)) as t— o0, [Cf]
where Cr, Cy are positive constants and functions a(x), 8(x) are in [£,] and [¢s5]. Then

(1)

_ _ 1)
(t) = )

C[_ + O <t5> as t — o0, (6)

since 0 < v, where Cp = Cy /C. This requirement for L(t) is quite possible. Especially, one
can obtain an “excellent result” if C; = |y| is chosen. The following explicit form of 7(s) =
limy o0 €7 WP(t; s) was found in [3]:

ol [ el

Now the convergence rate of e”(VP(t;s) to 7(s) is determined in the following theorem.

Theorem 2.2. Let v <0 and Cp = |v| in (6). If u:=26 —v > 0 then

eTWP(t;s) = 7(s) (1 + p(t; ), (8)
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where p(t;s) — 0 as t — oo uniformly in s € [0,r], r < 1, and the limiting GF w(s) can be
expressed in the form given in (7). In addition, if assumptions [L,] and [{s] hold then

o) =0 (i)

uniformly in s € [0,7], r < 1. Denoting the power series expansion of w(s) by > m;s?, transition
JjE€S

s t— 00 (9)

functions have the form

pis(t) = (1 4O (fjgg;ﬁ)) as t = oo, (10)

and {m;,j € S} is an invariant measure for MBPI.

Remark 1. The form of limiting GF 7(s) given in the first part of Theorem 2.2 is compatible
with the results presented in [9] and [5] where the case max{ " (1), ¢'(1—)} < oo was considered.
Thus, this theorem essentially strengthens last-mentioned results.

Remark 2. The conditions Cy = || and u > 0 in Theorem 2.2 are essential because they ensure
the convergence of the integral in (7). In fact, due to Basic assumptions and (6) the majorizing
function for the integrand is (1 — u)*~1. Then function

oo [ [+ =]

is bounded for s € [0,1].
The following result is a consequence of Theorem 2.2.

Corollary 1. Under the conditions of Theorem 2.2

e poo(t) = B(0) <1 +0 <§T((Tt()t))3)> as t — oo,

where function B(s) is defined in (11).

Remark 3. Further reasoning imply that functions L(x) and €(x) can be omitted in estimations
of error terms of asymptotic relations in given above Theorems. Taking into account assertions
[Cr] and [Cy], these functions are asymptotically constant.

3. Auxiliaries

In this section, some auxiliary assertions are provided. They are essential for the proof of
theorems.

First, the asymptotic representation of GF of Markov branching processes Z(t) without im-
migration is considered. Let F'(t;s) = E [sz(t) ’Z(O) = 1] be GF of the process initiated by single
individual. Let R(t;s) := 1 — F(t;s). The following result called the Basic lemma of the theory
of critical Markov branching processes [4]. It is presented in slightly different form below.

Lemma 1. If condition [f,] holds then

r (vt)t/v _
Ritis) ~ N [”
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for all s € [0,1), where N'(x) is SV s such that

v 1/v
N”(t)-c((j/)(t) >—>1 as t— oo, (13)

and M(s) is GF of invariant measures of MBP that has the form

1/(1-5) g
X
Mo = [

Let us introduce the following function

Aly) :=y"L (1> _fa-y

) )

for y € (0,1]. Let us note that function yA(y) is positive, tends to zero and it has the monotone
derivative so that yA’'(y)/A(y) — v as y | 0 (see [2, p. 401]). Then it is natural to write
)

yA'(y
A(y)

where d(y) is continuous and §(y) — 0 as y | 0. Since A(1) = L(1) = ag it follows from (14) that

=v+4d(y), (14)

y
A(y) = apy” exp/ Mdu.
1 u

y
L <1> = ag exp/ Mdu.
Y 1 u

Substituting « = 1/t in last integrand, one can obtain

Therefore

L(x) = ag exp/ %t)du
1

where e(t) = —0(1/¢t) and (t) — 0 as t — oco. Considering the last equation together with [L,],
one can obtain

/M #dt =In [1 + O(a(m))} = (’)(04(36)) as xr — 00

for each A > 0. Applying the mean value theorem to the left-hand side of the last equality, we
have that e(z) = O (a(z)). Then condition [£,] gives

5 =0(a(5)) s wio (15)

The following result is a modification of Lemma 1 and it is required in the subsequent dis-
cussions.

Lemma 2. Let assumptions [f,] and [L,] hold. Then

1 1
AREs) Ad—s T O(nv(t;s)) as t— oo, (16)

where v(t;s) = A(1 — s)vt + 1.
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Proof. One can write from (14) that

RN (R)

T =UH® (17)

since R := R(t;s) — 0 as t = oo. Using the backward Kolmogorov equation OF /0t = f (F') and

considering representation [f,], relation (17) becomes

PR~ Ay Ry v+ 6 (m) = A (B)(v + 6 (R).

dt
Therefore
1
d|——= —vt| =46 (R)dt. 18
] e (18)
Integrating (18) over [0,¢), the following equation is obtained
! ! vt + /t d (R(u;s))du (19)
_ — w:
A(R(t;s))  A(l—s) 0 ’ ’

where §(y) is in (14). Now one should take integral in (19). Considering (15),0one can write
t t
/ 0 (R(u;8))du = / O(A (R(u; ))) du. (20)
0 0

One should mention that due to (12) R(t;s) — 0 as ¢t — oo uniformly in s € [0,1). Therefore,
since A(y) — 0 as y | 0, the integral in the right-hand side of (20) is o(¢) as t — co. Hence

1 1
A(R(t; ) = D) +0<)\(t;s)> as t— oo,

where \(t;s) = vt + A~ (1 — 5). Therefore

/ot O(A(R(u;9)))du = O </o A (R(u; s))dU> =O(lnv(t;s)) as ¢ co.

Together with (19) and (20) this gives relation (16). O

Lemma 3. Let L(t) be SV with remainder o(t). Then for o >0

/tC>O y_(1+")L(y)dy = l%L(t) (1 + (’)(Q(t))) as t — oo. (21)

g

Proof. Undoubtedly floo u~ (%9 dy = 1/0. Considering this fact and making the substitution
y := ut in the integrand of (21), one can write

/tij y~ T L(y)dy = éLt(f) [1 + “/100 [LL((I:;) - 1} u_(HU)dU} ' .

By definition of SV -function with remainder, the expression in brackets of the integrand on
the right-hand side of (22) tends to 0 as ¢ — oo uniformly in « > 1 (by Uniform Convergence
Theorem for SV..-functions [2, Theorem 1.5.2]) with the rate O(o(t)). Thus relation (21) is
obtained.

The Lemma is proved. O
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Lemma 4. Let conditions [L,] and [¢5] hold and v > 0. Then

Ygw) 1 g(x)
/m T =T g 1HOMA—2) es 2L (23)
Proof. Tt follows from Basic assumption that
1 o0
(u) _a
I(z) := gT du — — y~ N L (y)dy, (24)
[iam=- |

where L(t) = £(t)/L(t) as before. One can easily show that

L(ut) L(t)
1= =\

TR

tV
uniformly in w > 0. Considering the right-hand side of (24), one can directly use (21) with
t=1/(1—=x)and r(t) = O (L(t)/t"). Then

I(x):—l@ [14—0(5(0)} as t— oo.

vt tv

> as t— oo

Now returning to primary designations, relation (23) is obtained.
The Lemma is proved. O
4. Proof of Theorems

In this final section the Main results are consistently proved.

Proof of Theorem 2.1. Let us rewrite (2) as follows

F(t;s)
P(t;s) =U(s) exp / ?EZ; du y | (25)
where
oo [,
U(s) = p{/s f(u)d } (26)

Considering (3), the integral in (25) converges for s € [0, 1) and becomes 0 as t — oco. Therefore
P(t;s) converges to U(s) as t — oo uniformly over compact subsets. Now, using the functional
equation F(t+7;s) = F(t; F(7;5s)) (see [9, p. 134]), it follows that

Pt = P o] [ Pl )du}

— P(ris) - exp { / g (F(u F(r;9)) du} = P(r:5)- P(t: F(r:5)).

Taking limit as t — oo, one can obtain the following Schréder type functional equation

U(F(r;s)) = —U(s) forany 7¢T. (27)
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Writing the power series expansion U(s) = ) ujsj , equation (27) has an invariant property
JES
uj = Y. u;p;ij(7). Obviously U(1—) = 1 and hence the function in (26) generates an invariant
i€S

distribution {u;,j € S} for MBPIL.
Let us prove now of of (4). Considering (25) and using (23), one can obtain

P(t:s) = U(s) exp{ ~I(t;5)}, (28)
where (F( ))
L 1g t;s .
I(t;s) = ARG (1 + O(A(R(t,s)))) as t — oo. (29)
Next, let us use the asymptotic expansion of R(t;s). Relation (16) implies
A\ ts In [A(1 = s)A(¢E; 9)] as -
wwey ~ 00 (o (FHEETT)) oo .

and therefore

o) = N(t;5) In[A(1 — s)A(E;8)] ~
) = ™ (1ro (M) e (D)

where A(t;s) = vt + A1 (1 —s) and N(t;s) = L7Y7(1/R(t;s)). Let us note that g(s) has the
form of [g5]. Using (30) and (31), one can obtain

g(Pts)  N(s) [ 1 AL~ At )]
AR(ES) (A(t;s))w”g(R(t;S)>(1+O( As) )> (32)

as t — oo. It is easy to verify that the function N(¢;s) is asymptotically equivalent to the
SV so-function A (¢) defined in Lemma 1.

Asymptotic formula (4) now follows from a combination of (28), (29) and (32). Equation (5)
follows from the continuity theorem for power series.

The Theorem is proved. O

Proof of Theorem 2.2. Let us write

TOP(t;s) = exp{(T(f))M+/tg(F(U;s))du}:

0
F(t;s)

exp A(t;s)—k(r(t;s))l’”—k / ?Ei;daj ) (33)

S

where A(t;s) = (T(t))lﬂ — (7(t; s))hl and 7(t;s) = R™1(t;s). Standard integration yields
F(t;s) | |
AN TR gl
(t(t;s))"" = =S + / (1_u)1+wdu.

Therefore, relation (33) can be written as follows

1
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where 7(s) has the form of (7). An exponential factor in (34) defines the convergence rate p(t; s)
in (8). Let us first evaluate A(t; s) as t — oo. According to Lemma 1 M(0) = 0 and,therefore,
7(t) = 7(t;0). Hence, asymptotic representation (12) gives

NI
Ats) = (r@)" l1(1+Mt()> ]

- M) _ o M)
|’Y|(7—(t)) vt - |PY‘ (Vt)é/VNth) as t — oo.
On the other hand M(s) is bounded for s € [0,7], » < 1. Thus
A(t;s) =0 (i};?) as t — oo, (35)

uniformly in s € [0,7], r < 1, where £ (t) = N~1(¢).
Let us observe the integral in (34). Taking into account relations (3) and (6), the integrand
in brackets becomes O ((1 —u)*~1£(1/(1 — u))) in the neighbourhood of the point u = 1. Let
1

us examine the integral [ [(1 —w)*~¢(1/(1 —u))] du as t — oo. Substitution y = (1 —u)~*
F(t;s)
gives the alternative form
y~ I (y)dy.
1/R(t;s)

The direct application of Lemma 3 transforms the last integral to the form

1 1
y_(1+“)€(y)dy — ;R“(t; s)l (R(ts)) (1 + 0(1)) as t— oo.
1/R(t;s) ’

But R(t;s) = 771(t;8) and 7(¢;8)771(t) — 1 as t — oo uniformly in s € [0,1). Thus

/) [?(Z; * (1 —|Z)1+|7|] du =0 (m) as t — 0o. (36)

Taking into account that y < § and comparing relations (35) and (36), one can obtain that
A(t; s) decreases to zero faster than last integral, i.e., A(t;s) = o (¢ (7(t))/(7(t))") as t — oo. So,
asymptotic relation (8) with the error part p(¢; s) in form (9) is found from (34)—(36). Equation
(10) follows from the continuity theorem for power series.

Finally, one can verify that function 7 (s) satisfies equation (14). Therefore, denoting its power
series representation by m(s) = > m;s’, an invariant property m; = Y mp;;(7) is obtained for

i€S

JjE€S
any 7 > 0. Thus {7;,j € S} is an invariant measure for MBPI X (t).
The Theorem is proved. O
Proof of Corollary 1. The statement follows immediately from (8) by setting = = 0. O

The author is deeply grateful to the anonymous referee for his careful reading of the manuscript
and for his kindly comments which contributed to improving the paper.

- 582 —



Azam A.Imomov On Estimation of the Convergence Rate to Invariant Measures. ..

References

[1] K.B.Athreya, P.E.Ney, Branching processes, Springer, New York, 1972.

[2] N.H.Bingham, C.M.Goldie, J.L.Teugels, Regular Variation, Cambridge University Press,
1987.

[3] A.A.Imomov, A.Kh.Meyliev, On asymptotic structure of continuous-time MarkovBranch-
ing Processes allowing Immigration and withouthigh-order —moments, 2020,
ArXiv.org/abs/2006.09857v1.

[4] A.A.Imomov, On Conditioned Limit Structure of the Markov Branching Process without
Finite Second Moment, Malaysian Journal of Mathematical Sciences, 11(2017), no. 3,
393-422.

[5] A.A.Imomov, On long-term behavior of continuous-time Markov branching processes allow-
ing immigration, Journal of Siberian Federal University. Mathematics and Physics, 7(2014),
no. 4, 443—454.

[6] A.A.Imomov, On Markov analogue of Q-processes with continuous time, Theory of Probabil-
ity and Mathematical Statistics, 84(2012), 57-64. DOI: 10.1090,/S0094-9000-2012-00853-3

[7] J.Li, A.Chen, A.G.Pakes, Asymptotic properties of the Markov Branching Process with
Immigration, Journal of Theoretical Probability, 25(2012), 122—143.

[8] A.G.Pakes, Revisiting conditional limit theorems for the mortal simple branching process,
Bernoulli, 5(1999), no. 6, 969-998.

[9] A.G.Pakes, On Markov branching processes with immigration, Sankhya: The Indian Journal
of Statistics, A37(1975), 129-138.

[10] E.Seneta, Regularly Varying Functions, Springer, Berlin, 1976.

[11] B.A.Sevastyanov, Branching processes, Nauka, Moscow, 1971 (in Russian).

OO0 oreHKEe CKOPOCTU CXOAWMMOCTH K MHBAPUAHTHBIM MepaM
B MAapKOBCKUNX BETBLAINUNXCH IIPOIleCCaX C BO3MOXKHOM
OecKOHeYHOIl Juciiepcueili 1 UMMUTrpalein

A3zam A.HmomoB
Kapimackwnit rocymapcTBeHHBINT YHUBEPCUTET
Kapiu, Y36ekucran

Amnnoranusi. B pabore mcciaeayercss MApKOBCKUIT BETBSAIIMIACS CIIyYaHBIA MPOINECC C HEMPEPBIBHBIM
BpeMeHeM W ¢ uMMurpanumeit. Mbl paccMaTpuBaeM KPUTHIECKUH CJydail, B KOTOPOM BTOPO#l MOMEHT
3aKOHA PA3MHOYKEHUsI YACTUI[ U TEePBbIi MOMEHT 3aKOHA MMMHUTrparun GeckonedHbl. [Ipeamosarast, 9To
HEJINHEWHbIE YaCTH COOTBETCTBYIOIINX MTPOU3BOAAMNX (DYHKIWI MPaBUILHO MEHSIOTCS B cMmbicie Kapa-
MaTa, MBI JOKa3bIBaeM TE€OPEeMbl O CXOJUMOCTH II€PEXOJHBIX BEPOATHOCTEH Ipoliecca K MHBAPUAHTHBIM
MepaM. MBI onpefesinM CKOPOCTH 3TON CXOAWMOCTHU IIPU YCJOBUU, YTO MEJJIEHHO MEHSIOIINAECS YacTH
SABJISIOTCS (DYHKIMSAMEI C OCTATKOM.

KuroueBrle ciioBa: MapKOBCKHUIl BETBAIUICS IIPOIECC, IPOU3BOAANIINE DYHKIUN, UMMHUI'PDAIIN, I1epe-
XOJZIHbIE BEPOSITHOCTH, MEJIJIEHHO MEHSIOIIAsC (PYHKINS, NHBAPUAHTHBIE MEPBI, CKOPOCTh CXOIIMOCTH.
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Introduction

Iterated functions are objects of study in computer science, fractals, dynamical systems and
renormalization group physics [1-4]. Here we will consider continuous iterations of mappings.
Let K denote either the set of real numbers or the set of complex numbers. Suppose we are given
a local diffeomorphism u of a neighborhood of the origin 0 € K™ onto another and leaves 0 fixed.

The problem of continuous iteration consists in finding a one-parameter family of mappings (a
flow) f(t,x) = f!(x) such that

frofo=frrs, ft=u, )=z Vit seR. (1)

The iteration problem was investigated by Koenigs, Lewis, Baker, Chen, Sternberg and others.
Bibliographical references can be found in [4-6].
Every smooth flow f? is defined by a system of ordinary differential equations

with initial condition y(0) = x. Thus the iteration problem is equivalent the following question.
Given a a local diffeomorphism u, does there exist a system of ordinary differential equations
such that y(1) = u? If the answer to this question is affirmative then we say that the map w is
embedded in the flow f*.

The problem is of great interest in the study of the exponential mapping of infinite-
dimensional Lie algebras of vector fields [7-9]. Let exp(tX) denote an one-parameter group
generated by a vector field X, then the map exp : X — exp(X) is called the exponential map
or time-one map. Let G be a group of smooth (or formal) maps, and we are given the mapping
u € G. The question which arises is this: under what conditions is there a vector field X such
that u = exp(X)? If such a vector field X exists, then it is called the logarithm of u. We will
also say that the formal transformation u possesses a logarithm.

*kaptsov@icm.krasn.ru
© Siberian Federal University. All rights reserved
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Let us denote by GS,(K) the group of formal power series transformations [9]. Lewis [10]
proved that if a transformation v € GS,(K) satisfies so-called pseudo-incommensurable condi-
tion, then the iteration problem has a formal power series solution. This Lewis result has been
repeatedly proved by different authors [5,6,9].

In this paper we discuss the iteration problem for some subgroups of the group G5, (K). It
turns out that there are mappings u to which the problem does not even have formal solution,
namely, we give an example of a polynomial mapping u : R?> — R? preserving the area such
that there does not exist a 2-tuple g = (g1,92) of formal power series g1,92 € R][x,y]] with
gog = u. This is a counterexample to Moser’s statement [3] about the existence of a solution to
the iteration problem for area-saving mappings. We present sufficient conditions for the existence
of a solution of the iteration problem. These conditions allow to indicate some groups of formal
transformations such that any element of a group possesses a logarithm and the corresponding
iteration problem has a formal solution.

1. Examples and condition for the existence of solutions

We begin with the case of a linear mapping
u(z) =Uzx, ze€K",
where U is an invertible matrix. In this case, a solution of the iteration problem has the form
ut(z) = Utz = WUy

whenever the matrix In(U) is correctly defined. When K = C the matrix In(U) exists but in
general it is not unique. If K = R and U is positive definite then In(U) is a real matrix. Some
details of the linear case can be found in [10]. Sometimes a nonlinear problem (1) can be reduced
to a linear one. This is true if an analytical map u is conjugate to a linear map. Some of the
most known results in this direction are Poincaré and Siegel-Sternberg theorems [11-13].

We now consider the groups of formal transformations. Let K[[z]] denote the ring of formal
power series in indeterminate 1, ..., x, with coefficients in K. The ring has a maximal ideal 21,
and a ideal 9y consisting of series without constant and linear terms. Denote by M} (i = 1,2)
the n-ary Cartesian product of 91;. Obviously 9} is a monoid under substitution of series. We
denote by GS,,(K) the set of all invertible elements of 7. We shall call elements of GS,,(K)
formal transformations. It is clear that GS,,(K) is a group. As usual, the general linear group
of degree n over K is denoted by GL, (K).

Example 1. Let us consider the group GS;(C) and a polynomial map

z7r/32 + 27.

u=e
It is easy to see that there is no a formal power series

g:clz+0222—|—0323+04z4+...

such that

gog = (2)
Actually, comparing coefficients of z in (2), we have

c? = ¢'"/3,
Then comparing coefficients of 22, ..., 2% yields ¢, = - - - = ¢ = 0. Finally, comparing coefficients

of 27, we obtain
crer(cf +1) =1,
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This is a contradiction, because ¢ + 1 = 0. This example shows that there is no one-parameter
group passing through the polynomial e™/3z +27. If such a group f* exists, then f1/20 f1/2 = y.
But it is not possible as we just proved. This example shows that polynomial map u = e*™/3z +
27 € GS1(C) does not possess a logarithm.

We remark that such examples have been known for a long time (see, for example [4,9]).

Example 2. Let S5, (K) denote the set {f € GS,,(K) : det(Df) = 1}, where D f is the Jacobian
matrix of f, i.e. S5,(K) is a group of volume preserving formal transformations. Consider an
area preserving polynomial mapping v € SS3(R) given by

~ 1 ~
Ty =x + 2P Fy =19

cosa —sina
M = . ,
sina cosa
where a = 27/m and m > 2 is an even number. Thus v = Mv is an area preserving mapping.
It is convenient to use the complex variables z = 1 +ix2 and Z = x1 —ix2. Then the mapping

u has the form
2ix z—Z mtl
u(z,z) =em <z + < 57 ) ) . (3)

Let us show that there does not exist a formal series

and the rotation matrix

- . 2 . 22
9(2,2) = c102 + co1Z + c202° + 1122 + c02Z” + . ..

satisfying the condition (2). We assume that such series exists and try to find his coefficients.
Collect all terms belonging to z,Z in (2). Then we have two equations

32z

et = ciy + |eor |, (4)

601(610 +610) =0.

It follows that
co1 =0, c10=texp(im/m).

Then comparing coefficients of 2*z! (1 < k41 < m + 1) yields equation
cri(c10 + cpehg) = 0.
Obviously, the following inequality holds
c10 + cfotho # 0

whenever 1 < k+1 < m + 1. Thus we have ¢g; = 0.

Finally, we collect all terms belonging to z™*! and obtain equalities
exp(2im/m) m
Tyt ¢(m+1)0¢10(1 + €15) = 0,

since ¢j9 = *exp(imr/m) and m is an even number. This contradiction proves our assertion.

This example implies that Moser’s theorem [3] on the solvability of the iteration problem in
the class of formal series is not true even for polynomial mappings. Moreover, it is impossible to
find the square root of a area preserving mapping in the general case. This example shows that
the polynomial map (3) does not possess a logarithm. We shall see that the above examples are
related to resonances.
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Let A\1,...,\, € C be characteristic values of a matrix U € GL,,(K). We recall that an
identity of the form

n
Ae= AT An m N, Y mi> 1 (5)
i=1
is called the resonance (induced by U). We say that the resonance (5) is not obstructive if

A= Alme N me Y e R, (6)
It is easy to see that we have resonances of the form
A=A
Y
in Examples 1 and 2 above. These resonances are obstructive since

23

Using the theory of normal forms we proved the following statement in [14].

Lemma. Let u=Ux+ g € GS,(C) be a formal transformation with U € GL,(C) and g € M.
If any resonance induced by the matrix U is not obstructive then u possesses a logarithm.

Now we show that the conditions (5), (6) are equivalent to Lewis’s ones. Indeed, it follows
from (5) that
exp(log \s) = exp(mqlog A1 + - - - + my, log A\y).

The last equality is equivalent to
log(\ Z m;jlog(A;) € 2miZ. (7)
Similarly, the condition (6) yields
t(log(A Z mjlog(X;)) € 2miZ VYt eR.

It follows that

log(A Z m; log(A (8)

Conversely, it is easy to see that the equality (8) gives (6) and (7) implies (5).

We recall that Lewis’s condition means that any relation (7) implies the equality (8) (see
[9,10]).

One can apply Lemma to obtain subgroups G of GS,,(K) such that any u € G possesses a
logarithm. For example, consider subgroup B; which consists of formal transformations

u=Uxr+g, g€My,
where U is a lower triangular matrix with real positive eigenvalues.
Corollary. Any formal transformation u € By possesses a logarithm.

The analogous result holds for subgroup of formal transformations B* with upper triangular
matrices.

This work is supported by the Krasnoyarsk Mathematical Center and financed by the Ministry
of Science and Higher Education of the Russian Federation in the framework of the establish-
ment and development of regional Centers for Mathematics Research and Education (Agreement
no. 075-02-2021-1384).
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Nreparuu u rpymirbl (hopMaJbHBIX TPpeodpa3oBaHMin

Ouer B. Karmos
MucturyT BerancaunrensHoro monenuposanus CO PAH
Kpacnosipck, Poccuiickas ®eneparus

Awnnoranusi. B pabore paccmarpuBaercs 3agada popmasibHOM nrepanun. CTPOUTCS COXPAHSIIONIEE TII0-
@b 0Tob6parkeHue, KOTOPOe He JIOIYCKAaeT U3BJIEYEHUs KBaJPATHOINO KOPHsS, YTO, B CBOIO O4Yepe/ib,
MPUBOJIUT K KOHTPIpUMEPY — K Teopeme Mozepa it 3aJ1a9i WHTEPHOJsiiun. /{aHbl mpuMepbl TPYIII
dopMabHBIX TPEOOPA30BAHUI, NI KOTOPBIX 33Ja4Ya WUTEPAINN MMEET PEIIeHre s MTPOU3BOJIHLHOTO
3JIEMEHTA TPYIIIIHI.

Karodesnle cioBa: urepanusi, hbopMaIbHOe IPeodpa3oBaHue, (DYHKIMOHAIBHOE yPaBHEHNE.
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1. Introduction and preliminaries

In classical complex analysis the Laurent expansions play an important role in studies (in
the study) of holomorphic functions in a neighborhood of isolated singular points (in a ring).
Analogs of Laurent series have already been constructed in multivariable complex analysis, for
example, in the product of circular rings

{zeC":r,<|z—ay| <R,,v=12,...,n} (1)
or in the domains of Hartogs
{z=(2,2,) €C":'2€'D,r('2) < |z —an| < R('2)}, (2)

where 'D is a domain of C"~! (Hartogs-Laurent series). Namely, any function f holomorphic in
(1) can be represented as a multiple Laurent series

F@) =Y ak-af, 3)
|k|=—00
where k = (k1, ko, ..., k,) integer vectors, and

o m ey [ L9
@) Je (c—af
*gkhudaiberg@mail.ru

fjonibek-abdullayev@mail.ru
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Fr={CeC": |, —a=p, " <p,<R,,v=12,...,n}.

In this case, the domains of convergence of series (3) are relatively complete Reinhart domains.

In the works of E. Cartan [1], C.L. Siegel [2], Hua Loo-Keng [3], I I. Pjateckii-Sapiro [4], as
well as in [5] the matrix approach of presenting the theory of multivariable complex analysis is
widely used. It mainly deals with the classical domains and related questions of function theory
and geometry. The importance of studying classical domains is that they are not reducible, i.e.
these domains are, in a sense, model domains of multidimensional space.

Recently, scientists have obtained many significant results in the classical fields, and at the
same time, a number of open problems have been formulated. For example, in [6] the regularity
and algebraicity of mappings in classical domains are studied, and in [7] harmonic Bergman
functions in classical domains are studied from a new point of view. In the paper [8], holomorphic
and pluriharmonic functions are defined for classical domains of the first type, the Laplace and
Hua Loo-Keng operators are studied also. A connection was found between these operators.

In addition, scientific works in matrix balls associated with classical domains from the space
C™ [m x m] are developing.

Consider the space of complex m? variables denoted by C™’. In some questions, it is con-
venient to represent the point Z of this space in the form of a square [m x m| matrix, that is,
in the form Z = (z;;)";,—;. With this representation of points, the space C™ will be denoted
by C[m x m]. The direct product Clm x m] x - - x C[m x m] that have n copies of [m x m)]

n
matrices we denote by C"[m x m].

Let Z = (Z,...,Z,) be a vector composed of square matrices Z; of order m, considered
over the field of complex numbers C. Let us write the elements of the vector Z = (Z1,...,2Z,)
as points z of the space crm®.

2= (211 s 1 Zimr s Zrmlr e Zmnr s B s s Pl <1 Zamds -1 Zmin

Hence, we can assume that Z is an element of the space C™[m x m], that is, we arrive at the
isomorphism C" [m x m] & crm®,
Let us define the matrix "scalar" product:

where W is the conjugate and transposed matrix for the matrix Wj.

It is known (see [9,10]) that the matrix balls B%?n, B%?n and Bﬁ?n of the first, second and
third types, respectively, have the form:

Bl ={(Z1,.- . Za) = Z€C [mxm]: T~ (Z,2) >0},

BR, ={ZeC"[mxm]:I-(2,2)>0, VZ',=2,, v=1,...,n},

and
BE), ={(ZeC'lmxm]: [+(2,2)>0, Y2, =~%,, v= 1n}
The skeletons (the Shilov boundaries) of matrix balls Bﬁ,’f?,,,, denoted by ng)n, k=1,2,3,
ie.,

X(), ={ZeC"[mxm]:(Z,2) =1},
XP ={ZeC"imxm]:(Z,Z)=1, Z,=2Z, v=12,...,n},
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X® = {ZeC[mxm]:[+(Z,2Z)=0, Z,=—Z, V:1,2,...,n}.

Note that, IB%S{, ]Bﬂ and 18(232 are unit disks, and Xgli, Xﬁ, and Xg‘? are unit circles in the
complex plane C.
If n =1, m > 1, then ]B%( ) 1» k=1,2,3 are the classical domains of the first, second and

third type (according to the clas&ﬁcation of E. Cartan (see [1])), and the skeletons X x@

m,1s “*m,1»

and X& )1 are unitary, symmetric unitary and skew-symmetric unitary matrices, respectively.

Note that the matrix balls Bﬁi?n, ng?n, Bgn n are complete circular convex bounded domains.
In addition, the domains ]B%g,l,,?n, Bg?n, Bsi)n and their skeletons Xg?n, Xg)n, Xg)n are invariant
under unitary transformations (see [10,12]).

The first type of matrix ball was considered by A.G. Sergeev in [11], and by G. Khuday-
berganov in [9]. In [10], formulas for the volume of a matrix ball of the first type and its skeleton
are obtained, the holomorphic automorphisms for a matrix ball of the first type are described,
and integral formulas for matrix balls of the second and third types are obtained. In [13] the
volumes of the third type matrix ball and the generalized Lie ball are calculated. The total vol-
umes of these domains are necessary to find the kernels of the integral formulas for these domains
(Bergman, Cauchy—Szegs, Poisson kernels, etc. (see, for example, [14-17])). In addition, they
are useful for the integral representation of functions holomorphic in these domains in the mean
value theorem and other important concepts. In the papers [18,19] analogs of Laurent series
with respect to the classical Cartan domains of the first, second, and third types are obtained.

The aim of this work is to obtain analogs of the Laurent series’ with respect to the matrix
ball from space C™ [m x m]. To do this, we first introduced the concept of a "layer of the matrix
ball" from C™ [m x m], then in this layer of the matrix ball, we used the properties of integrals
of the Bochner-Hua Loo-Keng type to obtain analogs of the Laurent series.

1. Laurent-Hua Loo-Keng series with respect to the matrix ball B,, ,

Let B,,.,.% be a matrix ball. For functions f(Z) = f(zﬁ), . ZS,)L, . 7(:1), . zfqlb,)n) holo-
morphic in B,,.,, and continuous on B,, n ( ]B%mm =B, U BBm’n) the Bochner—-Hua Loo-Keng

integral formula is valid [10,20]:

f(2)= [ e (10 —(2.0) f ), (5)

m,n

where f (U) is an integrable function, du is the Haar measure on X, ,,.
Let
B,,=1Z2€C"Imxm]: I -(Z,Z) <0}.

The integral (5) of Bochner-Hua Loo-Keng type makes sense in each of the domains B, ,, and

man (121])-
Let us write the elements of vector Z = (Z1,...,Z,) € By, in the form (4) and by zl*) we
will denote a vector with components

!

el NN (n)>
arlag! ... apme! (Zu ) (Zlm) (me > lof = Z @, ;2 0. (6)

In what follows, we will call these series Laurent-Hua Loo-Keng series.

$For convenience, we denote Bg,ll)n by B n, and Xgi)n by Xm,n.
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The dimension of the subspace generated by the vector z% is equal to the dimension of the

direct sum of subspaces with dimensions (see [3,22,23])
qlag, g, ... ) = N(ag,ag,...,am) N(ag,ag, ..., ap,,0,...,0)

and it is equal to

Z N(ai,a9,...,am)  N(a,as,...,am,,0,...,0) =

artast-tam=|al
Q1Z2a2... 2am 20

where

Dy +m—1,ae+m—2,...,am-1+1,am)
Dm—-1,m-2,...,1,0) ’

D(aq,ag,...,0m) = H (i —aj), m=2.
1<i<jsm

N(ai,ag,...,qp) =

Obviously, (6) contains all monomials of degree «, that is, any polynomial in

(1) W, Lo . W (), ) )

F R M2 A S - P A A S 2k NI 2 P N /A SN A

is a linear combination of expressions like (6), if « takes values 0,1,2, ....
Let us denote by
Soz(lpl),ag am(Z)v p:1727"'7q(a17a2a"'7am)

.....

the components of the vector zJ.
In [24] it was proved that the system of functions

_1
(Pa) 2<,0((lp)(Z), p=12...,q (a1,9,...,), a=0,1,2/...

is an orthonormal system in the domain B,, ,, where

2 n
Pa :/B ‘w&p)(z)‘ dv, dv=T]] | da() dy ")

((5a)_%<pff)(U), p=1,2,...,q (a1,q2,...,qm), a=0,1,2,....

forms a complete orthonormal system on X, ,, where gpgp)(U), p=12 ... qlar,as,...,amn),
a=0,1,2,... are components of the vector ul®l (u = (ugll), . 7“97)1’ ey ,ugﬁ, . ,ug,?,)n))
and

5a=/ ‘w&p)(U)rdu-
Xm,n

Theorem 1.1 (see [24]). Let f (U) be an integrable function in X, , and let

: / FO)P () du
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be the Fourier coefficients of this function with respect to the orthonormal system (7). Then, in
B, the integral (5) represents a holomorphic function that expands in this domain in a series

a(a) (»)
nga (Z)
2> b= )

a>0 p=1

If we denote

FE(Z) = {F(Z) Z € By,

F(2),Z € B;

m,n’

then, by Theorem 1.1, for all Z € B,,, ,, we have

(10)

Fro- Y Sa

Q1220 =0 p=1

with coefficients (8). Therefore, F*(Z) € O (By.n), i.e. F(Z) is holomorphic in B,, . Now
let Z € B,, ,,- Then we have

o f ()
F(2) - / o (7 <(<Z’Z>)_127U>)d/i. (1)

m,n

The Cauchy-Szegd kernel has the following form (see [24]):

q(e)

> L —mn | (m) (@ (2100 17y
C(27 U) - ‘/(deet (I - < > Z Z 9027_7 Soz,_] U)
) a>01,7=1
Using the equalities from [3, p.114] we obtain
SOEMPR, 5 Qm, (U) 90((11)1) Qi s X2 — Ol 5oy Oy — 1 — Oy 0( )(det U)am7
and noticing that Z = ((Z, Z)) ™' Z, we have
(o) -
: V) Y ol ((z.2)7'2) 1% ().
det™" (I(m) — <(<Z,Z>)71Z, U>> a>04,j=1 7
Multiplying the last expression by f (U) and integrating term by term against the measure du,
we obtain
q(a) )
F‘(Z)=/ FOVV (Kmn) 3D 08 ( Z))” Z)wgfj-)(U)du=
Xm,n a>01,5=1
q(a)
-1
=3 3 A9 (2 2) |Vt [ T O (12)
a>2014,7=1 Xm,n
q(o) (p) ( -1
e monm ((2,2))72)
mn (p) m T 1
= (-1 .
( ) Z Z A qpp—m,..., —a1—m \/@

a1 2. 2o, 20 p=1
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Therefore, in the domain B, , the integral (11) represents a holomorphic function of

m,n

((Z,Z))"" Z, which has an expansion

a(a) (fgt oz z -1,
Fa-crr S S, e (G A)7)

Vo
a1 2. 2an 20 p=1 @

(13)

Consider the matrix domains of the form:
My = {Z € C" [mx m]: RAI™ —(Z,7) > o},
IL:{ZECmeH:ﬂNWAWZZ%<®,
where R, r are real numbers such that 0 < r < R < oo. We denote II =11 N1I” and the sets II

will call the "layer of the matriz ball".
The following diagram shows a layer of a matrix ball from the space C™ [m x m]

and, in particular, for n = 1 and m = 1 we have:

IT =TI, NIL;

The following theorem holds

Theorem 1.2. If F(Z) € O (I1) N C (IT), then for Z € 11 the Laurent-Hua Loo-Keng expansion
F(Z)=F*(2)+ F (2).

where the coefficients in (13) are calculated by the formula
w) =V (X V)l (U)d 14
A, —m,...,—a;—m ( P) « f( )SOZJ ( ) o ( )

and
XP:{UGC"[mxm]: <U,U>:p21(m),r<p<R.}.
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Proof. Fix an arbitrary point Z € II and construct a layer II' such that Z € II' C II (IT' =
II'rNII',,r <1’ < R’ < R). Then, by virtue of the Bochner-Hua Loo-Keng integral formula (5)
the following expansion takes place:

B /() /(U)
F(2)= r det™™ (I0m) —(Z,U)) et — det™" (I0m) —(Z,U))

dp, (15)
where
I = {U eC[mxm]: (U,U)= (R')21<m>} ,

and
v = {U € C" [m xm]: (U,U) = (’”/)2I(m)}'

Therefore, by virtue of (10)

(@) (p)
f(U) ; va (Z)
o dp = ag, =F*(2), (16)
o det™ (I0m) —(Z,U)) m;.;mw; Vg
where V()
ab, = | FU)eP (U)dp
T | S0P w)
Assuming
s0(apl);~~~7am (U) = (‘D((lpl)_amaa2_a7n;~~7amfl_04771;0(U)(det U)a"’L)

for any oy > as > ... > a,, from (13) we get

/ f(U) _
—y det™" (I0m) — (Z,U))

9(@) (f(l —m —a1—m Z7Z 712
=™ > SYd® _m_,f o ((22) )=F<Z>, (17)

Q1> >, 20 p=1

e =V O [ F O O
v
Now, substituting (16) and (17) into (15), we obtain the required expansion
F(Z)=FY(2)+F (2).

It remains to note that by Cauchy’s homotopy theorem in formulas for calculating the coefficients
(P)

ab and aZ, .. _. _,, can be replaced with any
X, = {U eC [mxm]: (UU)=pI™ r<p< R},
and then these formulas will take the form (14). The theorem is proved. a

Corollary 1. In Theorem 1.2, when n = 1 the expansion (14) coincides with the Laurent
expansion in the "matriz ring" defined in the Cartan classical domains (in the space C[m x m]):

M=TIzNII,
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where matriz domains

Mp={ZeClmxk: R - 22" >0},

10, = {Ze@[mxk];r21<m> 77" <0},
and R, r are real numbers such that 0 < r < R (see [18]).

Corollary 2. When m = 1 then the expansion (14) coincides with Laurent expansion of
holomorphical function in a ball layer (in the space C™):

M={zeC":r <|z| < R}
(by Severi’s theorem, this expansion coincides with the Taylor expansion in the ball By, =
={zeC": |z|] < 1}).

Corollary 3. When m = n = 1 we obtain the Laurent expansion on the complex plane.

2. Open problems

We present some unsolved problems related to the matrix balls Bg)n and B,(g?n, associated
with the classical domains of the second and third types:

1. Obtain analogs of the expansion of the Laurent-Hua Loo-Keng series for the matrix balls
B, and B,

21,2,3. Describe domains of convergence of Laurent series with respect to matrix balls IB%,(}J”,
Bgﬁ?n and IB%S;?”.

OT-F4-(37+29) Functional properties of A-analytical functions and their applications. Some
problems of complex analysis in matriz domains (2017-2021 y.) Ministry of Innovative Develop-
ment of the Republic of Uzbekistan.
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Psanpr Jlopana-Xya Jlo-keHa OTHOCUTEJIBHO MAaTPUIHOTO
mapa u3 npocrpanctsa C" [m X m]

I'ynvmupza X. Xynaitbepranon
Kouubek III. AG6aynnaeB

Harmuonanbuenit yausepcurer ¥Y36ekucrana
Tamrkent, Y36ekucran

Awnnoranusi. llesnbio qannoit paboTh! SBISETCS MOIyUYEeHUE AHAJOTOB Psifa JlopaHa OTHOCHTEILHO MaT-
puuHoro mapa u3 upocrparcrsa C™ [m x m]. s sToro cHavaia BBeAEHBI IOHATHE "CIJI0S MATPUIHOIO
mapa" u3 C" [m X m], 3aTeM B 9TOM €JI0€ MATPUIHOIO [MIAPpa UCIOJIb30BAJINCH CBOACTBA HHTErPAJIOB THIIA
Boxuepa-Xya Jlo-kena njs nmonydenuns anasoros psiga Jlopama.

KiroueBsblie ciioBa: marpuunoii map, psz Jlopana, rogomopdnas dyukims, rpannna [1Iniosa, nnre-
rpas boxuepa-Xya Jlo-keHa, opTOHOpMAJIbHAS CUCTEMA.
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Introduction

The purpose of this article is to correct a mistake in the work [1]. Namely, in the article [1] an
incorrect statement was given that for an entire function f, satisfying some additional conditions,
the following equality holds on the positive part of the real axis

fr@)  vrmo 1

f@ ~ 2/ 2 (1)

It is easy to see that for any entire function f this equality cannot be true on the whole positive
f"(2)
f(2)
the uniqueness theorem, the equality (1) holds not only on R, but also in C\ {0}. However,
the function

N3 1

2vz 2z

is not meromorphic in a neighborhood of the origin.

semiaxis. Indeed, the function

is meromorphic in the whole complex plane. By virtue of

Our article is devoted to correcting the relation (1) and some of its consequences. Note that
this result is related to the study of a generalized zeta-function constructed by zeros of some
entire function.

*kuzovatov@yandex.ru
T AKytmanov@sfu-kras.ru
tsadullaev@mail.ru
(© Siberian Federal University. All rights reserved
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1. Auxiliary results

Let f (z) be an entire function of order p in C. Consider the equation

f(z)=0. (2)

Denote by Ny = f~1(0) the set of all solutions to (2) (we take every zero as many times as its
multiplicity). The numbers of roots is at most countable.
The zeta-function (s (s) of Eq. (2) is defined in the following way:

Gt (5) = Z (_Zn)_sv

ZHGNf

where s € C.

In [2], using the residue theory, V.I. Kuzovatov and A.A.Kytmanov obtained two integral
representation for the zeta-function constructed by zeros of an entire function of finite order on
the complex plane. With the help of these representations, they described a domain which the
zeta-function can be extended to.

Theorem 1.1 ([2]). Let f(z) be an entire function of the zero order in C and satisfy the

condition , )
j}((j)) —wyg=0 <|Z> , 2] = 0.

Suppose that 0 < Re s < 1. Then

(o) = [T (L ) o 3)
/(@)

f(x)

The method of proof of Theorem 1.1 shows that the statement remains valid in the case

where wy is the limit value of at infinity.

when f (z) is an entire function of order less than 1.
Now we will give an integral representation for the zeta-function ¢y (s) of zeros z, of f which
are z, = —¢, + iSn, qn > 0. Let us denote

F(f,x)= Zez”‘”. (4)

We will assume that Res = ¢ > 1 and the following conditions hold:

lim dn > 0, (5)
n—oo T
o 1 o—1

the series — converges. 6
> &) L

For the convergence of the series (4), using condition (5), it is necessary and sufficient (for real z)
that = > 0 [2].

Theorem 1.2 ([2]). Suppose that the conditions (5) and (6) are satisfied and Res > 1. Then

¢ (s) = ﬁ /0 T (fa) d,

where F (f,x) is defined by formula (4), and T (s) is the Euler gamma-function.
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Our goal is to obtain an explicit expression for the kernel of the integral representation (3)
in case z, = —mwn?. This choice of zeros z, is due to the fact that for series

F(fio)=Y e =3 e ™% =y (x)
n=1

n=1

for > 0 it is known (see, for example, [3, Chapter II, S. 6]) that

Qw(x)+1:\/1£{2w(i>+1}.

2. The main result

Theorem 2.1. Let f(2) be an entire function of order p < 1 with zeros z, = —mn?. Then for
real x € (0;4+00) the following holds

P VR 1
fx) 2z thv/mz 2z

Proof. Since the order of f is less than 1, it has the form

f(z):Cﬁ (1-2). (7)

The representation (7) is true, for example, for entire functions of order less than 1 or for entire
o0

functions of the first order with the additional condition, i.e. the series Z is convergent.

E
n=1
In particular, the representation (7) is true for functions of the zero genus.

It is easy to show that in this case we obtain

f(z) 1
f(2) _ZZ_ZH (®)

n=1

if z # z,.
Since the order of the canonical product (7) is equal to the index of convergence p; of its

zeros and for given values of z,

— Inn 1

PL= i In |2z, K

representations (7) and (8) are true for considered function f (2).
To further prove the assertion of the theorem, we use the standard decomposition (see, for
example, [4, formula 5.1.25.4])

Zm B SR SR SV

k2 +a2 22 2a '
k=0

Then

i ! L + = cth
———5 = —5—5 + —cthma.
= k* 4 a? 202 2a
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+ —— cth /7. O
T

Corollary 1. Suppose that the conditions of Theorem 2.1 are satisfied. If wg is the limit value

fr) o
of o) at infinity, i.e. .
_ f' (=
TS [ (a)”
then wg = 0.

Proof. To prove the statement, we note that

e e i e (1 + 6—21)

li hx= lim —— = —— =1
x—1>51-100 cth x—1>51-100 et —e 7T 1_151_100 et (]_ — 6*255) U
Remark 1. If f is an arbitrary entire function of order 1 < p < oo, with zeros z, = —mn?, then
the ratio can be represented as
_ B e
(o] k)
1 (1<)

n=1

where g(z) is an entire function. Since 1 < p < 00, g(2) is a polynomial, deg g = p, and p € N [5].
Therefore,

f@memymdziO—z)

and
) W @) W)
) (z)es) =) T

Consequently in this case we take

F@) _ VT
@) ~ e
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1
cth /7w — o +d'(z), 1<p<oo.
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O nzera-dyHKIMU HyJI€el mesioi pyHKImn
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Harmonasbaeiit yauBepcurer Y36eKucTana
Tamkent, Y30ekucran
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Abstract. The author has previously (Trudy IMM UrO RAN, 19(2013), no. 3) described the groups
lying between twisted Chevalley groups G(K) and G(F) of type A, 2Dy, ?Es, ®Dy in the case when
the larger field F is an algebraic extension of the smaller nonperfect field K of exceptional characteristic

for the group G(F) (characteristics 2 and 3 for the type *D4 and only 2 for other types). It turned
out that apart from, perhaps, the type 2D;, such intermediate subgroups are standard, that is, they are
exhausted by the groups G(P)H for some intermediate subfield P, K C P C F, and of the diagonal
subgroup H normalizing the group G(P). In this note, it is established that intermediate subgroups are
also standard for the type 2D;.
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1. Introduction and preliminaries

Groups of Lie type G(F') over the field F' consist of Chevalley groups of type ® = A;, By,
Cy, Dy, Eg, E;, Eg, F;, G5 and twisted Chevalley groups of type "® = 2A4,, 2Dy, 3Dy, 2Es, 2B>,
2G4, 2Fy. The number of fundamental reflections generating the Weyl group associated with the
group G(F) is called its Lie rank. Groups of type Ay, 245, 2B, 2G5 constitute all groups of Lie
rank 1. Groups of type 2A4;, 2D;, 3Dy, ?Eg are also called by Steinberg groups, groups of type
2B, are called by Suzuki groups, groups of type 2Gs, 2F} are called by Ree groups, in honor of
their discoverers.

The exceptional characteristics of the ground field F for the group G(F) are usually:

— characteristic 2 for types B;, C;, Fy, 2A4;, 2D; and 2 Eg;

— characteristics 2 and 3 for types Gy and 3Djy.

This is due to the fact that the Coxeter graph associated with the group G(F') has edges of
multiplicity 2 or 3.

In what follows, everywhere the field F' is an algebraic extension of the field K. The interme-
diate subgroups between the groups G(K) and G(F') are described in the author’s papers [1-3].
For exceptional characteristics, the description depends on whether the field K is perfect. By
definition, a field K of characteristic p > 0 is called perfect if K? = K.

*nuzhin2008@Qrambler.ru
© Siberian Federal University. All rights reserved
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In 1983, the following result was obtained in [1]. If the Lie rank of the group G(F') is greater
than one and it is different from the group Re of type 2Fy, and in the exceptional characteristics
for G(F) the field K is perfect, then the groups lying between the groups G(K) and G(F), are
exhausted by the groups G(P)H for some intermediate subfield P and a diagonal subgroup H
normalizing the group G(P). We call such intermediate subgroups standard.

In [2], the groups that lie between the Chevalley groups G(K) and G(F') of type B;, Cj,
Fy, G5 are described in the case of an nonperfect field K that is exceptional characteristics for
the group G(F). It turned out that in each of these cases, except type Go in characteristic 2,
nonstandard subgroups appear and they are parameterized by two additive subgroups of the
field F. Moreover, if G(K) is of type Fy or G, then both additive subgroups are fields, and if
G(K) is of type B; (I =2 3) or C; (I > 3), then one additive subgroup is a field. The paper [4]
contains examples of non-standard intermediate subgroups for types B; (I > 3) and C; (I > 3),
which are parameterized by two additive subgroups, one of which is not a field, and for the type
By = (5 both such additive subgroups may not be fields.

In [3], the groups lying between twisted Chevalley groups G(K) and G(F) of type 24;, 2Dy,
2Eg, 3D, are described in the case of nonperfect fields K of exceptional characteristic for the
group G(F). It turned out that except, perhaps, the type 2D;, the intermediate subgroups are
standard.

In this note, we classify pairs of additive subgroups that parameterize non-standard subgroups
between the groups G(K) and G(F') (Section 2) and prove the standardness of such intermediate
subgroups for the type 2D; (Section 3). Thus, non-standard groups lying between the groups
G(K) and G(F) appear only for Chevalley groups of normal type B;, Cj, F; and Gy over the
nonperfect field F' of characteristic 2 and, respectively 3. Note also that if we remove the
condition of algebraicity of the extension of a larger field over a smaller one, then the description
of intermediate subgroups becomes immeasurable for Chevalley groups associated with Coxeter
graphs without multiple connections [5,6].

2. Pairs of additive subgroups associated with intermediate
subgroups of Chevalley groups of type B;, C), Iy n Gy
Let ® be a reduced indecomposable root system, ®(F') be a Chevalley group of type ® over
the field F' generated by the root subgroups
e (F)={z.(t) |t € F}, red.

Following V. M. Levchuk (7], by a carpet of type ® over F, we mean a family of additive subgroups
A= {2, | r € d} of the field F with the condition

Cij,rsmimg - i)1127"+j37 7,8,1T + J8 € D, 1,J > 0, (1>

where 2! = {a’ | a € A, }, and constants C;;,,s are equal to £1, £2 or £3. Inclusions (1) come
from the Chevalley commutator formula

[ms(u),a}r(t)] = H Tirtjs (C’ij,rs(—t)iuj), r, 8, ir + js € ®. (2)
1,j>0
Every carpet 2 defines a carpet subgroup ®(2) generated by the subgroups z,.(2.), r € .
A carpet 2 is called closed if its carpet subgroup ®(2() has no new root elements, i.e., if

() N, (F) = x.(2A,.).
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Summing Theorems 3.1 and 4.1 from [2], we obtain the following result.

Theorem 1 ([2]). Let F be an algebraic extension of an nonperfect field K of characteristic p
and M be a group lying between Chevalley groups ®(K) and ®(F) of type ® = B; (I > 2),
C (I 22), Fy, Go. Let p =2 for ® = B, C;, Fy and p = 3 for ® = Gy. Then M is the
product of the carpet subgroup ® () and some diagonal subgroup Hps normalizing ®(A). The
carpet A = {2, | r € ®} is closed and

o — P, if r is a short root,
") Q, ifr is along root,
for some additive subgroups P and Q of the field F' with the conditions
R<PPLQ<KPLK.

Moreover, depending on the type of the Chevalley group ®(K), the following refinements hold for
the additive subgroups P and Q of the field F' and the diagonal subgroup Hpy:

a)if ®=DB; andl > 3, then Q is a field;

b) if ®=C) andl > 3, then P is a field;

¢) if ® = Fy, Go, then both additive subgroups P and Q are fields and Hypy is the unit subgroup.

Here, for any additive subgroup A of some field, by definition
AP ={tP | t € A},

ATt ={0tu{te A|t ! € A}.

For ® = F}, (G2, the structure of the additive subgroups P and @ is clear, they are fields. The
next proposition clarifies their structure for & = By, C). For any root r € ® and any ¢ from the
multiplicative group F* of the fields F' by definition

npe(t) =z, () _ (=t~ Ha,. (1),

he(t) = 1y (t)ne(—1).

Proposition 1. Let M, P and Q be the same as in Theorem 1 and p = 2. Then the additive
subgroups P and Q) satisfy the following conditions:

Al)1e PNnQ;
A2) PQ < P;

A3) P2Q < Q;
A4) P?P < P;
A5) Q*Q < Q;
A6) P! = P;
AT) Q' =Q.

Moreover, P? and Q? are fields, P and Q are P2-modules, and the subgroup M contains all
diagonal elements of the form h,(tu), t,u € P\ {0} (respectively, t,u € Q\ {0}), if r is a short
root (respectively, if v is a long root).
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Proof. Condition A1) follows from definition of the subgroup M. Conditions A2) and A3) follow
from the commutator formula (2) and the carpet condition for the subgroup M. In [1, p. 535]
it was established that for any ¢ € P/{0} (respectively t € @/{0}) the polynomial ring Kt
(respectively K?2[t]) lies in P (respectively, in ). Hence, since the extension F/K is algebraic,
we obtain equalities A6) and A7). For any short root r and any t,u € P/{0}, equality A6)
implies that h,(t)h,(u) = h,.(tu) € M. Similarly, for any long root r and any ¢,u € Q/{0} from
AT), we obtain the inclusion h,.(tu) € M. Conjugating the subgroup x,(2,.), r € ®, by these
diagonal elements, we obtain the inclusions A4) and A5). It follows from A4) and A5) that P?
and Q? are fields. Finally, from A3) and A4) we obtain that P and @ are P2-modules. The
proposition is proved. O

In [4, Sec. 7] for types B; (I = 2) and C; (I > 2), examples of subgroups P and Q from
Theorem 1, one of which is not a field, and for the type By = C3 both of which are not fields,
are given. Therefore, the inclusion of diagonal elements of the form h,(tu), t,u € P\ {0}
(respectively, t,u € Q\ {0}) if r is a short root (respectively, if r is a long root) into the subgroup
M, despite the fact that the product tu may not lie in the subgroup P (respectively, in Q).

Any algebraic extension of a perfect field is perfectly [8, p. 217] and any finite field is perfect,
so the results of the paper [1] say that there are no finite additive subgroups that are not fields
that parameterize intermediate subgroups in groups of Lie type. The next proposition asserts
that they do not exist even under weaker constraints.

Proposition 2. If the characteristic of the field F' is equal to 2 and its finite additive subgroup
P satisfies the conditions A1) and A4), then P is finite field.

Proof. The inclusions A1) and A4) imply the inclusion P2 < P, and since squaring is an
isomorphism of any field of characteristic 2, taking into account the finiteness of P, we obtain
the equality P? = P. Hence and again in view of A4), P is a ring and, therefore, a field, since
any finite integral domain is a field. The proposition is proved. O

3. Groups lying between twisted Chevalley groups

Let A be a subset of the field F. The sets A” and A~! have the same meaning as in Section 2.
The Steinberg group G(F) of type "X is associated with an automorphism o of order n of the
fields F. By F, we denote the subfield of fixed elements of the automorphism o. By definition,
we set o(u) = @, A = {i | u € A} and A, = AN F,. The groups lying between the Steinberg
groups G(K) and G(F), where F' is an algebraic extension of a nonperfect field K of exceptional
characteristic p, are described by the author in [3].

Theorem 2 ([3]). Let M be a group lying between the Steinberg groups G(K) and G(F) of type
2A;, 1>4,2%D;, 1 >3, %Es or 2Dy, where F is an algebraic extension of an nonperfect field K
of characteristic p, and p =2 or 3 if G(F) is of type 2Dy, and p = 2 otherwise. Then:

1) If G(F) is of type 2A;, | > 4, 2Eg or 3Dy, then M = G(P)Hy; for some intermediate
subfield P, K C P C F, and some diagonal subgroup Hpyr normalizing the group G(P).

2) If G(F) is of type 2Dy, 1 > 3, then M = G(P,Q)Hy; for some diagonal subgroup Hyy
normalizing the group G(P, Q) which is generated by intersections

MNzr(K)=z.(A,), re 2Dy,
where

oA — P, if r short root,
"1 Q, ifr long root,
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P and Q are subgroups of the additive group of the field F' containing the subfield K and re-
spectively K, and they satisfy the following conditions: PQ C P, P?PC P, P! =P =P,
ut,u+u € Q forall uwe P, and if | > 4, then Q is a field.

The next proposition axiomatizes the properties of the additive subgroups P and @ from
Theorem 2 for G(F) of type 2Dy, 1 > 3.

Proposition 3. Let M, P and Q be the same as in Theorem 2 for G(F) of type 2Dy, 1 > 3.
Then the additive subgroups P and Q satisfy the following conditions:

B1)1erQ,P;gFqu<F

B3) wut, uv—l—uvleorany u,v € P andt € Q;
B4
B5
B6
B7

\ 7

B2) P
)
) P
)Q2 <Q,
) P
) @

Next, we need the following technical lemma on algebraic extensions fields.

Lemma 1. Let F be an algebraic extension of the field K, the field F' has an automorphism o,
and F, and K, be centralizers of the automorphism o in the fields F' and K, respectively. Then
the extension F, /K, is also algebraic.

Proof. Let f be an arbitrary nonzero element from F,. Since the extension F'/K is algebraic,
there exists a smallest natural number m such that

Tt b ™ R f A ho =0
for some simultaneously non-zero elements k; from the field K. But then
"+ 0 (kpe1)f™ 4+ o(kr)f + o(ko) = 0.
Subtracting the second equality from the first, we obtain
(km—1 = 0 (kn—1)) ™7 - 4 (k1 — o (k1)) f + (ko — o (ko)) =

Hence, either for some ¢ > 1 the difference (k; — o(k;)) is nonzero, which is impossible due to the
minimality of m, or all the differences (k; — o(k;)) are zero, and then the element f is algebraic
over the field K, as required. The lemma is proved. O

Proposition 4. Suppose that a field F' of characteristic 2 has an automorphism o of order 2,
P and Q are its additive subgroups satisfying conditions B1)-B7). Then the subgroups P and Q
are fields, and Q = P,.

Proof. Since Q < Fy, the inclusion Q < P, follows from B1) and B2). Since P £ F,, then there

is an element ¢ € P such that the sum ¢ + ¢ is nonzero and due to B3) lies in @, and in force B7)

1 t
—— € . Hence and by virtue of B2) the element u = -
t+1 t+1

Then by virtue of B3) the subgroup @ contains the element wv + wv = wv + v = (u + u)v = v.
Therefore, P, < Q. So Q = P,. Now B2) implies the inclusion QQ < Q. Therefore, Q is a

liesin P, and u+u = 1. Let v € P,.
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ring. By virtue of Lemma 1, the extension F, /K, is algebraic, and since the ring @ is enclosed
between K, and Fj, it is a field.

Let us show that P is a field. Since the extension F/K is algebraic, it suffices to show that
for any two elements of P their product lies in P. So, let u,v € P. If one of the elements u
or v lies in P,, then by condition B2) and the equality Q = P, proved above, we obtain the
inclusion uv € P. Let both u and v not lie in Q. Then they are the roots of the irreducible
polynomials 2 + (u +%)x + v and, accordingly, 22 + (v + ¥)x + v of degree 2 over the field Q.
The polynomial ring Q[u] is a field and, by B2) and B4), lies in P. If v € Q[u], then wv € P. If
v & Qu], then the polynomial ring Q[u, v] is an algebraic extension of degree 4 of the field @ and
again, by B2) and B4), lies in P. Therefore, in any case, uv € P. The proposition is proved. O

Combining Theorem 2 and Proposition 4, we obtain the following theorem, which gives a
uniform and standard description of intermediate subgroups for Steinberg groups over nonperfect
fields in exceptional characteristics.

Theorem 3. Let M be a group lying between the Steinberg groups G(K) and G(F) of type
2A;, 1 > 4,2D;, 1 > 3, 2Eg or 3Dy, where F is an algebraic extension of an nonperfect field
K of characteristic p, and p = 2 or 3 if G(F) is of type 3Dy, and p = 2 otherwise. Then
M = G(P)Hy; for some intermediate subfield P, K C P C F, and some diagonal subgroup H
normalizing the group G(P).

This work is supported by the Krasnoyarsk Mathematical Center and financed by the Ministry
of Science and Higher Education of the Russian Federation in the framework of the establish-
ment and development of regional Centers for Mathematics Research and Education (Agreement

no. 075-02-2020-1534/1) and RFBR (project 19-01-00566).
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O mapax aJJIMTUBHBIX MOJATPYIII, ACCOITUUPOBAHHBIX
C IPOME2KYTOYHBIMU IMOArPpyHIlaMu TPYII JINEBA TUIIA
HAa/] HECOBEPIIIEHHBIMU I10JIIMU

Axos H. Hy>kun
Cubupckuii deepasbHbIl YHUBEPCUTET
Kpacnosipck, Poccuiickass ®eneparus

Amnnorauus. Panee (Tpymer UMM YpO PAH, 19(2013), Ne 3) aBTop onmcas TpyIb, JeKAIUIe MEXKLY
ckpyvennsivu rpymmamvu [esamre G(K) u G(F) tuna 2A;, 2Dy, >Es, Dy B ciayvae, korma Goubinee
rosie F' siBiisieTcst anrebpantdecKuM PacIlIMPEHUEM MEHBIIEro HECOBEPIIEHHOI'O MoJist K MCKIIIOYNTEbHOMN
xapakrepuctuku myga rpymnnel G(F) (xapakrepuctuky 2 w 3 mjia tumna 3Dy ¥ TOJMBKO 2 [Isl OCTAJILHBIX
tunoB). OKa3ajI0Ch, ITO KPOME, GBITH MOXKET, THIa 2 D;, TaKue IPOMEKYTOIHbIE HOATPYIIIbI CTAHIAPTHEI,
TO €CTh OHU HCYepNbIBaIOTCs rpyrmnaMu G(P)H miis HeKoToporo mpomeskyrousoro noamnons P, K C P C
F wn nmaronanbroit moarpynnel H, nopmanmsytomeit rpynmy G(P). B manuoii 3aMeTKa yCTaHOBJIEHO, ITO
[POMEXKYTOUHbIE TOIPYIIIbL SIBJISIIOTCS CTAHIAPTHBIME 1 J1JIst THIA 2D .

KuroueBbie cjioBa: Ipylmbl JIEBa THUIIA, HECOBEPIIEHHOE TI0JIe, ITPOMEXKYTOYHbIE MOJTPYIIILI, KOBED
A TUTUBHBIX IOATPYIIL.
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Abstract. Collective modes of the gyrotropic motion of a magnetic vortex core in ordered arrays of
triangular and square ferromagnetic film nanodots have been theoretically investigated. The dispersion
relations have been derived. The dipole-dipole interaction of the magnetic moments of the magnetic
vortex cores of elements has been taken into account in the approximation of a small shift from the
equilibrium position. It is shown that the effective rigidity of the magnetic subsystem of triangular
elements is noticeably higher than that of the subsystem of square elements of the same linear sizes. The
potential application of the polygonal film nanodisks as nanoscalpels for noninvasive tumor cell surgery
is discussed.
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Introduction

Ordered arrays and suspensions of ferromagnetic nanodots have a great potential for ap-
plication in new spintronic devices and noninvasive cell nanosurgery of malignant tumors in
medicine [1,2]. The requirements for the magnetic moment of a nanoobject used as a magnetic-
filed-driven nanoscalpel for cell destruction are contradictory: an increase in the magnetic mo-
ment facilitates the cell destruction, but is accompanied by an undesirable effect of agglomeration
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of nanoparticles in a suspension. To resolve this contradiction, it is necessary to search for a com-
promise situation where the initial magnetic moment of a nanoscalpel is small, but significantly
increases upon switching on a magnetic field at the instant of destruction.

The aim of this work, along with studying the features in the resonance behavior of the
magnetization of ordered arrays of triangular and square nanodots, is to clarify whether the
problem of nanoparticle agglomeration in a cell surgery suspension can be solved by changing
the nanoparticle geometry.

The point is that the disk is not an optimal nanoscalpel configuration. In ferromagnetic
nanoparticles suspended in a liquid, the magnetic flux tends to close inside an element with the
formation of magnetic vortices. In a disk-shaped particle, a single vortex is formed (Fig. 1a),
in which the magnetization is circularly oriented in the plane at the periphery of a particle and
is out-of-plane at its center (the vortex core). The magnetic moment of an object is induced
mainly by the core. The external field causes a reversible displacement of the core at the almost
invariable value of the magnetic moment.

For the analysis, we chose square and triangle configurations as presumably promising. As in
disks, the magnetic flux in square and triangular nanodots is almost completely closed within an
element. A quasi-vortex with a core at the center is formed (Fig. 1 b and ¢). A core is the magnet
region with a size of dy &~ 10 nm in which the magnetization is out-of-plane (perpendicular to
the magnet plane) due to the competition between the exchange and demagnetizing energies:
do =~ \/A/(oMs) (A is the exchange constant and Mg is the saturation magnetization).

a)

Fig. 1. Equilibrium magnetic structures of (a) circular, (b) square, and (c) triangular permalloy
film nanospots [3]. The quasi-vortices of the square and triangular spots represent closed domain
structures with a vortex core at the center

Under the action of any factors (external fields, spin-polarized currents, anisotropy field
gradients, stresses, etc.), a magnetic vortex moves along a curvilinear trajectory, being driven by
the Magnus forces [4-8]. In analytical calculations, the well-proven rigid vortex approximation is
often used. In the model used, it is assumed that the magnetization configuration in the region
covered by the vortex distribution remains unchanged upon displacement of the core from the
equilibrium position. In this case, the vortex dynamics should be described by the method of
collective variables, which are the core coordinate and velocity. Then, the equations of motion
take the well-known form (the Thiele equation [9]):

G xv+Dv+ VW =0. (1)

Here G is the gyrovector [7,9,10], perpendicular to the magnet plane, v is the core velocity,
W is the potential energy of the vortex, and D is the tensor of effective coefficients of the force
of friction. The potential energy W includes the terms responsible for its growth due to the
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exit of the magnetic subsystem of elements from the metastable state (the shift of the core from
the equilibrium position), the terms describing the pairing energy of interaction between the
magnetic moments of different elements, and the terms describing external factors (fields).

Below, we consider specific equations for square and triangular elements using the models
that are simple, but make it possible to compare the resonance behavior of disks with different
shapes and the effective rigidity of their magnetic subsystems.

1. Effective potential energy of a polygonal ferromagnetic
element

In this Section, we estimate the increment of the potential energy W of magnetic elements
upon displacement of the magnetic vortex core from the equilibrium position. A rigorous ana-
lytical solution to this problem faces great computational difficulties. Therefore, the numerical
modeling is frequently used (see, for example, [11-14]). This calculation is necessary to determine
the parameters of vortex motion using Eq. (1).

Fig. 2. presents the models of ferromagnetic elements. Each element has a domain magneti-
zation structure with a vortex at the center of a magnet. To perform the estimation, we assume
that, upon displacement of the core, the energy of the magnetic subsystem changes mainly due to
an increase in the energy of the magnetostatic interaction of domains. We calculate this energy
using the dipole—dipole approximation. It can be shown that the energy of the magnetostatic in-
teraction of uniformly magnetized triangular regions (domains) can be approximately presented
as the energy of interaction between dipoles located in the medians at a distance of one third of
the height from the base to which the magnetization is parallel (quasi-dipoles). In Fig. 2, these
positions are shown by closed circles with arrows. The value of magnetic moment M of each
dipole is determined by the magnetic moment of the corresponding magnetic domain.

b)

Fig. 2. Models of ferromagnetic nanoelements in the form of a square and a regular triangle

When the core is shifted from the element centers, the domain structure configuration changes,
which is reflected in a change in the domain size and, consequently, in the energy of the interaction
between domains. This process can be considered as a variation in the energy of interaction
between magnetic dipoles (quasi-dipoles), which, in this case, shifted and changed the absolute
values of their magnetic moments.
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Let us enumerate domains as shown in Fig. 2. For the energy of interaction between the n-th
and m-th dipoles, we write

- (Man - 3(Mnrnm)(Mmrnm)> . &)

. 3 5
47 TS 2

Here r,,,, is the radius vector connecting the dipoles and M,, and M,,, are their magnetic mo-
ments. For the magnetic moments, we can write

1 1
M| & MsVi, = 5 MsbS, = 5 Msbah,. (3)

Here Mg is the saturation magnetization, V;, is the domain (prism) volume, S, is the domain
square (triangle), h,, is the altitude of a triangular domain plotted from the core position to the
outer side of the element, b — is the element thickness, and a is the side of a regular polygon.

The vortex core position is specified by length p of its radius vector and azimuth angle ¢.
Obviously, the dipole positions and absolute values of the magnetic moments are determined by
the p and ¢values. Solving a simple geometric problem, we can express the parameters included
in energy (2) through p and ¢. The results of the calculation are given in Tab. 1.

Table 1. Parameters of quasi-dipoles as functions of p and ¢ according to the numeration in
Fig. 2. The absolute values of the magnetic moments are calculated using Eq. (3)

Element Quasijdipoles Cartesian Quasi-dipole magnetic moment
shape coordinates
1
21 = zpcos(9)
1
22 = S(a+ peos(9))
1
el My = S Msba (5 + psin(s) )
1 1
T4 = —g(a — pcos(d)) My = iMsba (% - PCOS(¢))
Square 1 . 1 a .
Y1 = 75((1 — psin(¢)) Ms = 5Msba (5 — psln((b))
1 . 1
Yo = gpsm((ﬁ) My = iMsba (% + PCOS(¢))
1
ys = 3(a+ psin(phi)
Y4 =Yy2
1
1 = 5pcos(e)
1l/a
(2 1
r2=3 (2 +pcos(¢)) M = 5 Msba (af +psm(¢)>
l/a
. T3 = —5 *—PCOS(@
Triangle 3 <2 ) My = iMsba(aT\/g — V3pcos(¢) — PSin(¢))
1/7av3
y1=—5 (% —psin(e) 1
3( 3 ) M3z = =Mgba (a 3 +/3pcos(p) — psin(qS))
1 (a 3 1 osi )) 4 3
Y2 = 3\ psin(¢
Ys = Y2

Taking into account the data from Tab. 1, we obtain the square element energy

27 uoM?2b? a?
Wq(p) = Wiz + Wig + Wiy + Waz + Way + Wy = @MOT; <P2 - 2) ) (4)
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and the triangular element energy

_ 1527 poM32v* [ 5 a?
Wir(p) = Wi + Wiz + Wi = 7 198 na p 7 ) (5)

Importantly, according to the calculation, the energies of both a square and triangular element
are independent of the azimuth angle; i.e. the potential of the vortex core has a cylindrical
symmetry. This is a safety signal, since the potential does not reflect the shape of a magnet.
This is true until the area covered by the vortex reaches the boundary of a magnet. If the
shift is so large that the core appears in the vicinity of the boundary (p & a), then the vortex
distribution will lead to the occurrence of noticeable magnetostatic charges on the lateral surface.
The contribution of the terms related to these charges to the magnetostatic energy will ensure
the dependence of the total potential energy on the lateral surface shape. In this case, the
symmetry of a magnet will be reflected in the functional dependence of the energy on azimuth
angle ¢ [15-18]. Thus, Egs. (4) and (5) are valid as long as the core shift does not lead to the
exit of the magnetization from the lateral surface of a magnet.

The analytical form of Eqgs. (4)—(5) allows us to estimate the initial susceptibilities of na-
noelements. To do that, we obtain the dependence of the total magnetic moment of an element
on applied dc magnetic field H. For simplicity, we assume that the magnetic field is parallel to
the polygon side (directed along the OX axis for both the square and the triangle).

When the external field is applied, the energy of the magnetic subsystem should be added
with the Zeeman energy

Wiot = W(p) — MH. (6)
Switching on the field H, along the positive direction of the z axis (see Fig. 2), leads to the
displacement of the core from the magnet center in the positive direction of the y axis (¢ = /2,
g = +1). or in the opposite direction (¢ = —n/2) if the magnetization in elements rotates
clockwise (¢ = —1)rather than counterclockwise.

The total magnetic moment of an element can be calculated as follows (see Fig. 3). A
domain with the magnetization co-directed with the field grows by the expense of domains the
magnetization of which has the energetically unfavorable direction. Then, for the magnetic
moment of a square element, obtain

M| = %Msba (g + p) - %Msba (% - p) — Msbap. (7)

The search for the equilibrium shift p is conventionally made with regard to Eq. (7):

AWiot N ﬁqugbz
dp 128 ma

Then, for the equilibrium position of the core, obtain

p— MgbaH = 0. (8)

128 ma?
= — . 9
P = 54 1o Msh )

Taking into account (9), for magnetic moment (7) obtain
128 a3
M = xsH, g = — —. 10
Xsq Xsq 54 1o (10)
The calculation for triangular elements, analogously to (7)—(10) yields
24 ma?

L= T 11
X =135 o (11)
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a) b)

H
—

Fig. 3. Occurrence of the magnetic moment in (a) a square and (b) triangular element

2. Collective modes in an ordered array of polygons

The above analytical expressions for energy W (p) allow us to analyze the gyrotropic motion
of vortex cores in the arrays of elements arranged in a certain order, for example, forming a
square lattice (see Fig. 4 for triangular elements).

Fig. 4. Example of an ordered array of triangular elements. The distance between the centers
of elements is . Example of orientation of the magnetization of the core and trajectory of its
motion

Let us continue the discussion of the case when the vortex cores in elements remain fairly
distant from the element edges during the motion induced by, e.g., an ac magnetic field. In this
case, the magnetic subsystems of triangles interact magnetostatically only due to the presence of
a magnetic moment of cores at the center of the vortices. At the vortex center, the magnetization
is perpendicular to the element surface and, depending on the p polarity, can be conditionally
oriented upward (p = 1) or downward (p = —1). The example of the trajectory of the core motion
in the centrosymmetric potential is shown in Fig. 4 for one of the elements. The direction of the
gyrotropic rotation is determined by the sign of the product of polarity and chirality: ¢ = +1.

The energy of interaction of the magnetic moments of the cores of all elements must be
included in the total energy of a system. The energy of the pairwise interaction of the core of
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some selected element with polarity p and another element with polarity p,,, which belongs to
the column with number n in the row with number m can be presented in the form

(dip) _ po 1 12
Wom pnm4 T%m~ (12)

Here 7y = \/(nl + (Znm — 7)) + (Ml + (Ynm — y))? is the distance between the cores, y is the
magnetic moment of the core vortex, x and y are the core shifts along the x and y axes of the
chosen element, respectively, and x,,, and ¥y, are the core shifts along the x and y axes of the
second element with coordinates (n,m), respectively. The summation is made over all n and
m except for the case n = m = 0. For the total energy of the interaction between the chosen
element and the rest matrix, we write

W dip) _ pljl(;ru i)gm . (13)

Then, taking into account (4) or (5), the force acting on the core is

f=-V(W(p)+ W(dip)) =e, <—/<Lx + fpz Prm ( n? 2_ m )Q(x xnm)) "
~ Ynm ) |

[NE ‘Q

)

N R

=~ (n2 + m2)

The designations used here are k = 549 M2b?/(1287a) for squares or £ = 4050 M2b?/(1287a)

for triangles; e, and e, are the unit vectors of the x and y axes, respectively; and & =

3uop?/(4ml®). In addition, the relations p? = 2% + 42, 2,9, Tnm, Ynm < l. were used. It

should be noted that Eqgs. (14) are valid at the symmetric distribution of the polarities of ele-

ments in an infinite array. For instance, at p,, = =1, regardless of n and m, we have either

Pam = (=1)"T™ or ppy = (—1), etc., since, in these cases, the core of a selected element is not

affected by constant forces from the side of its neighbors and has an equilibrium position at the
center of this element.

According to Eq. (14), we write equation of motion (1) in the components

nm4 - 2 nm4 - 2 nm
Gvy+Dvm+<H+€pr (4n? m)) gzpp (4n? m)x o

n,m (n2 + m2) nm (n2 + m2> (15)
4m —n? 4m -n
_va+Dvy+ H+£prnm 5prnm )ynm:().
(n?+ m2) (n?+m?)2

It is reasonable to search for solutions of system of equations (15) in the form of waves
Lo (1, 1) = X5 (1) = iy et kr =), (16)

Here i = /—1 is the imaginary unit, k = k,e, + ke, is the wave vector, r = nle, + mle, is the
radius vector connecting the centers of the chosen element and the element for the column with
number n and the row with number m, and X and Y are the amplitudes of the core shift along
the z and y axes, respectively.

Substituting the trial solutions of (16) into system of equations (15), we obtain the system
of algebraic equations of variables X and Y

{GQY — (iD= ki — €Sy (K, ky)) X =0,

. (17)
GOX — (iDL — k — €Sy (ka, ky)) Y =0
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Here, we used the designations

2

4n? —m
Sy (ky, ky) = Z m (1 — cos(kynl) cos(kyml)),

2 (18)
Sy(krv ky) = Z

2 _
AmT mn (1 — cos(kynl) cos(k,ml)) .
= (02 4+ m2) Y

T
2

Equating the determinant built on the coefficients at X and Y'to zero, we obtain the quadratic
equation of variable €2, the solution of which is

Q= tw —1id, (19)
where
oo [k (5r 68, (k) D2 ] 20
G 1 D? @+ D2
kD

The real part of Eq. (19) — w — determines the angular velocity of the vortex core rotation (the
gyrotropic frequency). The imaginary part § determines the effective damping parameter.

In the long-wavelength limit (k, k, — 0) , the sums turn to zero and we obtain the well-known
expressions for the frequency and damping parameter in a single element [19,20]. Indeed, in this
case, the cores of all disks of the array move synchronously and the dipole-dipole interaction
forces acting on a selected element are compensated pairwise from neighbors with numbers n
and —n, similar to m and —m. In other words, the interaction between the elements in this case
does not affect the gyrotropic frequency. In other cases, Eq. (20) specifies the dispersion law
w(ks, ky).

When creating ordered arrays of ferromagnetic elements, nature chooses the energetically
most favorable state, which corresponds to a checkboard pattern of the polarity signs, i.e., the
state given by the expression p,., = (=1)"T™. In the opposite limit (the least favorable distri-
bution), the polarities of all elements have the same sign (the magnetization at the center of all
vortices is identically directed); i.e., p is independent of numbers n and m. Such a state can be
created by applying a magnetic field exceeding the saturation field perpendicular to the array
plane. The dispersion surfaces for these extreme cases are shown in Fig. 5. The linear sizes of
the cores are, as a rule, smaller than the sizes of elements; therefore, the inequality ¢ < k can
be considered valid.

Basing on Fig. 5, we should emphasize an important feature. At sufficiently large £ values,
in the model with the alternating p signs, there are the wavenumber ranges in which w becomes
imaginary, which is indicative of the aperiodic motion of the cores. This can be qualitatively
explained as follows. The alternation of the polarity sign leads to a decrease in the effective
rigidity of the potential in which the core moves. This obviously follows from Egs. (15) or
(20), where the rigidity x is added with the correction the value and sign of which depend on
the values of polarities p,,,. At different polarity signs, the attraction between the cores of
neighboring elements arises (on the contrary to the repulsion at the same p), which competes
with the restoring force determined by the rigidity . of the magnetic subsystem. As a result, the
restoring force acting on the core becomes so small that it leads to the imaginary w value (20).
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Fig. 5. Dispersion laws w(ky, k,) based on Eq. (20). The frequency in units of x/G is laid off
along the vertical axis. (a) The case of 6 = 0.1w and & = 0.1k and (b) the case of £ = 0.3x. The
surfaces with number 1 correspond to the case of the same polarity of vortices of all elements
and the surfaces with number 2, to the case of a checkboard pattern of the polarity signs

3. Discussion

To sum up the comparison of the properties of arrays of square and triangular elements, we
can emphasize some circumstances that can play a significant role in selecting the objects that
are candidates for use as functional tools for medicine or various spintronic devices. First of all, it
should be noted that the effective rigidities of the magnetic subsystems of square and triangular
elements of the same linear sizes are significantly different. This feature is responsible for the
difference between the initial susceptibilities of the arrays of these elements by almost an order
of magnitude. According to Egs. (10) and (11), we have

Xeg _ 128135
Yer 54 24

13. (22)

This phenomenon was confirmed in our experiment. The arrays of square, triangular, and
circular elements for the experiment were formed by explosive lithography from a continuous film
using high-vacuum thermal sputtering of an 80HXC alloy onto a silicon substrate coated with
a photoresist. The required morphology was formed on the substrate surface using an AZ Nlof
2035 negative photoresist. The magnetic structure and morphology of the obtained elements
were examined on a Veeco MultiMode NanoScope IIla scanning probe microscope.

The surface morphology of the investigated arrays is shown in Fig. 6. The images were
obtained on an atomic force microscope operating in a tapping mode [21,22]. A cantilever was
brought to the surface so that in the lower half-period of the oscillations, the sample surface was
touched. The interaction of the cantilever with the surface in the tapping mode was ensured
by the van der Waals forces, which, at the instant of touching, are added with the elastic force
acting on the cantilever from the surface side.

Fig. 7 shows a typical scan of the magnetic structure obtained using a two-pass technique
in the cantilever frequency modulation mode. The return passage height is zg = 50 nm. The
obtained images allow us to conclude that, in square elements, an equilibrium structure with the
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Fig. 6. Atomic force microscopy images of the surface relief of the arrays of different elements.
The linear sizes of the elements are the same (the diameter is 3 micrometers and the thickness
is 12 nm)

closed magnetic flux (quasi-vortex) of four domains separated by 90-degree Neel walls is most
often implemented, while in triangular elements, the structure is formed by three domains with
120-degree walls. At the center, at the intersection of the diagonals, there is a core similar to
that at the center of circular elements.

Fig. 7. Atomic force microscopy images of the magnetic structure of different elements

The hysteresis loops of the arrays of squares and triangles were obtained on a NanoMOKE
facility. The result is presented in Fig. 8. It can be seen that the slopes of the initial portions of
the curves for square and triangular elements differ by more than an order of magnitude, which
is in good agreement with estimate (22).

Such a significant dependence of the effective rigidity of the magnetic subsystems on the
element shape should be taken into account in designing the basic components, for example,
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storage devices, field sensors, etc. For medicine, square-shaped elements seem to be preferable,
since they more readily respond to an external field, which simplifies the control of their motion
in suspensions and biological liquids. In zero external field, they have a weak total magnetic
moment, since the flux is closed inside an element and the magnetic moment of the central part
of the vortex is small due to the small size of the core.

A

R M, Arb. units
M, Arb. units | P
0.36 0.35 -
.ol ;i ' ‘ L
F AW 4 0.28 o
2) [y 4 b) A
021 i
0.18 | 7 e
 § 0.14 ! ~
4 7/
F A 00713
> — ‘ W / >
60 40 20 20 40 60 H Oe 640 320 ‘f ) 7 320 640 1 Oc

Fig. 8. Hysteresis loops obtained on an array of (a) square and (b) triangular elements. The
loop in (a) was obtained by applying a field along the square side. Plot 1 in (b) was obtained by
applying a field along the triangle edge and plot 2, by applying a field along the triangle height

In addition, a significant difference in the rigidity of the system will affect the resonance
properties of the arrays. The frequencies of the gyrotropic motion of arrays of square elements
were about 400 MHz 400 MI'n [15], while for triangular elements one should expect multiply
higher frequencies. Features of the collective modes for different shapes of elements will be
objects of further investigations.

As intermediate results, in this work, the analytical expressions for the potential energy of
the magnetic vortex core and the dispersion relations were obtained.

This study was supported by the Russian Foundation for Basic Research, project no. 20-02-
00696.
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OcobennocTu PE30OHaHCHOI'O IToBeJleHnd HaMalrHM4Y€eHHOCTHU
B MaCCUBaX TPEYI'OJIbHBIX N KBaJAPaTHbBIX HAHOTOYEK

Buranuit A. OpJios

Cubupckuii dhesepasbHbIil YHUBEPCUTET

Kpacuosipck, Poccuiickas Peeparimst

WNucturyt dusukn nm. JI. B. Kupernckoro CO PAH
Denepanbublii uccaenosarensekuit nearp KHIL CO PAH
Kpacnospck, Poccuiickaa Penepariust

Poman FO. Pynenko

Cubupckuii deiepajbHbIl yHUBEPCUTET

Kpacnosipck, Poccuiickaa Peepariust

Buaagumup C. IIpokoneHnko

Npuna H. Opiosa
Kpacnospckuii rocymapcrBennbiit negarornvyeckuii yausepcurer uMm. B. I1. Acradbesa
Kpacnosipck, Poccuiickas Pejrepariust

Awnnoranusi. TeopeTutueckn MCCIEAyIOTCS KOJUIEKTUBHBIE MOJBI THPOTPOIHOTO JIBUKEHUS siIpA MAar-
HHUTHOTO BUXPs B YIIOPSIIOYEHHBIX MacCuBax (PeppOMarHUTHBIX IJIEHOYHBIX HAHOTOYEK TPEYTOJBLHON U
kBagaparHoit (popM. loydeHsr quCepCHOHHBIE COOTHOIEHUSI. Y YUTHIBAETCS JUIIOJIb-TUIOJIHHOE B3aM-
MOJIefICTBHE MArHUTHBIX MOMEHTOB SJ€p MATCHUTHBIX BUXPEH 3JI€MEHTOB B IPUOIMKEHHH MAJIOTO CMe-
[IEHUsT OT TIOJIOXKEHUsI paBHOBecusi. [lokazaHo, 4To 3P HEKTUBHAS KECTKOCTh MArHUTHOMN MOJICHUCTEMBbI
B TPEYTOJIbHBIX 3JIEMEHTaX 3aMETHO OOJIbIe, YeM B KBAJPATHBIX IIPU OJWHAKOBBIX JIMHEWHBIX pa3Me-
pax. Ob6cy)gaercs MepCleKTUBa UCIIOIb30BaHUS IIJICHOYHBIX HAHOUCKOB-MHOIOYTOJIbHUKOB B KAYECTBE

"HaHOCKAaJbIIesei" I HeMHBA3UBHOM KJIETOYHOM XUPYPIUU OILYXOJIEH.

KuroueBsle ciioBa: auddepeHnuaabHble ypaBHeHus, 3a1a49a Kormm, pacierienne, yCTONInBOCTb, CXO-
JIMMOCTb.
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Introduction

A range of problems associated with branching of parametric integrals is concerned with a
study of the diagonals of power series [1,2] and [3]. It should be noted that much earlier the
concept of the diagonal of a power series was used by A.Poincare [4] to study the anomalies of
planetary motion.

The diagonal of a Laurent power series

F(z)= Z Caz®™ (1)

agZn

is defined as the generating function of a subsequence of coefficients {cq}aecr numbered by
elements a of some sublattice L C Z™ (see [1] and [5]). Such diagonals are called complete.
Diagonals are graded according to the dimension (rank) of the sublattice.

Following [1], we describe the specifics of the problem on the properties of the diagonals of
series for rational functions of n variables

_ P(z) _ P(z1,.-.y2n)
Q(Z) Q(Zly---,zn)’

where P and @ are irreducible polynomials. Consider an arbitrary Laurent series for F' centered

— o g «
F(z) = E [ g Canposan 210 - 2™

agzZm agZm

(2)

at zero:
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It is known that such a series converges in domain Log™'(E), where E is a connected com-
ponent of the complement R™\ Ag of amoeba of the denominator @ [6]. Recall that amoeba Ag
of the polynomial @ or of the algebraic hypersurface

V={z€ (C\0)": Q(z) = 0}
is called the image of V under the mapping Log : (C\0)"” — R", defined by the formula
Log: (z1,...,2n) — (logl|z1],...,log|zn])-

Sometimes instead of the designation Ag we write Ay . According to the result of the article [7],
there is an injective order function

v:E—Z"(|Ng,

mapping each connected component E of the complement R™\ Ay to integer vector v = v(E),
belonging to the Newton polytope N¢ of the polynomial (). Thus, all connected components can
be indexed as {E,}, where v runs over a some subset of integer points from Ng. For example,

P
the Taylor series of a rational function —, Q(0) # 0 converges in the component Ey.

Let us consider in more detail the p-dimensional diagonal of the series (1). Consider a
p-dimensional sublattice [ ¢ L, with a basis ¢V, ..., ¢®. We assume that this basis can be
extended of L by n — p integer vectors ¢tV ... ¢(™ (this assumption equivalent to say that
the totality of all (p x p)-minors of the matrix A = (¢V),...,¢) are mutually prime) (see [§]
or |9, Proposition 4.2.13]). Obviously the matrix

A=(¢W,....q™)

is unimodular, and we can assume it’s determinant equals 1. Directions ¢(*), ..., ¢® define
a diagonals subsequence {Clq}leZi» where [ - ¢ means the product of the (1 x p)-matrix { and
(p x n)-matrix A: lg = l1q™) +--- + lpq(p).

The generating function

do(t) = 3" eyt -l

D
lezl

of the subsequence {ciq}iezy is called the one-sided q-diagonal of the series (1).

We assume that the denominator @ in (2) is not zero at z = 0, so the origin O € Z™ belongs to
the Newton polytope and there is nonempty component Ey of R” \ Ag. We start by the Laurent
series for the function (1) in Log™'(FEy), which is in fact the Taylor series of (1) at z = 0. It is
not hard to prove the following. If p € Log™!(Ej), then dq(t) admits the integral representation

(1) (»)

M
dq(t) = (2732)n /Fp F(z) (21 _Ztl) . fzqm —t,) d?? e %7 3)
where 27 is a monomial 2{* ... 22" and cycle
Iy={2€C":|z|=¢€",... |zn| =€}
is chosen so that
a) poles of F(z) don’t intersect the closed polydisc
U,={2€C":|z1| <€, ... |z < e}
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b) parameters t = (t1,...,t,) satisfy the inequalities |t;| < (") i=1,... p.

Integration loop I, is a preimage Log~'p of the point p from the connected component Fy of
the amoeba Ag complements. Here we prove that the integral which represent the diagonal dg(t)
admits a decrease of the order of integration while preserving the rationality of the integrand.

We will assume that Ng C R?, and the image A™'(Ng) C RZ, here R? and R are the
n-dimensional real variable spaces u u v respectively. Let us denote by N’ projection of the
polyhedron A~™'Ng on the coordinate (n — p)-dimensional plane {v € R" : v; = 0,...,v, = 0},
and by Q'(t,w’) Laurent polynomial Q[(t,w')Ail] from variables v’ = (wp41,...,w,), wherein
t1,...,t, are parameters.

Theorem 1. Diagonal dy(t) in (3) is represented by an integral in the (n — p)-dimensional

complex algebraic torus (C\0)" P of variables wpt1, ..., w, according to the formula
1 A-1,dWpyq ... dwy
dq(t):W / F[(tl,...,tp,wp+1,...,wn) ]m, (4)
Log='(p’)

where
P = ((Ap)pt1,- -, (Ap)n)

belongs to the connected component E(/) of the amoeba A supplement of hypersurface Vi={w e

(C\0)™7 : (¢, w') = 0}.

Proof of the theorem

Under the conditions of the theorem it is assumed that the diagonal (3) is considered for the
P
Taylor series of the rational function F' = @ Therefore, it is automatically assumed that means

Q(0) # 0, and that means that the origin 0 is a vertex of the Newton polytope.
Because the determinant of the integer matrix A is equal to one, inverse matrix to it

S A5
B

is an integer and its elements bg»i) are algebraic complements to the elements q§i). The rows and
columns of this matrix will be denoted by b() and b; respectively. Let us make in the integral

(3) the change of variables

b br
Z=w = (w 1’ 7w )7
or, in a more detail:

b oy bt by bl b

(Z1y. oy 2n) = (W' o wy' w2 cwR Wt e We
First, note that z¢ will pass to w;
(i) q? @ pH pim) qii) b p(n) q,ff)
247 =21t ozt :(w11 cowyt ) ...(wl" Lot ) =

_ w§b<1)’q(i)> - w<b(n))q(i)>
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since (b, ¢()) = §;; is the Kronecker symbol.
Applying our change of variables to the logarithmic differentials, we obtain

b b no (k) b b -1 b{™
dzi _ dwy" .. wg ) _ Doper by wit L wy cowy dwy
P2 b,(tl) b(n) bil) b(n.) °
Wy W, wq Wn,

dz;
Multiplying the obtained expressions for the logarithmic differentials —- (taking into account

3
the properties of the external product of differentials: dw,dw; = 0 u dw;dw; = —dw;dw;), we
get
n 1) _ n (n) _
|A’1|wlziz1 bt wg” =t b 1dw1 oo dwy,  dwy A A dwy
: 1 bil) L wa s bﬁ"’ Wy ... Wy ’

Let us apply the formula for change of variables to the integral (3):

-1 dwy ...dw

= Fl(wy, ... w,)" Wi Wy 1 n

da(1) (2mi)™ / (w3, eom) ](wl—tl)...(wp—tp) Wy .. Wy 5)
S"ﬁ(Fp)

where ¢y is the homomorphism induced by the mapping ¢ : z = w = 24,

The cycle I',, is parameterized in the form
Log !(p) = {z = e*T4 "¢ 1 6 € A([0,2m)")}.
Hence,

- .
r(T,) = fw=2" 12 €T} = {w = 4479 = Log ™ (4p).

In this way,

wr(T)p) ={w: |wi| = e(Ap)l, ey Jwn| = e(A”)”}7

where (Ap); is the i-th component of the vector Ap.
By the Cauchy formula

1 -1 DR
4= G / Fl(wy, ... w,)t ] dwi _dwp dwpsy...dwy

(27rz)”w(rp) wy — t1 ) Wp —tp Wpt1...Wn
we get
dy(t) = @ml)an [( | Fl(t1y ..ty Wpyt, .- ,wn)Al]W, (6)
og™*(p’
where

§ = (A)psis- - -, (Ap)n)

belongs to the connected component E) of the complement of the amoeba Ag: of the hypersurface
V' ={w € (C\0)"?:Q'(t,w') = 0}.
The theorem is proved.
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Let me make the following comment on the reduction of the formula (3) to (6). It is not
difficult to see that the integrand in (3) admits representation in the form

oy a D
f A /\fp A,

where 1 = 1), is a rational differential form of degree n — p, and f; = P t;. The system
of binomial equations f; = 0,..., f, = 0 defines an (n — p)-dimensional complex torus T"~?
(embedded in the torus T™ = (C\ 0)™). In this case, the real torus I', is a p-fold tube over a
real torus v C T"P(in the coordinates w, it is Log~!(Ap’)). Thus, we are in the conditions of
the multiple Leray residue formula (see [10,11]), according to that the integrals in (3) and (6)
coincide.

Example
Consider the example of applying of the theorem to find the integral representation of the
1
diagonal defined by the vectors ¢ = | 1| and g2 = | 2 | of the Taylor series of the function
2

1

F(z) =
1+ 214+ 204+ 23+ 2923
form shown in Fig. 1.

. Newton polytope of the denominator of the function F' has the

degzg

9& 1 deqgza

“dega
Fig. 1. Newton polytope 1 + z1 + 22 + 23 + 2223

For the two-dimensional diagonal dg, 4, (t1,t2) = > cllq(l)qu(z)tlftl; in the set Log™*(Ey),
s/

one has the following integral representation

dq(th t2) =

1 / 1 212923 % zlzgzg dz1 dzo dzg
(27Ti)3r 1+ 21+ 29 + 23+ Z223 (2’12’22’3 — tl)(212%Z§ — tg) Z1 22 Z3 ’
P

where the cycle
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I, ={2€C":|z1| =€, |22| =€, |23] =€}

is chosen so that

a) poles of F(z) don’t intersect the closed polydisc
Uy ={2 € C": || < €™, |22 <€, 23] < ™

b) parameters t = (t1,;) satisfy the inequalities |t;| < (%) i =1,2.

1 1 0 2 -1 0
Now let’s form the matrix A= (1 2 0],then A~ '=[—-1 1 0]. Using replacement
1 21 0 -1 1
AT = w, get 2 = wiwy 'y 2o = wiwiwy s 23 = ws. The denominator of the function F after

replacement is converted to 1 + w?wy ' + wi fwiwy ' + w3z 4+ w] 'wl and Newtonian polytope is

shown in Fig. 2

degws

rrrrrrrrrrrrrrrrrrrrr (—1,1,0)
degiog
(—1,1,—1)
(2, —1,0) k="
“deguo
Fig. 2. Newton polytope 1 + w%w;l + wflw%wgl + w3 + wflw%
The integral after replacement 247" = w looks like this
1 1 W1 * Wo dwi dwse dws
dq(t1,t2) = 753 2 1 —1 1 1 1,1 T

(27i) 1+ w?wy "+ w] wiwg ' +ws +wytwd (w1 — ) (we —ta) wi we ws

P

After integration by the Cauchy formula with the variable w; we obtain the following form
of the diagonal

1 1 w2 dws dwg
dg(tr,t2) = ——5 PI B Ty Tl wy —ty wy wy
(27i) : 1+ tfwy ™+t wyws ™ +ws +t] wy; w2 —1ta w2 ws

ol

We construct the Newton polytope of the denominator of the function F(t1,ws, w3) (Fig. 3).
After integrating with the variable wo we obtain
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degiwg

(0.—1)

(—1,0) (1,0 degu,

Fig. 3. Newton polytope 1 + 2wy " + t; fwiwy ' + w3 + ¢ 'w}

1 1 dw3
dg(t1,t2) = - C— 8

Q( 1 2) (27T’L) / 1+t%t;1+tf1t§w§1 +w3+t;1t% w3 ( )
F "

P

Therefore the integral (7) admits a reduction to the one-dimensional integral (8) with rational

integrand. It is known ( [12], Section 10.2) that such integral is an algebraic function in variables
1, 12.

This work was supported by the Foundation for the Advancement of Theoretical Physics and

Mathematics "BASIS" (no. 18-1-7-60-3).
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Crnncok mMHTErpaJibHbIX IIPeACTaBJICHUN JIJId ANArOHAJINA
CTENIEHHOTO PsJa paluoHaJbHON (PYyHKIINHT

Aprem B. Cenarion
Cubupckuii dejiepaibHbIl yHUBEPCUTET
Kpacuosipck, Poccuiickas @epepariys

Awnnoranus. B pabore npuBoisATCs MHTErpaJIbHbIE IIPEJICTABICHUS JIJIs JIMArOHAJIEN CTEIIEHHBIX PSIIOB.
Takue TpeACTABIICHUS TIOJIYYAIOTCs ITOHMXKEHUEM KPATHOCTU WHTEIPUPOBAHUS JIJIsI U3BECTHOTO paHee
WHTErPAJIbHOTO TIpeicTaBiieHus. [Iporenypa moHmMkeHNnsT KPATHOCTH PEATU3yeTCs B PAMKAX MHOTOMEp-
HOI1 Teopun BerdeToB Jlepe. Ocobyro pojib B KOHCTPYKIIUU HOBBIX MHTEIDAJILHBIX IIPEJICTABIEHUN UrPAaeT
MOHsITHE aMeObl KOMILJIEKCHON aHAJMTUIECKON TUIIEPITOBEPXHOCTH.

KuroueBbie cjioBa: MHOTOMEPHBIE CTEIIEHHBIE PSIIbl, KOMJIEKCHBI MHTErPAJI, HTHTEIPAJIHHOE IIPE/ICTAB-

JieHue, ameba, psiy Teitopa, JMaroHaab CTEIIEHHOTO PsIIA.
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Abstract. Last years the attention to research of anisotropy of the charged particle pitch angle distribu-
tion has considerably increased. Therefore for research of anisotropy dynamics of the proton pitch angle
distribution is used the two-dimensional Phenomenological Model of the Ring Current (PheMRC 2-D),
which includes the radial and pitch angle diffusions with consideration of losses due to wave-particle
interactions. Experimental data are collected on the Polar/MICS satellite during the magnetic storm on
October 21-22, 1999. Solving the non-stationary two-dimensional equation of pitch angle and radial dif-
fusions, numerically was determined the proton pitch angle distribution anisotropy index (or parameter
of the proton pitch angle distribution) for the pitch angle of 90 degrees during the magnetic storm, when
the geomagnetic activity Kp-index changed from 2 in the beginning of a storm up to 7+ in the end of
a storm. Dependence of the perpendicular proton pitch angle distribution anisotropy index with energy
E = 90 keV during the different moments of time from the Mcllwain parameter L (2.26 < L < 6.6) is
received. It is certain at a quantitative level for the magnetic storm on October 21-22;, 1999, when
and where on the nightside of the Earth’s magnetosphere (MLT = 2300) to increase in the geomag-
netic activity Kp-index there is a transition from normal (pancake) proton pitch angle distributions to
butterfly proton pitch angle distributions. That has allowed to determine unequivocally and precisely
the anisotropy dynamics of the proton pitch angle distribution in the given concrete case. It is shown,
that with increase of the geomagnetic activity Kp-index the boundary of isotropic proton pitch angle
distribution comes nearer to the Earth, reaching L = 3.6 at Kp = 7+.

Keywords: magnetosphere, pitch angle distribution, anisotropy, data of the Polar/MICS satellite,
proton flux.
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Introduction

The literature on charged particle pitch angle distributions and an anisotropy of the pitch
angle distributions is enough extensive. For example, modeling the pitch angle distribution on
the dayside of the Earth’s magnetosphere was considered in [1], and on the nightside of the mag-
netosphere — in [2]|. In work [3] it has been offered two-dimensional Phenomenological Model of
Ring Current dynamics in the Earth’s magnetosphere (PheMRC 2-D). In these three works the
non-stationary equation of pitch angle and radial diffusions numerically was solved in a range of
pitch angles from 0° up to 180°. In [4] has been presented the statistical analysis of pitch angle
distribution of radiation belt energetic electrons near the geostationary orbit: CRRES observa-
tions with definition of an pitch angle distribution anisotropy index. A survey of the anisotropy
of the outer electron radiation belt during high-speed-stream-driven storms is presented in [5].

*smolinsv@inbox.ru
© Siberian Federal University. All rights reserved
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An empirical model of pitch angle distributions for energetic electrons (REPAD) in the Earth’s
outer radiation belt has been offered in [6]. In [7] it is in detail considered statistically measur-
ing the amount of pitch angle scattering that energetic electrons undergo as they drift across
the plasmaspheric drainage plume at geosynchronous orbit. The proton and electron radiation
belts at geosynchronous orbit: Statistics and behavior during high-speed stream-driven storms
are presented in [8]. In [9] it is certain the inner magnetosphere ion composition and local time
distribution over a solar cycle with 2001 on 2013 with the indication of an anisotropy index.
And in [10] other an empirical model of radiation belt electron pitch angle distributions based
on Van Allen probes measurements with examples of different typical pitch angle distributions
is offered.

From the review for last years it is visible, that statistical and empirical models an charged
particle pitch angle distribution anisotropy are, and the mathematical models based on the
physics and describing an charged particle pitch angle distribution anisotropy index, possibly,
no.

The purpose of the given work is more exact quantitative research of anisotropy dynam-
ics of the proton pitch angle distribution during the magnetic storm in the Earth’s magneto-
sphere. Therefore it was used the two-dimensional Phenomenological Model of the Ring Current
(PheMRC 2-D) [3], based on the physics and describing the perpendicular proton pitch angle
distribution anisotropy index depending from the Mcllwain parameter L and the geomagnetic
activity Kp-index.

1. The mathematical model

The offered model, PheMRC 2-D, is based on the general two-dimensional Fokker-Planck
equation for phase space density, which describes the radial and pitch angle diffusions and losses
due to charge exchange and wave-particle interactions. It can be expressed by the following
equation [3]

0f _ 120 (pap 00\, 1 0 (p of da
0t7L8L <L DLL@L Jrsinozaoz Daasmaanrsmadtf (1)
S A
Twp

Here, f is the phase space density (or distribution function); ¢ is the time; L is the McIlwain
parameter; « is the local pitch angle; Dy is the radial diffusion coefficient; D, is the pitch
angle diffusion coefficient; do/dt is the pitch angle velocity; A is the rate of loss due to proton
neutralization by exchange of charges; T, is the lifetime due to wave-particle interactions; S|
is the perpendicular coeflicient of the particle source function (o = 90°).

Equation (1) describes the radial diffusion in the "conventional" space with losses due to
charge exchange and the pitch angle diffusion in the velocity space with losses due to the
wave-particle interactions. Therefore, a corresponding diffusion coefficient in the velocity space
(namely, the pitch angle diffusion coefficient) is needed. The loss function is conditioned by the
fall of charged particles in the so-called "loss cone" as a result of wave-particle interactions. The
particle source function can be related, for example, to charged particles that move from the tail
of the magnetosphere toward the Earth when affected by magnetospheric convection.

Equation (1) is a non-stationary, two-dimensional, second-order, partial differential equation.
Its solution should be sought as a function of L, o, and t. We use this solution to determine
the evolution of the pitch angle distribution of the Earth’s ring current protons and to find the
perpendicular (o = 90°) proton pitch angle distribution anisotropy index as a function of the
Mecllwain parameter L during a given magnetic storm.
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The initial and boundary conditions are given for the following ranges of the Mcllwain param-
eter L and pitch angle a: 2.26 < L < 6.6, 0°< a < 180°. We also use the relationship between
the differential particle flux j and the phase space density f: j = 2mEf. In detail in [3].

Thus, non-stationary two-dimensional partial differential equation (1) is solved numerically
by a finite-element projection method with initial and variable boundary conditions.

2. Results of calculations

Next, we study the dynamics of ring current protons during a magnetic storm. We consider
the case of the magnetic storm of October 21-22, 1999, considered by Ebihara et al. [11]. The
initial time was 0613 UT of October 21, 1999, which corresponds to 0000 RT (Run Time — time
of modeling) (magnetically quiet conditions). The time interval taken for calculations was 2030
RT (the final time — 0243 UT of October 22, 1999) (the main phase of the magnetic storm). At
the initial time (0000 RT) Kp = 2 and then increases up to Kp = 7+. All model calculations
were conducted for the nightside of the Earth’s magnetosphere (2300 MLT) for protons with
energy of £ = 90 keV.

To accurately calculate the perpendicular (o« = 90°) anisotropy index ~y, of the pitch angle
distribution of charged particles at any time, one should use the formula [3]

1 [ d?%j
= —— —_ . 2
T JL (da2 > 1L @
. . . o d?j : : .
Or approximately this can be done if the second derivative Tnz is determined with good
)1

accuracy from experimental data.
We approximate the initial pitch angle distribution of protons (0000 RT) by dependence (the
data measured on the Polar/MICS satellite, in detail in [3] L = 5, MLT = 2300, E = 90 keV)

o (@) = j10sin?*° o = 36948 sin® " o (3)

with the dimension [jy ()] = (cm? s sr keV) L.

Before the storm, the pitch angle distribution is pancake-like but becomes butterfly-like in
the main phase of the storm. The same tendency was noted by Ebihara et al. [11] and is in
detail confirmed in [3].

The model proton fluxes were compared with the data measured on the Polar/MICS satellite
during the magnetic storm of October 21-22; 1999. There is good agreement between simulated
fluxes and experimental data [3].

Thus, the model PheMRC 2-D (1) quantitatively describes the model evolution of proton
pitch angle distributions during the magnetic storm on October 21-22, 1999, which is associated
with the concurrent effect of the physical mechanisms of radial diffusion, pitch angle diffusion,
,charge exchange, wave-particle interactions, splitting of drift shells of the electric field, and
particle injection and drift.

Using the formula (2), dependence of a perpendicular (v = 90°) proton pitch angle distri-
bution anisotropy index v, with energy E = 90 keV at the different moments of time (Fig. 1)
from the Mcllwain parameter L (2.26 < L < 6.6) is received. It is certain at a quantitative level
(Fig. 1) for the magnetic storm on October 21-22, 1999, when and where on the nightside of the
Earth’s magnetosphere (MLT = 2300) with increase in an geomagnetic activity Kp-index there is
a transition from normal or pancake-like proton pitch angle distributions (v, >0) to butterfly-like
proton pitch angle distributions (v, <0).

At v, = 0 the proton pitch angle distribution is isotropic. Therefore from figure 1 it is visible,
that with increase in an geomagnetic activity Kp-index the boundary of isotropic proton pitch
angle distribution comes nearer to the Earth, reaching L ~ 3.6 at Kp = 7+.
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Protons, E =90 keV, MLT = 23:00

S = N W kA AN
T

Perpendicular anisotropy index, A

1
2 2.5 3 35 4 4.5 5 5.5 6 6.5 7
L

Fig. 1. Dependence of a perpendicular (« = 90°) proton pitch angle distribution anisotropy index
v, with energy £ = 90 keV, MLT = 2300 at the different moments of time from the Mcllwain
parameter L (2.26 < L < 6.6) and the geomagnetic activity Kp-index

Thus, the lead calculations have allowed to determine unequivocally and precisely the
anisotropy dynamics of the proton pitch angle distribution in the given concrete case, using
the proton pitch angle distribution anisotropy index for the pitch angle of 90 degrees v, (Fig. 1).

Conclusion

1. The anisotropy dynamics of the ring current proton pitch angle distribution (E = 90 keV)
in the inner Earth’s magnetosphere (2.26 < L < 6.6, MLT = 2300) with variable boundary
conditions during the magnetic storm of October 21-22, 1999, was investigated with the
use of two-dimensional Phenomenological Model of the Ring Current (PheMRC 2-D) (1).

2. PheMRC 2-D takes into account the radial and pitch angle diffusions and describes the
losses due to charge exchange and wave-particle interactions.

3. The model proton fluxes were compared with the data measured on the Polar/MICS satel-
lite during the magnetic storm of October 21-22, 1999. There is good agreement between
simulated fluxes and experimental data.

4. We confirmed the experimentally revealed tendency that the pitch angle distribution is
pancake-like before the magnetic storm and that it becomes butterfly-like in the main
phase of the storm.

5. With increase in an geomagnetic activity K p-index the boundary of isotropic proton pitch
angle distribution comes nearer to the Earth, reaching L ~ 3.6 at Kp = 7+.

6. It is necessary to develop and specify in the further, for example, empirical (semiempirical)
models of differential flux definition of charged particles at a pitch angle of @« = 90° 5, and
the anisotropy index of the pitch angle distribution of charged particles at a pitch angle
of & = 90° v, under different geophysical conditions, especially for magnetically quiet
conditions.
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7. With appropriate experimental data, the model PheMRC 2-D can be used to simulate the

anisotropy dynamics of charged particles pitch angle distribution in the Jovian and Saturn
magnetospheres.
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MopenmupoBaHue AUHAMUKN aHU30TPOIIMNA NUTY-yTJIOBOTO
pacnpe/iejieHrsi IIPOTOHOB B MaruuTocdepe 3eMJn

Cepreit B. Cmonann
Cubupckuii deiepajbHbIl yHUBEPCUTET
Kpacuosipck, Poccuiickas @epeparimst

Amnnoranus. B nocsieiHue rojibl BHUMAaHUE K HCCJIEJOBAHUIO aHU30TPOIMH IMUTY-YIJIOBOI'O PaCIpe/ie-
JIEHUSI 3aPsI?KEHHBIX YaCTUI[ 3HATUTEILHO Bo3pocio. IlosToMy njst mcciaenoBaHust IUHAMUKYE aHH30TPO-
MY MATY-YTJIOBOTO PACIPE/IeJIEHNsI IIPOTOHOB HCIOJIb3YeTCs IByMepHas (heHOMEHOJIOTUYIEeCKas MOJeNb
kousbresoro Toka PheMRC 2-D (two-dimensional Phenomenological Model of the Ring Current), xoro-
pasi BKJIIOYAeT PAJUaIbHYyIO U NUTI-YIVIOBYIO Auddy3Un ¢ yIeTOM MOTEPH BCJIEACTBUE B3aMMOICHCTBUIT
BOJIHA-YACTHUIA. DKCIEPUMEHTAJIbHbIE NaHHble coOpanbl Ha ciyTHuKe Polar/MICS Bo BpeMst MarHuTHO
6ypu 2122 oxrsabpst 1999 r. Pemasi HecranmonapHoe JByMEpHOE ypaBHEHHE IIUTY-YIVIOBOW M Pajuaiib-
Ot muddy3uil, IUCICHHO ONPEEISIA UHIEKC aHH30TPOINN [IATY-YTJIOBOIO PACIPEIEICHNs IPOTOHOB
(nu IOKa3aTes b IUTY-yTII0BOIO PACIPEIesIeHNs] IPOTOHOB) Jyist muTd-yrya 90 rpaycoB BO BpeMsl Mar-
HATHOI Oypw, Korga K p-HHIEKC 'eOMarHUTHOM aKTHUBHOCTHM M3MEHSUICS OT 2 B Hadvaje Oypu 0 7+ B
xonne Oypu. Ilosyuena 3aBECHMOCTD HEPIEHINKYJISIPDHOIO MHIEKCA AHU30TPOIHMM MUTY-YIJIOBOTO pac-
npesiesiennst IpOTOHOB ¢ dHeprueit £ = 90 k3B B pa3uble MoMeHTHI BpeMenu oT napamerpa Maxllnseii-
Ha L (2.26 < L < 6.6). OnpesiesieHO Ha KOJMYECTBEHHOM YDOBHE JUIsl MarHUTHOH Gypu 21-22 okTsaGpsi
1999 r., xorma u rae Ha HOUHON cropoHe marauTocdepsr 3emsmm (MLT = 2300) ¢ ysesmuenmem Kp-
MHJIEKCA TEOMArHUTHON aKTUBHOCTU MMEETCs IIE€PEX0] OT HOPMAJBHBIX (6IMHONOMOOHDIX) MUTHU-Y JIOBBIX
PpacIpe/ieJIeHnii IPOTOHOB K 6ab0YIKOIOA00HBIM IIUTY-YIJIOBBIM PACIIPEIEJIEHUSIM. DTO [T03BOJIUIIO OLIpeIe-
JINTH OAHO3HAYHO M TOYHO AUMHAMUKY AHW3OTPOINYU IIUTI-YIVIOBOTO PACIPEEICHHS IIPOTOHOB B JAHHOM
KoHKpeTHOM ciydae. [lokazaHo, ¥To c yBenumduennem Kp-mHjeKca eOMAarHUTHONH aKTUBHOCTU TDAaHMIIA
M30TPOITHOIO IIUTY-YIJIOBOI'O PaCIpeIe/IeH sl IPOTOHOB NpUOIIIKaeTcs K 3emite, gocruras L ~ 3.6 upu

Kp =T7+.
KunroueBble cioBa: marauTocdepa, MUTI-YIIOBOE paclpeliesleHre, aHU30TPOINNs, NAHHbIE CIIyTHHKA
Polar/MICS, noTOK IPOTOHOB.
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Abstract. The problem of finding all maximal induced bicliques of a hypergraph is considered in this
paper. Theorem on connection between induced bicliques of the hypergraph H and corresponding vertex
graph Lo(H) is proved. An algorithm for finding all maximal induced bicliques is proposed. Results of
computational experiments with the use of the proposed algorithm are presented.
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A hypergraph is an extension of classical graph in which an edge of a graph can join any num-
ber of vertices. Traditionally hypergraphs have found practical application in the development
of relational databases and combinatorial chemistry [1,2]. Ability to combine multiple vertices
in one edge provides a powerful tool to study processes in various networks. Thus, hypergraphs
are actively used in modelling road and telecommunication networks [3,4]. They are also used
for constructing semantic networks when processing texts in natural languages [5, 6].

Many problems in studies of such networks are reduced to problems of determining various
configurations. Configuration means any system of subsets of a finite set [2]. Of particular interest
are problems of enumeration type [2], in which the existence of configurations is beyond doubt but
there are two problems: find the number of configurations and the method of their representation.
Considering that networks are representable by hypergraphs the search for configurations can be
conveniently formulated in the language of (0, 1)-matrices [3]|. In this case, the problem of finding
all maximal induced bicliques of hypergraph can be reduced to the problem of constructing
complete submatrices [4]. Let us note that problems of finding such configurations are #P-
complete [5].

The problem of finding all maximal induced bicliques for each given hypergraph, which is
called Maximal Induced Biclique Generation Problem for Hypergraphs (MIBGP for Hyper-
graphs) is studied in the paper. This problem arises in various applications connected with
data mining in many fields. For example, in telecommunication networks maximal bicliques
used for route organizing and defining subnets for marking them [3,7]. In metabolic and ge-
netic networks maximal bicliques are used to represent the interrelation between organisms and
different external conditions [8-10]. In marketing maximal bicliques allow one to form social
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recommendations and product bundling [8-10]. Maximal bicliques are used for clustering data
in various fields [11].

A new algorithm for finding all maximal induced bicliques in hypergraph is proposed in the
paper. The theorem on the interrelation between induced bicliques of hypergraph and corre-
sponding special vertex graph is proved. The theorem on time complexity and correctness of the
proposed algorithm is also proved.

1. Statement of problem of finding all maximal induced
bicliques of hypergraph

Let a hypergraph H = (X,U) be given, where X is a finite set of vertices and U is a finite
family of hyperedges of hypergraph at the same time |X| > 1, |U| > 1, and any hyperedge of
hypergraph is a subset of the set X. Let us assume that X (u) is a set of all vertices that incident
to the hyperedge u € U, and U(x) is a set of all hyperedges which incident to the vertex z € X.
One of the ways to define hypergraph is incidence (0, 1)-matrix I, where 1 is put in the case when
hyperedge contains vertex and 0 otherwise. The degree of hyperedge u € U is the cardinality of
set | X (u)|. Let us introduce definition that is necessary for further presentation [12].

Definition 1.1. A hypergraph H' = (X', U’) is called the subhypergraph induced by the set of
vertices X', where U' = {u': X(v') = X(u) N X' # @,u € U}.

Note that in Definition 1.1 | X (u) N X'| > 2 and |u/| = 1 for U’.

The following definition of bipartiteness of hypergraph is known, which is similar to 2-coloring.
A hypergraph H = (X, U) is called the bipartite when the set of vertices X can be divided into
two sets Sp and S in such a way that Sy US; = X, SyNS; = @ and | X (u) N S| =1 is true for
any hyperedge u € U [13]. To prove the main theorem, the following definition of bipartition is
introduced.

Definition 1.2. The subhypergraph H' = (X', U’) induced by the set of vertices X' is bipartite
if there exists such partition SoUS; = X’ that SoNS1 = @ and |SoNX(uv)] <1, [S1NX (W) <1
is true for allu' € U’.

Definition 1.3. A vertex graph of hypergraph H = (X,U) is called the graph Lo(H) = (X, E)
which set of vertices is equal to the set of vertices X of hypergraph H while two vertices of Lo(H)
are adjacent if and only if corresponding vertices of hypergraph H are adjacent.

Theorem 1.1. The subhypergraph H' = (X', U’") is bipartite if and only if vertex graph Lo(H)
of hypergraph H contains a bipartite subgraph induced by the set of vertices X'.

Proof. Let us prove the sufficiency. If hypergraph H contains a bipartite subgraph H' = (X', U’)
then Lo(H) contains a bipartite subgraph induced by the set X”.

The proof follows directly from Definitions 1.1-1.3. Hyperedge u € U of hypergraph H
generates hyperedge v’ in hypergraph H’. Then, according to Definition 1.1, the degree of
hyperedge u can be greater then ', that is, |u| > |u’|. However, for bipartite subhypergraph
H' = (X',U’) the degree of any hyperedge u’ € U’ does not exceed two. It follows from Definition
1.2. This is because if | X (u')| > 2 then requirement |SoNX (u)| < 1, [S1NX (u)| < 1 is violated,
where SoU S = X’ and SyNS; = @. Thus, if subhypergraph H' = (X', U’) is bipartite then by
Definition 1.3 vertex graph Lo (H') is bipartite as well. On the other hand, vertex graph Lo(H')
is the subgraph of Lo(H) induced by the set X’. Therefore, Lo(H’) requires bipartite subgraph
of vertex graph Lo(H) of hypergraph H.
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Let us first prove the necessity. If vertex graph Lo(H) of the hypergraph H contains the
bipartite subgraph induced by the set X’ then there exists the bipartite subhypergraph H' =
(X7, U".

Let bipartite subgraph with set of vertices X’ with parts Sy and S; exists in graph Lo(H),
where SoU S = X', SpNS; = @. Let us consider the subhypergraph H' = (X', U’) induced by
the set X’ in the hypergraph H = (X,U). According to Definition 1.1, a set of hyperedges has
form U' = {u': X(v') = X(u)N X’ # @,u € U} in subhypergraph H’. It follows from Definition
1.3 that for any hyperedge v € U a set X (u) forms a complete subgraph in the vertex graph
Lo (H). Tt is known that any bipartite graph has no complete subgraphs with number of vertices
more then two [14]. Hence, any hyperedge u’' € U’ satisfies the inequalities | X (u') N Sp| < 1 and
[ X ()N S1| <1 and |u] <2 O

Definition 1.4. A bipartite graph is called the complete bipartite graph (biclique) if each vertice
of one part is connected with all vertices from the second part.

This definition can be formulated differently. If bipartite graph contains all possible edges
that do not violate the bipartiteness condition then such graph is called the complete bipartite
graph. A number of graph problems which belong to the class of fP-complete or N P-complete
are reduced to the search of bicliques [15]. In the general case a number of maximal bicliques
depends exponentially on the size of the graph [16].

Definition 1.5. A subhypergraph H' = (X' ,U’) induced by the set of vertices X' such that
SoUS1 =X', SonNS1 =0 and U’ = : sg, 81 € X(u),s0 € Sp, $1 € S is called bipartite induced
subhypergraph of hypergraph H.

In what follows, by an induced bicliques of hypergraph is meant a complete bipartite induced
subhypergraph of hypergraph H in the sense of Definition 1.5.

Definition 1.6. A biclique that can not be extended with additional adjacent vertices is called the
mazimal induced biclique. It means that there is no another biclique which completely includes
the maximal biclique.

Definition 1.6 is true for both graphs and hypergraphs.

The problem of finding maximal biclique is well known in graph theory. There are two variants
of this problem: find a maximal biclique with maximal number of vertices and find a maximal
biclique with maximal number of edges. These problems arise in detection of anomalies in data,
in analysing gene structures and social structures [10]. Both variants are N P-hard for general
graphs [17].

Another problem associated with maximal biclique is Maximal Biclique Generation Problem
(MBGP). It consists in finding all maximal bicliques for a graph. It is known that MBGP
cannot be solved in polynomial time with respect to the size of input since the size of output
set can be exponentially large [17]. The complexity of this problem is comparable with the
complexity of problem of searching of one maximal biclique which is N P-hard [10]. The problem
of maximal biclique generation can be extended to hypergraph. Such case was investigated for
bihypergraphs [13].

In this paper the problem of Maximal Induced Biclique Generation Problem for Hypergraphs
(MIBGP for Hypergraphs) is studied.

MIBGP for Hypergraphs. A hypergraph H = (X, U) without double hyperedges is given.
It is necessary to find a set of all maximal induced bicliques.
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Note that problem of finding maximal induced bicliques is connected with searching of ma-
trices of special form [18]. Let us consider interrelation between the problem of finding maximal
induced bicliques and the problem of finding maximal complete submatrices of (0, 1)-matrix.

An adjacency matrix of the vertex graph Lo(H) of hypergraph H is denoted as A. Let us
show the form of (0,1) adjacency matrix of Lo(H') for corresponding bipartite subhypergraph
H' = (X',U’). Here Sy, S; are parts of hypergraph H with cardinality ¢ and d, respectively.
Since Lo(H') is also the bipartite graph then adjacency matrix has form

/(O B
a=(gh o). <1>

where O., Oy are zero matrices of sizes c and d, respectively, and B’ is the matrix of size ¢ xd which
represents the adjacency of vertices between parts Sy and S;. Obviously, when subhypergraph
H’ is biclique then matrix B is a complete submatrix of matrix A. It is easy to show that any
submatrix can be chosen from the set of all maximally complete submatrices in linear time with
respect to the size of submatrix. Thus, in order to find induced bicliques in the hypergraph
H = (X,U) it is required to find such complete submatrices B’ of adjacency matrix A of vertex
graph Lo(H) for which there is a submatrix of form (1). This is related to the problem of finding
all maximally complete submatrices of the (0, 1)-matrix.

Maximal complete submatrices can represent various combinatorial objects [19]. The problem
of finding such submatrices is enumerative and belongs to the complexity class of §P-complete
problems [5,19]. Algorithms for finding all maximal complete submatrices have high complexity
with respect to the size of input matrix.

2. Algorithm of finding all maximal induced bicliques
of hypergraph

Let both set of vertices and set of hyperedges of hypergraph H are lexicographically ordered.

In proposed algorithm a transition from hypergraph H to vertex graph Lo(H) is considered.
Adjacency matrix of Lo(H) is represented as hypergraph ® = (X¢,Us). Let us introduce a
definition of I-layer of hypergraph ® with square matrix. Let us consider a subhypergraph &’
induced by a set of vertices Sy C X¢ and a set of hyperedges S; C Usg. If matrix of ®' satisfy
form (1) then @’ is called induced biclique, and it is denoted by (Sp, S1). The set of all induced
bicliques (Sp, S1) where |Sp| = 1 is called the Il-layer of hypergraph ®.

The main idea of the algorithm involves generation of all induced bicliques for all I-layers
and then choosing from them maximal induced bicliques. The HFindMIB algorithm diagram is
shown in Fig. 1. Finding all maximal induced bicliques of hypergraph H is required in MIBGP for
Hypergraphs. Proposed HFindMIB algorithm solves this problem in three stages. The transition
from input hypergraph H to vertex graph Lo(H) is realized on the initialization stage. All I-
layers for adjacency matrix of vertex graph Lo(H) represented as hypergraph @ are generated
on the generation stage. Finally, all maximal induced bicliques are selected from all generated
l-layers n the filtration stage. This provides all maximal induced bicliques for hypergraph H. Let
us shown that HFindMIB algorithm solves MIBGP for Hypergraphs correctly and estimate its
time complexity. The proof of the following theorem is constructive with respect to the structure
of the algorithm.
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Fig. 1. Diagram of the HFindMIB algorithm

Theorem 2.1. Let A be the mazimum vertex degree of hypergraph H = (X, U). Then HFindMIB
algorithm correctly finds all mazximal induced bicliques of the hypergraph, and it requires time that

is not more than (’)(22A CA - (IMBC| + A3 -log(2%8)) + |X|2>.

Proof. The HFindMIB algorithm consists of three stages. Let us consider and evaluate each
stage sequentially.

Initialization stage. The HFindMIB algorithm requires a hypergraph H = (X, U) with max-
imum vertex degree A as input data. The algorithm produces the vertex graph Lo(H) in time
O ( | X \2) [20]. In order to construct all induced bicliques of hypergraph H at generation phase
the ability to quickly access any subset that consists of [ rows in adjacency matrix of vertex
graph Lo(H) is needed. To achieve this artificial method is proposed. Let us fix numeration
of vertices for vertex graph Lo(H). Let us define a new hypergraph ® = (Xg,Us) as follows.
The set of vertices Xg¢ coincides up to numbering with the set of vertices of the graph Lo(H).
The set of hyperedges Ug is a system of subsets from X¢ and it is constructed in accordance
with the columns of adjacency matrix of the vertex graph Lo(H). Let us note that hypergraph
® does not allow any renumbering of vertices or hyperedges. This is necessary for one-to-one
correspondence between hypergraph ® and adjacency matrix of the vertex graph Lo(H). The
time requirement of the initialization stage is O(]X|?).

Generation stage. Sets of all I-layers P, = {(Sp,S1): SoNS1 =@}, 1 =1,...,A are obtained
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after performing the generation stage. These sets contain all induced bicliques of the hypergraph
H. Generation is carried out as follows. Sets P, are formed for the corresponding [-layers, where
I =1,...,A. For each value of | function GenerateCombinations(®,l) are executed. This
function generates all possible subsets X’ C X¢(u) for each hyperedge u € Ug such that | X'| =1
and X’ satisfy (1). Form (1) ensures that all vertices of X’ are not adjacent with each other. The
set of all such subsets of [-layer of hyperedge u € Usg is denoted as C!. Each generated set X' is
considered as a part Sy of biclique. Since hypergraph ® represents adjacency matrix of Lo(H)
then any u € Ug can be treated as vertex of the hypergraph H. A part S; for corresponding set
X' € C! is formed from hyperedges u € Ug such that they do not violate (1). If addition of u to
part Sy violates (1) then current biclique is split in two (Sp,.S1) and (Sp, S1 U ), where S; Uwu
is the union of elements of S; with u such that they are not adjacent and satisfy (1). Thus, set
P, contains all induced bicliques for which |Sp| = .

Let us evaluate complexity of the generation stage. Since hypergraph ® = (Xg,Us) cor-
responds to the adjacency matrix of the graph Lo(H) then cardinality of any Xg(u) does not
exceed A, where u € Ug. This is because maximal degree of the vertice of hypergraph H is equal
to A. Hence, number of all possible subsets X’ € C! is less than Cl. Cardinality of parts Sp, S
of biclique does not exceed A for the same reason. Therefore, the number of possible parts S;
for any part Sy can be estimated at 2. Obviously that this estimate much higher than the real
number of possible induced bicliques because of form (1). So number of all induced bicliques for
I-layer does not exceed CY - 22. For all [-layers the following estimation is true

28 .CRA+---+28.C5 =22 (CA +---+C5) =22 28 =0 (222).

Let us note that any subset X’ € C! is lexicographically ordered so any X/ and X/, from C!, are
comparable. This allows one to store and refresh sets P, with tree structures like red-black tree.
Subsets X| and X} can be compared in a time O(A) because | X’'| < A. Search and addition
of elements in red-black tree can be done in a time O(A - log(2%4)) [21]. Checking form (1) is
required for split operation that can be done in a time O(A?) and search for adjacent vertices
in part S; can be done in a time O(A). So generation phase can be done in time that does not
exceed O(222 - A - log (222)).

Filtration stage. A set of all induced bicliques P is formed from sets P, which are [-layers of
the hypergraph. It was shown that sets P, contain all induced bicliques with parts Sy, 57 that
|So| =1 and |S1| < A. Union of sets P, into set P can be done in a time O(1). Filtration stage
cleans set P from redundant and embedded induced bicliques. Bicliques (Sp,S1) and (5§, S7)
where Sy = S} and S; = S so (So,51) and (S),S]) are generated according to the specifics
of generation. To find all maximal induced bicliques it is required to determine such bicliques
that are embedded in others. Complexity of this process depends on the size of output set of
all maximal induced bicliques MBC(®). Comparison and detection of embedded bicliques is
done in Compcm"e((So7 S1), (Sh, S{)) procedure. This procedure is called for each element of P
and compares it with all elements of MBC(®). Let us define (Sp, S1) C (5§, S1) as follows. If
So € 53,51 €81 or S C Sp,So C 5] then biclique (Sp, S1) is embedded in (S, S7). If induced
biclique (So, S1) £ (S}, S1), where (S(,S]) € P, then it is considered as maximal and it is added
into the set MBC(®). Such operation takes 4- A operations. It is required to filter 222 elements
of set P and compare them with the number of elements |[MBC(®)|. Hence, filtration stage can
be done in a time O (224 - A |[MBC(®)|) time. According to Theorem 1.1 a set MBC(®) is
equivalent to the set of all maximal induced bicliques of hypergraph H. After filtration stage
only maximal induced bicliques is extracted from the set P so the HFindMIB algorithm correctly
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solves MIBGP for Hypergraphs.
Combining the complexity of each stage of the HFindMIB algorithm, we obtain that resulting
time does not exceed

(’)(22A WANS (|MBC| + A3 -10g(22A)) + |X|2).

O

Complexity of the HFindMIB algorithm given in Theorem 2.1 depends on the size of set

MBC. This is feature of MIBGP for Hypergraphs which is an enumeration problem. Besides

the estimate depends on the value of A. However, it is overestimated since some of the subsets
at each of the [-layers does not form a part of biclique.

3. Computational experiments

To evaluate the effectiveness of solution of the MIBGP for Hypergraphs with the use of
the proposed HFindMIB algorithm computational experiments were performed. Hypergraphs
H = (X,U) with various numbers of vertices | X | and hyperedges |U| and with various maximum
vertex degree A were used in experiments. Multiple hypergraphs with the same number of
vertices and with maximum degree of vertexes A were generated. Number of vertices of such
hypergraphs was constant but number of hyperedges was varied. Computational experiments
were performed on a PC with an AMD Ryzen 5 3600 6-Core Processor 3.60 GHz and 16 GB of
RAM. Averaged results of experiments for generated hypergraphs are presented in Table 1.

Table 1. Results of computational experiments

Al |X| |U| |IMBC| | t, clocks
100 88,5 192 27,7
, | 500 | 4388 | 9651 | 4469

1000 | 870,1 | 1943,3 | 1803,2
2500 | 2186,6 | 48454 | 12726,8
100 | 78,9 | 4438 | 101,1
500 | 3715 | 23043 | 2601

5 000 [ 7324 | 46241 | 113211
2500 | 1830 | 11615,0 | 74750.4
100 | 735 | 818,2 367.5

o [ 500 | 330 | 42859 | 09043

1000 | 648,3 | 8633,6 | 55452,6
2500 | 1586,5 | 21813,7 | 239831

Column marked with |U| represents average number of hyperedges for hypergraph with equal
number of vertices and maximal degree of vertices A. Columns marked with |[MBC| and ¢
represent an average cardinality of the set of maximal induced bicliques and an average search
time of the HFindMIB algorithm, respectively. The time is represented in CPU cycles. One CPU
cycle time was 0,001 seconds. As can be seen from Table 1 execution time of the HFindMIB
algorithm essentially depends on cardinality of set MBC. This is typical for the problem of
finding all maximal induced bicliques since their number can exponentially depend on the size
of the hypergraph. Other algorithms for finding all maximal induced bicliques have similar time
complexity [22,23].
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Conclusion

The problem of finding all maximal induced bicliques of hypergraph is studied in the paper.
The HFindMIB algorithm for solution of this problem is proposed. The HFindMIB algorithm is
based on the theorem on equivalence of induced bicliques of the hypergraph H and the vertex
graph Lo(H). The proof of the theorem is presented in the paper. It was shown that the proposed

HFindMIB algorithm has time complexity which is not in excess of O <22A “A - (IMBC| + A3 -

1og(22A)) + |X|2), where A is the maximum vertex degree of hypergraph H.

The structure of the HFindMIB algorithm allows the use of parallel computing technologies
to speed up the performance of the its algorithm. Refinement of the theoretical estimate of the
time complexity of the algorithm is the subject for future research.

This work was supported by the Krasnoyarsk Mathematical Center and financed by the Min-
istry of Science and Higher Education of the Russian Federation in the framework of the establish-
ment and development of regional Centers for Mathematics Research and Education (Agreement
no. 075-02-2020-1534/1).
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O 3ajade mepeducIeHns BCeX MaKCUMaJIbHBIX
WH/TIyIIMPOBAHHBIX OMKJIMK runeprpada

Anekcanap A. CojigaTeHKO

Hapbsa B. CemenoBa
Cubupckuii dheepasbHbIii YHUBEPCUTET
Kpacnosipck, Poccuiickass @eneparius

Awnnoranusi. B pabore paccmaTpuBaeTcs 3a/1a9a IOUCKA BCEX MAKCUMAJIbHBIX WHIYITNPOBAHHBIX OMKJINK
runieprpada. lokazana reopema o CBSI3U UH/IYIIUPOBAHHBIX OMKJIUK rutieprpada H u BepmuHHOrO rpada
Lo(H). IlpeayioxkeH aaropuTM HaXOXKJIEHUsSI BCEX MAKCUMAJIbHBIX WHIYIIMPOBAHHBIX OUKINK. [IpuBeaeHa
TEOPETUYECKasi OIEHKA CJIOXKHOCTHU IIPE/JIATA€MOTO aJTOPUTMa U JOKA3ATEJIHCTBO €r0 KOPPEKTHOCTH.
[IpuBeieHbI BBIYUCINTEbHBIE SKCIIEPUMEHTDI.

Kirouesnie ciioBa: I‘I/Il'[epra(b7 MaKCUMaJIbHbI€ UHAYIIUPDOBaHHbIC 6I/IKJ'II/IKI/I, AJITOPUTM IIOUCKA.
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Abstract. We discuss the construction of a long semi-exact Mayer—Vietoris sequence for the homology
of any finite union of open subspaces. This sequence is used to obtain topological conditions of repre-
sentation of the integral of a meromorphic n-form on an n-dimensional complex manifold in terms of
Grothendieck residues. For such a representation of the integral to exist, it is necessary that the cycle of
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that the manifold be Stein. The main result of this article is the relaxation of this condition.
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Introduction

In the theory of functions of one complex variable the Cauchy residue of a function f at an
isolated singular point a is represented in a local coordinate z by the integral over the cycle
(@) = {|z — a| = ¢} in a sufficiently small punctured neighborhood U, \ {a}. The cycle v(*) is
called local cycle at a. By Cauchy’s theorem the definition of the residue does not depend on the
choice of a local cycle (choice of the local coordinate and the radius €). It’s usually not difficult

/Wfdz

of a meromorphic function f over a cycle v lying outside the polar set of the function as a sum
of residues: it suffices to know the homological expansion of the cycle v in terms of local cycles.

to represent the integral

The multidimensional analogue of the Cauchy residue is the Grothendieck residue of a mero-
morphic differential n-forms w given on an n-dimensional complex-analytic manifold. This
residue in turn is represented by the integral over a local n-cycle in a neighborhood of an isolated
intersection point of polar hypersurfaces of w. In this case, it is possible to show that in order for
the integral of a meromorphic form to be represented in terms of residues, it is necessary that the
cycle of integration in a certain sense separates the set of polar hypersurfaces of the form. The
most complete results on the characterization of such separating cycles and their relationship to

*ulvertrom@yandex.ru
(© Siberian Federal University. All rights reserved
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local cycles in Stein manifolds are presented by Tsikh and Yuzhakov (see [5, 9]) (these results
have recently been complemented in [6, 7]). In this article, we develop a method for studying
separating cycles, which makes it possible to weaken the homological conditions for the manifold
and a family of polar hypersurfaces of integrating form, abandoning the Stain property of the
manifold.

Our main tool is a generalization of the well-known Mayer—Vietoris long exact sequence. All
the necessary information about the homology of the union of open subspaces (the homology of
the topological space with open cover 4l) is discussed in Section 1. The case of the union of more
than two subspaces leads to the study of the double complex of a cover and the Mayer—Vietoris
spectral sequence (see [3]).

In Section 2 we construct a connecting homomorphism that allows us to get the long
Mayer—Vietoris sequence for any finite cover. This sequence is not exact in the general case,
but it is semi-exact. In obtaining our results, ideas from Gleason’s article [4] are essentially
used. The notion of the resolution for a cycle associated with an open covering of the space (the
$l-resolution) in [4] is not standard, but it is very appropriate in our opinion.

The main results are presented in Section 3. Note that our results are formulated under
the assumption that the (2n — 1)-dimensional homology of the manifold is trivial and that the
intersection of the set of n polar hypersurfaces of the integrating form w is discrete. In terms of
the corresponding long Mayer—Vietoris sequence, we have obtained (Theorem 3.1) a necessary
and sufficient condition under which any separating cycle is represented in terms of local cycles
(and therefore the integral is calculated in terms of the residues). However, this is only a
reformulation of the problem in the language of homological algebra. Theorem 3.2 gives a more
practical sufficient condition (in terms of homology of complements of polar hypersurfaces of the
form w) under which any separating cycle is represented in terms of local cycles. This condition,
in particular, is satisfied for Stein manifolds and arbitrary set of n polar hypersurfaces, which
allows us to obtain another proof of the Tsikh theorem on separating cycles in Stein manifolds
(Theorem 3.3). Therefore, the condition from Theorem 3.2 gives the desired relaxation of the
condition of Steinnes of the manifold.

1. Homology of the union of open subspaces

Let L = {U;}ier be an open cover of topological space X, where I is an ordered index set.
We will use the standard notation S,(X) for the group of singular chains of dimension ¢ (with
coefficients in C) in X. Also, by S, = S.(X) we will denote the corresponding chain complex
with the boundary operator 0.

Definition 1.1. A -chain in X of multiplicity p and dimension q is an alternating function o

on IPTL with values
U(io,il, . ,ip) S Sq(Uio N U’il n...N Uip)7

which vanishes except at a finite number of a points of IPT1.

Note that $l-chains can be identified with elements of the bigraded group
Cou= P SU,nU,N...OU,), pg=01,...

i0<t1<...<ip

We denote by Sél = Sél(X ) the subgroup in S; = S;(X) generated by singular g-simplices
A, such that supp A C U; for some U; € 4. The natural inclusion ¢: S* — S, (X) obviously is a
chain map.
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For the chain complex C, with the boundary operator d we use the following standard nota-
tions for subgroups of cycles, subgroups of boundaries and homology groups:

Z4(Cy) =ker(d: Cq — Cy—1),
B,(Cy) =im(d: Cy41 — Cy),
Hq(C*) = Zq(C*)/Bq(C*)'

The following fact shows that when calculating the homology of the space X it is sufficient
to use the complex S¥.

Theorem 1.1 (see [8]). The homomorphism t.: H(S¥) — H(X) induced by the chain map
12 8% — S, (X) is the isomorphism.

Consider first the case I = {1, 2}. In this situation, there is the well-known long exact Mayer—
Vietoris sequence for homology of the union of two open subsets. This sequence is obtained from
short exact sequences

SU(X) 5 Sy(U1) & S,(U) «™ Sy(Ur N T2), (1)

where €: (01,02) — 01 + 02 is an epimorphism and §: o — (0, —0) is a monomorphism, at that
¢ and 0 are chain maps. Passing to homology, we get sequences

H,y(S) €= Hy(Uy) @ H,y(Uz) = Hy(Uy N Us),

in which in general €, is not an epimorphism and J, is not a monomorphism. The following
properties hold: 1) im d, = kere,; 2) the connecting homomorphism ¢: H,(SY) — H,—1(U1NUz)

1

induced by the multivalued map 6 197! is correctly defined, at that im ¢ = ker 6, and ker ¢ =

ime,. We get the required long exact sequence:
e Hy (U N Us) <2 Hy(SY) €5 Hy(Uy) @ Hy(Us) &= H (U N U) +— ...,

in which groups H,(S%) are replaced by isomorphic groups H,(X).
Let now card(l) > 2. We will describe a sequence of chain groups generalizing the short exact

sequence (1). Inclusions U;, NU;, N...NU;, — Uiy NU; N i) ...NU;,, k= 0,...,p, induce
the Cech boundary operator 4 : Cp,q = Cp_1,4 defined by the formula "alternating sum":

(60) (i, i1, yip-1) = Y 0(irio,. . yip-1).

i€l

314

In turn, the inclusions U; C X induce the operator €: Co 4 — S,

same "alternating sum" formula as follows:

go = Za(i),

icl

which acts according to the

at that ¢ = 0. We obtain the following Mayer—Vietoris sequence for the groups of singular

chains of the union

04— S 45 Cpg 2 Crg ¢ Cog ¢ ... (2)

Theorem 1.2 (see [1]). The sequence (2) is exact for all ¢ =0,1,....
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If card(I) = 2 then this sequence coincides with the sequence (1). In what follows, we will
assume that card(I) > 2. Maps §: Cp . — Cp_1. and e: Cp . — S are, as above, chain maps of
the corresponding complexes with the boundary operator 9. In passing to homology, the exact
sequence (2) goes over into the sequence

04— Hy(SY) <= Hy(Co) €= Hy(Chy) &= Hy(Cy) &= .., (3)

about which, in general, we can say that it is only semi-exact. In this case, the measure of
"inexactness" is the homology groups of the sequence (3), considered as a chain complex with a
boundary operator 0, (or &,).

More abstract point of view on the generalization of the Mayer—Vietoris sequence for ho-
mology of the union relates to consideration of two spectral sequences of the double complex
C = (Cp,q;6,0) (see [2, 3]). This double complex is a first quarter complex (Cp 4 =0 for p < 0
or ¢ <0). By adding to C' a column (S;'; 9) and a chain map ¢: Co . — S we get the extended
double complex

{ | I

0 SY <= Cpg<2—Ciy

ol e

§
0<=— Sél—l <= OO,q—l -~ Ol,q—l <~ ...

% % % (4)

)

S o

0 S§t<——Coyo L Cip<d
| V |
0 0 0

of singular chains which is dual to the familiar Cech-de Rham double complex for differential
forms. Based on a double complex C' we build a total complex TC, formed by a graded group

(TC)y = @ Chyq

ptg=n

and a boundary operator D: (T'C),, — (T'C)),—1 such that D |¢, , =6 + (—1)P0.

The first of the spectral sequences {(E}, ,;d")} of the complex C' corresponds to filtration for
TC' determined by the formula F,,(TC), = @, ¢, Cin—i- We have E) = Cpqand d® = £0, so
E} , = Hy(Cp..) (the vertical homology of the complex C) and the differential d': E} , — E}_, ,
coincides with the map induced by the chain map §: Cp . — Cp_1 4, i.e. d* = §,. Further, the
term Ef)’q (the horizontal homology of the vertical homology of the complex C) describes the
homology of the sequence (3). Therefore, this spectral sequence (called the Mayer—Vietoris
spectral sequence) is a generalization of the long exact Mayer—Vietoris sequence.

The second spectral sequence for C' is determined by another filtration of the total complex:
Fy(TO)n = @, Cnjj- In this case By, = Cyp, so E is determined by the horizontal
homology of the complex C. Since the strings of the extended complex (4) are exact, then
Ely=25) and E} =0 for ¢ > 0. Considering the vertical homology, we obtain E2 ; = H,(X)
and Equ = 0 for ¢ > 0. This means that the second spectral sequence "degenerates" and gives
the isomorphism H,(TC) = H,(S%). Thus, the double complex C "calculates" the homology of

the space X.
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2. Connecting homomorphism

Pursuing the goal of finding a generalization of the long exact Mayer—Vietoris sequence in
the case of any finite open cover of the space X, we construct a homomorphism, which is a
connecting homomorphism for semi-exact sequences (3).

We will use the following notation:
C2 = Z4(Cp.) =ker(0: Cpg — Cpg1).

For the chain complex (2) consider the subcomplex

W, &~ 8 ~e 8~ S
04— Zy(8) = Cpg+—Cla+—Cyp— ...

In general, there are nontrivial homology groups Hp(Cf,q) = Zp(Cf,q)/Bp(C,‘Zq), p=0,1,...

Lemma 2.1. Let & be the cycle belongs to Zp(Cf’q), wherep > 0, ¢ > 1, and £ = &1 for some

M-chain &pq1 € Cpt1,q- Then 0,41 belongs to Zp+1(C’qu_1) and the homology class [06p4+1] €
Hpy1(C2,_ 1) depends only on the class [¢] € Hy(C? ). The correspondence [£] — [0&,+1] defines

a homomorphism

Ppi1 = (067 1)u: Hy(CLy) = Hpa (C24 1)

Proof. Note that the existence of a il-chain ;41 such that £ = 6,1 follows from the fact that
strings of the complex (4) are exact, due to condition 6§ = 0 (¢€ = 0 for p = 0). We have
D(0&p+1) =0, 0(9p41) = D(6&p41) = O = 0 (see the diagram (5)), s0 0ps1 € Zp1(C2, ).

0~ E=—"6n1 0~—(<="—¢
ai P la al k2 la (5)
N N
Oﬁafpﬂ 0<—58£1

If also § = 6§44, then §(§p41 — &,1) = 0. So there exists a U-chain 7 € Cpy2, such that
§pr1—&pyr = 0. This implies £, | = &, 11 —07. We have 9§, | = 0(§p41—07) = 0&p11—0(I7),
at that 9(01) € Bp+1(C’f7q_1), because 9(67) = §(07), where 9(07) = 0. Hence it follows
[0€p+1] = [0€,.41] € Hp1(C 1)

Finally, let £’ be an arbitrary representative of the class [¢] € Hp(C,‘z o)- Then there exist a 4I-
chain o € Cpt1 4, for which £ —&' = do and do = 0. If 6§p41 =&, then §(§p1 —0) = —do =¢'.
The class [¢'] maps to the class of the $I-chain J(§p11 — o) = I&py1 — 00 = 0,11, which was
required.

It remains to note that for the map [{] — [0§,+1] the image of the sum of classes is obviously
equal to the sum of the images, so this map is a homomorphism. O

Remark 2.1. We have Cg,o = Cpo forp >0, so Hp(C’gO) = H,(C,,0) = 0. Hence for ¢ =1 the
homomorphism described in the Lemma 2.1 is trivial.

Lemma 2.2. Let be the cycle belongs to & Z,(SY), where ¢ > 1, and & = €&y for some U-chain
& € Co,q. Then 0& belongs to ZO(C’gq_l) and the homology class [0&y] € HO(C?,q—l) depends
only on the class [€] € Hy(S¥). The correspondence [£] — [0&] defines a homomorphism

o = (0™t Hy(SY) = Ho(C2, 1)

*,q—1
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Proof. Existence of a {-chain &y, such that £ = €&, follows from the surjectivity of . The fact

that 0% € Zo(C?,_,) and independence of the class [0&] € Ho(C?,_,) from choice of & can

be proved in the same way as in Lemma 2.1.

Let & represents a class [(] € Hy(SY). So there exists a chain o € Sj,, such that
& —¢ =0o. Since ¢ is an epimorphism, there exists 7 € Cp 441, such that o = e7. We have
e(lop—01) = £ —¢(01) = £ —0(eT) = £ — 0o = &, therefore J-cycle & corresponds to the
class [0(&o — O7)] = [0&n — 007] = [0&p]. In this way the map [¢] — [0&] is correctly defined.
Obviously, this is a homomorphism. O

Remark 2.2. For ¢ = 1 the homomorphism ¢y is trivial.

The last two lemmas allow us to write the following "diagonal" sequence of maps:

H, (%) 2% Ho(C2, 1) 25 Hi(C?, ) — ... = H,_5(C?)) = H,_1(C?) = 0.  (6)

*,r—1 *,r—2

The sequence of homomorphisms (6) is related to the following notion of a resolution for a
cycle by Gleason (see [4]).

Definition 2.1. A i-resolution for the cycle ¢ € Z.(S¥) is a sequence {fp};:o of U-chains,
&p € Cpr—p, such that:

1) 550 = f;
2) 6 =081, p=1,...,r.

Remark 2.3. The existence of a $-resolution {£,} for any cycle ¢ € Z,.(S¥) follows from the
fact that the strings of the complex (4) are exact. Gleason’s definition of a resolution suggests
that £ € Z,.(S,). So the condition ¢ € Z,(S¥) is given as a criterion for the existence of the
resolution.

Remark 2.4. The $-resolution for a cycle £ (accurate to sign + in front of its term) is, in
fact, such D-cycle, which represents the image of the class [¢] under the isomorphism H,(SY) —
H,(TC). It is a "zig-zag" of the double complex C.

Comparing the definitions of homomorphisms ¢,41 and ¢ from Lemmas 2.1, 2.2 with Defi-
nition 2.1, we obtain the following statement.

Proposition 2.1. Let {¢,} be the U-resolution of a cycle ¢ € Z,.(S%). Then the sequence of
images of the cycle [¢] € H,.(S¥) under homomorphisms (6) has the form

[€] — [0&0] — [0&1] — ... — [0&r—2] — [0&r—1] = [0].

In a similar way, one can consider a part of the sequence of homomorphisms (6) starting
from the group Hp(C’fZ g) for p > 0 and ¢ > 1. In this case, we have the following sequence of
homomorphisms

Hp(ng) - Hp+1(cf,q—1) e Herqfl(Cf,l) - Herq(Cf,O) =0,
which is naturally leads to following version of the notion of the -resolution.

Definition 2.2. Let & by a -chain of the multiplicity p > 0 and the dimension q > 1 such that
06 =0and 06 =0 (e€ =0 forp=0). A sequence {&} of U-chains & € Ck prg—k+1, 1S said to
be the i-resolution of the &, if the following conditions hold:

1) 6§pi1 =&;
2) 6§k:8€k717k:p+277p+q—’—1
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Remark 2.5. As in the case ¢ € Z,.(SY), the resolution exists for any cycle ¢ € Zp(Cf’q).

The existence of the connecting homomorphism assumes that the open cover 4 of topological
space X is finite (card(]) < o0). In what follows, we will assume that this covering consists of
m (m > 2) elements.

In this case, for the double complex (4), we have C), ; = 0 for p > m. Since the strings of the
complex are exact, we see that 6: Cp,—1« = Cp—2,« is monomorphism. Hence

Zm-1(Cig) 20, Hpyo1(C2 ) = Hp1(Cuy)

)

1

0.

For any resolution {£;} of a cycle ¢ € Z,.(S¥), r > m, we have &, = 0 for all k > m — 1, at
that 9¢,,_1 = 0. We assume that the 0-cycle &,,_1 is the end term of this resolution, ignoring
the following zero terms. We will proceed similarly with the resolution of cycle £ € Zp(CQ )

The following statement is the last step to the construction of the desired generalization of a
connecting homomorphism.

Lemma 2.3. Let £ € Zm_g(C’f,q), g = 1, and let {&mn—2,&m—1} be the resolution of . The
correspondence of classes [§] € Hp_3(C2,) and [Em—1] € Hg—1(Cm—1,x) defines correctly a
homomorphism of homology groups

Y1 = (5_185_1>*: Hmf?)(cf,q) — Hq71<cm71,*)-
Proof. The action of the homomorphism ,,_1 is illustrated by the following diagram:

02 t< ¢

al/ ¢m71 L\a

0 ﬁ O m—2 % Em—1

First, we show that the image [¢,,—1] does not depend on the choice of the resolution. Let
{&m—2,&m—1} and {& &._1} are resolutions of £ € Zm_g(C’qu). We have §(&—2 — &, _5) =

m—2r5m
= 0&m_2 — 06, 5 = £ —& = 0, so there is (the only one) i-chain 7 € C),—1, for which
0r =&mo— &, . Hence &, 5 =&y_2 — 01, and

880, 1 =08, o = 0(Em—2 — 6T) = 0z — O(0T) = 0&m—1 — 6(0T) = 6(Em—1 — O7).

Since ¢: Cpy—1,+ — Ciy—2,. is a monomorphism, we get £/, = &§,,—1 — 07. Therefore [¢],_;] =
= [gm—l] in Hq—l(C'm—l,*)-

Next, we will show that the image [£,,—1] also does not depend on the choice of the cycle
representing the class in Hm,g(Cqu). If [(] = [€] then ¢ = £ + o, where do = 0. We put
Cm72 = §m72 + o, Cmfl = €m71~ We have 5(777,72 = 5(€m72 + U) = 55 + do = 5 + do = <>

aCm—Q = a(fm—? + 0) = agm—Q + Jo = afm—Q = 5£m—1 - 6Cm—1~

Hence, {(n—2,(n-1} is the resolutions for ¢, at that (,—1 = &m_1.
In order to prove that this correspondence of homology classes is a homomorphism, it suffices
to note that a resolution for the sum of 4-chains is the sum (term-by-term) of resolutions. O

Remark 2.6. Let m = 2. For the cycle & € Z,.(S¥) and its resolution {&, &1} similarly the
correspondence [¢] — [£;1] gives the homomorphism

¢1 = ((5716671)*1 H7(Sil) — H,«_l(CL*),

which is the connecting homomorphism ¢ for the usual long exact Mayer—Vietoris sequence.
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Consider the homomorphisms g, ¢1, . . ., ©m—3 from the sequence (6) and complement them
with the homomorphism ,,,_; from Lemma 2.3. We obtain a sequence of homomorphisms whose
action, according to Proposition 2.1 and Lemma 2.3, is described in terms of a resolution of the
cycle as follows.

Theorem 2.1. For any r > m there exists a sequence of homomorphisms

HT(S»L}) A HO(Cf,r—l) & tee QOKS Hme(Cf,r—m+2) wﬁ; Hrferl(Cmfl,*)» (7)

given by the following sequence of images:
(€] — [0&] — ... — [0&m—3] ¥ [Em—1],
where {&,} is the resolution for the cycle & € Z,.(SY).

Finally, taking the composition of all homomorphisms from (7), we obtain the desired con-
necting homomorphism ¢ = ¥, _19m_3...0100 = (6710571... 06710 71)..

Theorem 2.2. Let L = {U;} be a finite open cover of a topological space X, consisting of m > 2
elements. Then the correspondence of homology classes [£] — [€m—1], where &€ € Z,.(SY¥) and {&,}
1s arbitrary $-resolution of cycle &, defines a connecting homomorphism

P HT(SS) - Hr—m+1(cm—1,*)-

For m > 2 this homomorphism generates a semi-exact long sequence of homology groups

e Hy i1 (Con) 5 Hyos1 (Coe1.2) €2 Hy(SY) € Hy(Co) & ... .

Ox *
Eh Hq(cm—l,*) <i Hq-&-m—l(S*u) <E_ Hq+m—1(007*)<_ s

Proof. Tt remains to show that imp C kerd, and ime, C kery. The first inclusion follows

from the equality 0.[{m—1] = [0&m—1] = [0&m—2] = 0. Let us prove the second inclusion. Let
[€] € ime,. Then & = &, for some U-chain & € Cp 4, and 9§y = 0. Therefore ¢[¢] = [0&)] = 0,
and hence ¢[¢] = 0. O

Remark 2.7. In what follows, we will assume that the codomain of the connecting homo-
morphism is the subgroup H,? . (Crno1.) = kerds C Hy mi1(Crmo14). The notation
HP(Cin—1,+) will be discussed later. In this way,

p: Hq(S*u) — H;(ipm+1(CTYL—1,*)'

Similarly, from the previous proof, we can conclude that im,,_1 C ker §,. Therefore, we further
assume that 1, _1: Hm,g(ng) — H;ipl(Cm,l’*).

The proofs of the following properties of the homomorphisms ¢g, ¢p4+1 and ¢, —1, from which
the connecting homomorphism is "glued", are completely standard. Moreover, conditions on the
homology appear as sufficient conditions for inverting the required vertical arrows of the complex
(4) at diagrammatic search.

Lemma 2.4. If H,1(Cp.) = 0, then the homomorphism ¢o: H,(SH) — HO(C’qu_l) is an

epimorphism. If Hy(Co ) = Hy—1(C1,4) = 0, then it is a monomorphism.

Lemma 2.5. If H,_1(Cpt1,+) =0, then the homomorphism ppy1: Hp(C’fﬁq) — H;DJrl(Cf,qfl) is
an epimorphism. If Hy_1(Cpy2..) =0, then it is a monomorphism.
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Lemma 2.6. The homomorphism 1y, _1: Hm,3(03q) — H;ipl(Cm,l,*) is an isomorphism.

Remark 2.8. For m = 2 the homomorphism 11 : H,(S¥) — H™P (C1,«) is only an epimorphism
in general case.

Considering that the composition of epimorphisms is an epimorphism, and the composition
of monomorphisms is a monomorphism, we obtain the following property of the connecting
homomorphism.

Theorem 2.3. For the connecting homomorphism
®: Hq(Sil) — H;iperl(Cmfl’*)

to be an epimorphism, it suffices to satisfy the condition

Hy1(Coy) = Hy(Chrv) = ... = Hy g2 (Crms i) =0, (9)
and for ¢ to be a monomorphism, it suffices to satisfy the condition
Hy(Cow) 2 Hy1(Cri) = ... 2 Hy_yyo(Cr—a ) 20. (10)

Remark 2.9. The homomorphism ¢: Hy(S}) — H,®, (Cp_1,.) is surjective if and only if
the sequence (8) is exact in the term Hy_p,41(Crn_1,4)-

Remark 2.10. The condition (9) can be replaced by the following weaker condition: if £ €
Cpq—p—1 such that 0 =0 and 6§ =0 (¢£ =0), then ] =0in H;_p—1(Cp+), p=0,...,m — 3.

3. Separating cycles

The notion of the separating cycle appeared in complex analysis in connection with a property
of the Grothendieck residue. Let w be a meromorphic n-form on an n-dimensional complex-
analytic manifold M, and Fj,..., F, are polar hypersurfaces of w, F' = F; U...UF,. In a
sufficiently small neighborhood U, of an isolated point a of the intersection Z = FiN...NF,

the form w is given by
h(z)dzi A ... Ndz,
w= , 11
where h, f1,... f, are holomorphic germs at a, Fy|y, = {fx = 0}. The grothendieck residue of

the form w at the point a is represented by the integral

1
res, w = - / w, (12)
(@)

(2mi)™

where (%) is a local cycle at a having the form

P = {2 €Us: |fi(2)| =21, | ful2)] = £u}. (13)

The orientation of v(*) is determined by the condition d(arg fi) A ... A d(arg f,,) > 0. It is not
hard to see that 4(*) € Z,,(M \ F).

The mentioned property of the residue (12) is as follows: it is zero if h belongs to the ideal
generated by fi,..., f, in the ring O, of germs of holomorphic functions. This property is of
a topological nature. Indeed, if h = h;f;, then w has poles only on the n — 1 hypersurfaces
F, = {fx =0}, k= 1,...[j]...,n, in the complement of which the n-cycle ¥(*) becomes
homologically trivial. Indeed, 7(%) is a boundary of the (n + 1)-chain o ={lfil=¢e1,..,|fj] <
€y, |fn] = €n} taken with a suitable orientation, so ~(@) ~ 0. Therefore, according to Stokes’
formula, the integral (12) for the h = h; f; is zero.
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Definition 3.1. A n-dimensional cycle I' € Z,,(M \ F) separates hypersurfaces Fy, ..., F,, if it
satisfies the conditions

P~0in M\ (FLU...[j]...UF,) foral j=1,...,n.

By the above, the local cycle 4(®) from the definition of the Grothendieck residue separates
the set of polar hypersurfaces of w.

An important argument for the use of Grothendieck residues of meromorphic forms is their
rational computability in terms of a finite number of Taylor coefficients of functions h, f1,..., f,
at the point a. In this connection there is a problem of the representation of the integral of a
meromorphic form w by residues. The topological formulation of this problem is as follows. Let
F ={F1,...,F,} be a set of hypersurfaces in an n-dimensional complex-analytic manifold M.
Let us denote by F the union of these hypersurfaces, and by Z; the discrete part of their
intersection Z = Fy; N...N F,. It is required to find out in which case the given n-cycle I in
M \ F is homologically expressed in terms of local cycles 7(9), a € Z,. In view of the above, for
this it is necessary the cycle I' separates the given set of hypersurfaces F.

We denote by H¢(M \ F) the subgroup in H,, (M \ F) generated by the classes of all local
cycles v(%) | a € Z;. We also denote by H SeP(M\ F') the subgroup of classes of all cycles separating
the set of hypersurfaces F. We have

H*(M\ F) C HyP(M \ F).

We are interested in sufficient conditions on the manifold M and the collection of hypersurfaces F
under which H5P(M \ F) = H°¢(M \ F), that is, in which any separating cycle is homologically
represented in terms of local cycles.

Consider the space X = M\ Z and its cover { formed by open sets U; = M\ F;, j=1,...,n.
We get the corresponding extended double complex (4) and the semi-exact sequence (8) for
q = m = n. Given the isomorphism of Theorem 1.1, this sequence can be written as

e Hy(Cnn) &= Hy(M\ F) <2 Hop_1(M\ Z) <= Hyp_1(Con)é— .. .. (14)

The condition for separating the set F by a cycle I' means that 61" is an d-boundary in the
group Cp_op. So HP(M \ F) = ker d,, which explains the previously used (see Remark 2.7)
notation for the subgroup H;™" . (Cr14) = kerds C Hy py1(Crno1,4). Let us show that
H°¢(M\ F) C im .

It suffices to show that each generator [y(*)], a € Zy, of the group H°¢(M \ F) have preimage
in Hop—1(M\ Z). For a fixed point a € Zy, consider the (2n — 1)-dimensional sphere S, centred
at the point a of a small radius. The class [S,] can be represented as a cycle 911,, where

I, ={z€U,: |fi(2)| <ei, i=1,...,n}, (15)

where the orientation of the special analytical polyhedron 11, is induced by the orientation of
the manifold M. Moreover, the boundary OII, of the polyhedron II, is the sum of its (n — 1)-
dimensional faces 7; = {|f1] < e1,...,|fjl =¢€j,.. -, |fn] <en}, j=1,...,n, taken with suitable
orientation, at that suppr; C U;. Therefore, 011, € Za,_1(SY), and for the cycle dIl, can be
built the {l-resolution {,}. It is directly verified that terms of the resolution can be taken as
follows:

gp(io,il,...,ip> = iTZ‘O N7, M. ﬂTip.
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Moreover, the final term &, ;1 = &, 1(1,...,n) of the resolution is the local cycle v(*). So
©[Sa] = @[] = [y(¥)], as required to prove. It also follows from the last reasoning that if the
group Ha,_1(M\Z) is generated by the classes of cycles S, a € Zy, in particular if Ho,,—1 (M) 20
and Z = Z, then H!°°(M \ F) = im . This fact, with considering Remark 2.10, proves the
following theorem.

Theorem 3.1. Let Ho,—1(M) =20 and let the intersection Z = Fy N ...NF, be discrete. Then
the groups HP(M \ F) and H°°(M\ F) are coincide if and only if the semi-exact sequence (14)
is exact in the term H, (M \ F).

Remark 3.1. For n = 2 the sequence (14) turns into a long exact Mayer—Vietoris sequence.
Therefore, under the assumptions made on the manifold and the set of hypersurfaces, the equality
HYS(M\ F) = Hy*®(M \ F) is always the case.

Consider (see Remark 2.7) the connecting homomorphism ¢ from the sequence (14) as the
homomorphism
w: Hoypy 1 (M\ Z) = H?(M\ F).

Sequence (14) is exact in the term H,, (M \ F') if and only if ¢ is an epimorphism (see Remark 2.9).
Considering Theorem 2.3, we obtain the following sufficient condition.

Theorem 3.2. Let Ho,—1(M) 220 and let the intersection Z = Fy N ...NF, be discrete. Then
for the equality of groups HP(M \ F) = H!°¢(M \ F) it suffices to satisfy the condition

Hopn—2(Cox) =2 Hap—3(Cr ) = ... 2 Hypp1(Cr_s) = 0. (16)

Remark 3.2. In last two theorems, instead the triviality of the group Ha,_1(M) and the
discreteness of the intersection Z = F} N...N F,, we can assume the following weaker condition:
the group Ha,—1(M \ Z) is generated by classes of cycles S,, a € Zy. The condition (16) can
also be replaced (see Remark 2.10) by the following weaker condition: if £ € C) 2,—p—2 such that
0§ =0 and 6 =0 (¢£ = 0), then [{] = 0 in group Hop—p—2(Cps), p=0,...,n—3.

As a consequence of Theorem 3.2, it is easy to obtain the following theorem on separating
cycles in Stein manifolds which was proved by Tsikh.

Theorem 3.3 (see [5]). Let M be a Stein manifold of dimension n. Then the equality of groups
HEeP(M\ F) = H(M \ F) holds for any set F = {F1,...,F,} of hypersurfaces in M.

Proof. As it was noted in [5], it suffices to prove the statement of the theorem under the following
assumptions: 1) Ha,—1(M) = 0; 2) M \ F}, j = 1,...,n, are the Stein manifolds; 3) the
intersection Z = Fy; N...N F,, is discrete. It remains to note that all possible intersections of
the sets U; = M \ Fj are also Stein manifolds. Condition (16) follows from the fact that for an
arbitrary Stein manifold X the homology groups (with coefficients in the field) H,(X) are trivial
for ¢ > dim X. O

Remark 3.3. In the case of the Stein manifold M and an arbitrary set of hypersurfaces F in
M the connecting homomorphism ¢: Ho,—1(M \ Z) — HEP(M \ F) is an isomorphism. The
injectivity follows from the fulfillment of conditions of the form (10).

This work is supported by the Krasnoyarsk Mathematical Center and financed by the Ministry
of Science and Higher Education of the Russian Federation in the framework of the establish-

ment and development of regional Centers for Mathematics Research and Education (Agreement
No. 075-02-2021-1388).
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CaaspiBaoniuii roMmoMopdu3M 1 pa3aesisionine MuKJIbl

Poman B. Yabseprt

Cubupckuii eiepabHbIi yHUBEPCUTET

Kpacnosipck, Poccuitickas ®enepartust

Cubupckuii rocy1lapCTBEeHHbBINH yHUBEpCUTeT HayKu u TexHosoruit um. M. @. Pemernesa
Kpacnosipck, Poccuiickass @eneparnys

Awnnoranusi. O6cyxjaercd MOCTPOEHHME JJIMHHON IOJIyTOYHON mocjenoBarebHocTr  Maiiepa—
Bueropuca juist roMosioruit 06beiHeHns] KOHEYHOI'O YHCJIa OTKPBITHIX IIOIIPOCTPAHCTB. DTa MOCJIE0-
BATEJILHOCTD MMPUMEHSIETCS JIJIsI IOy YeHUsT TOMOJIOTUIECKUX YCJIOBUIA, TPU KOTOPBIX HHTErPAJ OT MEPO-
MopdHoit 1 depenImaabHO GOPMbI B MHOI'OMEPHOM KOMIIJIEKCHOM MHOI'OOOpa3uu MPEACTABIISIETCS B
BHJie CyMMBI BbdeToB ['porenuka. st cyliecTBoBaHMSI TAKOrO IPEJCTABJICHNs] NHTErpajia HeoOXoam-
MO, ITOOBI ITUKJI MHTETPUPOBAHUS PA3EIs CEMENCTBO MOJISIPHBIX TUIIEPIIOBEPXHOCTEH (DOPMBI. YCIOBUE
pa3aesieHusl B Psie CIy9YaeB OKAa3bIBAETCHA JOCTATOYHBIM YCJIOBHEM I IIPEJCTABJIEHUsS WHTErpajia B
BUJIe CyMMBbI Bbl4eToB. PaHee npu onmcanum Takux ciaydaes (B paborax A.K.Iluxa, A.II FOxakosa,
P.B. VibBepTa n Ap.) KJIIOUEBBIM OKA3BIBAJIOCH YCJOBHE MITEHHOBOCTH MHOT00Opasmsi. OCHOBHBIM pe-
3yJIBTATOM JIAHHOI CTATHU SIBJISIETCS OCJIA0JIEHNE STOTO YCIOBUSI.

KuaroueBrie cisoBa: nocnenoarenbHOCTs Maitepa—Bueropuca, Bberder ['porenauka, paszessiroriuit
ITUKJIL.
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Introduction

In this paper an inverse problem for some stationary equation is considered.

Problem. For given functions f(z),o(z),5(z),h(x) and constant g find function wu(x) and
constant k that satisfy the equation

—div(M(z)Vu) + m(z)u + ku = f, (1)

boundary condition

(5 + (o), = ot ©)

and the condition of overdetermination

/ uh(x)ds = p. (3)
o0

Here  C R" is a bounded domain with boundary 99, ¢t € (0,T), M(x) = (m;;(x)) is a matrix
of functions m;;(z), i, = 1,2,...,n; m(z) is a scalar function, B oA (M(x)V,n), n is the
unit vector of the outward normal to the boundary 9.

A main goal of this paper is to establish the existence and uniqueness of the strong solu-
tion of inverse problem (1)-(3). The additional integral boundary data similar to condition of
overdetermination (3) were considered [1-3]. Following the idea given in [1-3| and using method

*velisevich94@mail.ru
(© Siberian Federal University. All rights reserved
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developed in [4], we prove the existence of the solution by reducing the inverse problem to an
operator equation of the second kind for the unknown coefficient. Note that the problem for the
same equation with Dirichlet boundary conditions was considered [5].

The study of inverse problems for the elliptic equations goes back to fundamental work of
M. M. Lavrentiev [6]. Inverse problems for the elliptic equation with special boundary conditions
(non-local conditions, non-classical conditions) were considered [7-9].

Such problems arise in determination of unknown physical properties of a medium. In par-
ticular, the lowest coefficient k specifies, for instance, the catabolism of contaminants due to
chemical reactions [10] or the absorption in diffusion and acoustic problems [11].

1. The preliminaries

The following notations are used || - ||g, (-,-)r — the norm and the inner product in R"™;
Il -1, (-,-) — the norm and the inner product in L?(Q); || - |;, <~,~>1 — the norm in WJ(Q),

j = 1,2, and the duality relation between W3 (Q) and W, (), respectively. The linear operator
M : W3(Q) — (W1(Q))* of the form

M = —div(M(z)V) +m(x)I,

Is introduced, where I is the identity operator. The notation
(Muy,v2),, = / (M(z)Vvi, Vug) g + m(x)vive)dx
Q

is also used for vy, v € W4(Q). The following assumptions hold throughout the paper

L mg;(z), Omyj/0x, i,5,0=1,2,...,n, and m(zx) are bounded in Q2. Operator M is elliptic,
that is, there exist positive constants mg and m; such that for all v € W3 ()

mollvll < (Mv,v),, <mallvlf. (4)

II. M is self-adjoint, that is, m;;(z) = mj;(x) for i,j =1,...,n.

The existence and uniqueness results for problem (1)-(3) is based on two lemmas for direct
problem (1)—(2) with known coefficient k.

Lemma 1.1. Let u be the strong solution of problem (1)-(2). If f 20, 8 >0, 0 20, k>0
and assumptions I, I are fulfilled, then u > 0 almost everywhere in €.

Proof. Multiplying (1) by @ = min{, 0} in terms of the inner product in L2(€2) and integrating
by parts in first term, we obtain

(M, ), + k|a|? +/ ou’ds — / Buds — (f,a) = 0.
o9 a9
Taking into account the lemma conditions, the last equality implies that
ma|al|f <.

So, @ = 0 almost everywhere in ). Lemma is proved. m]

- 660 —



Alexander V. Velisevich On an Inverse Problem for a Stationary Equation. ..

Lemma 1.2. Let uj,us € W3(Q) are the solutions of the problems
Mu; + kyu; = fi,

herei=1,2.
IfO < ky <kay 0K P2 <P, 0 fo< f1 and o(x) > 0 then uy = ug = 0 for almost all
x €.

Proof. By Lemma (1.1), u; > 0,7 = 1,2, for almost all x € 2. The difference u; — uy satisfies
equation
M (uy —ug) + ki(uy —uz) = (k2 — k1)uz + f1 — fo, (5)

and boundary condition

<8(u1—u2) +o(x)(u1 — U2)) ‘69 = b1 =B

ON
Taking into account the lemma conditions, the right side of (5) is non-negative and 5, — 83 > 0.
So, by Lemma (1.1), u; — ug > 0 for almost all x € ). Lemma is proved. ]

2. Existence and uniqueness

First of all the solution of the inverse problem should be defined. By the solution of the inverse
problem is meant function u € W2() and a positive real number k. They satisfy equation (1)
almost everywhere in Q and conditions (2)—(3) almost everywhere on 99Q. Now, to formulate the
theorem functions a,a” and b are introduced as the solution of the problems

Ma=f@) (g towna)], = o) (6)
Ma™ +71a” = f, (2?\; + U(CL')GT) ‘BQ = B(x); (7)
Mb =0, (;}bv + a(m)b) ]m = h(z), 8)

where 7 > 0 is a real number.

Theorem 2.1. Let 9Q € C? and assumptions I, II are fulfilled. Suppose also that
(i) fx) € L2(Q), B(), hiz) € W;/*(09), o(x) € C(09);

(ii) f(z) = 0 almost everywhere in Q; f(x) 20, o(z) >0, h(x) = 0 for almost all x € O and
there is a smooth piece I' of the boundary 02 and a constant § > 0 such that f > 6 and
w = 0 almost everywhere on T.

Then problem (1)-(3) has a solution {u,k}. Moreover, the estimates
a’ <u<a, 0<k<T, |u2 <O +1)lall +[lal 9)
hold with some T > 0, and constant C' depends on mesQ), 7,mg and my. If

mO(a’ b)2
lallllofl

where ¥ = [ ahds — (f,b), then the solution is unique.
aQ

0<pu—V< (10)
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Proof. Following the idea given in [4] and the method developed in [1], the original problem is
reduced to an equivalent inverse problem with a non-linear operator equation for k. It follows
from (1)—(3) that function w = a — u and the constant k satisfy the following relations

Mw + kw = ka, (11)
ow
(8]\7 + cr(sc)w) ‘BQ =0, (12)

g
>
U
@

\

/m f/m ahds — pu. (13)

Taking into account (8), (11) and (12), multiplying (9) by b in terms of the inner product in
L5(9) and integrating by parts twice, we obtain

k(u,b):/mahds—k(f,b)—,u:\ll—u.

Let operator A : Ry — R maps every y € R, into the real number Ay by the rule

U —p

A =
Y uy,b)’

(14)

—~

where u, is the solution of direct problem (1)—(2) with y = k. One can show that the original
problem is solvable if and only if operator A has a fixed point, i.e., the operator equation Ak = k
has a solution.

Now we need to prove that there exists 7 > 0 such that operator A defined for all k € [0, 7], is
continuous on [0, 7], and maps [0, 7] into itself. Indeed, Lemma 1.2 implies that for all 0 <y < 7

a” <uy <a. (15)
Therefore o
— p
Ay > >0
Y7 Tab)

On the other hand, let us introduce the difference between (6) and (7)
Ma—-a")+7(a—ad") =T1a.

Then, multiplying the difference by a — a” in terms of the inner product in L?(Q), integrating
by parts in the first term and estimating the left-hand side of the result with the help of (4), we
obtain

2

-

molla — aT||% +2/ ola— ar)?ds + 27la — aT||2 < —Ha||2.
[5}9] mo

This estimate and (15) allows one to obtain the lower bound of (u,,b) in (14)

T

(uy7b) = (aT’b> = <a7b) —(a— aTvb) > (avb) - \/770

[lallllbl] = 0. (16)

Hence
0<rg Yolab)
l[allllb]
In view of (14) and (16)
Ay < hd — = < T
(a.6) — <= allJo]
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Accordingly, the relation Ay < 7 holds for all 7 > 0 such that

7_2
Vo

The last inequality is possible, because it follows from the theorem conditions that

lalll[oll = 7(a,b) + ¥ — 1 < 0. (17)

D= (o, - Tl
V1o

Then (17) is valid for 7 that obeys the inequality

V((a,b) = vD) __ mo((a.b) + VD)
Aallel— S7S T 2Bl

Thus, the operator A maps the segment into itself.

Now one can obtain the estimate of u, in W3 () provided that y € [0,7]. Let w, = a — u,,.
This function satisfies (11)-(13) with y = k. Multiplying (11) for £ = y by w, in terms of the
inner product in Lo(§2) and integrating by parts in the first term, we obtain

(Muwy, wy) + yllwyl|* = (Mwy, wy)ar +yllwy | + /aQ owyds = y(a, wy).

In view of (15) and the definition of w,,, we have

‘y/ awydx‘ < 7l
Q

Taking into account the ellipticity of operator M, the last two relations implies that

=
eyl <4/ ~llall + el (18)

In accordance with [12], direct problem (11)-(12) has a unique solution w, € W (1) for all
y > 0. Furthermore, (11) is fulfilled almost everywhere in ©Q and Mw, € Lo(€2). Multiplying
(11) with k = y by Mw, in terms of the inner product in Lo(2) and integrating by parts in the
second component, one can obtain the equality

1300, 4yl Mus + [ s = yladt.w,). (19)
o0

In accordance with (4), the second term of (19) is non-negative and
Loy w2 1 2
yl(a, Mwy)| < 7lla[[[Mwy || < 577 [lall” + 5l Mwy|”.
it follows from the last two relations that
12w,y |* < 72 [all. (20)
In view of the definition of wy, and the inequality [12]

[vll2 < Car ([ Mo +[Jo]]),
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valid for all v € W3 () N W2(Q) with the constant Cj; depending on M and mes(, relations
(18), (20) imply the estimate

[ullz < llwyllz + llallz < Car(7 + Dllall + llall2.

Now one can show that operator A is continuous on segment [0, 7]. Let y1,y2 € [0, 7] and uy, , uy,
are the solutions of problem (11), (12) with y; = k and y, = k, respectively. By the definition of
operator A, (15) and (16)

[y, — uy, IOV — p1) [y, — g, [[[[6] (¥ — )
A 1 A 2 < < T . 21
Mo = Al (a7,b)? ((a,0) = —=llall[[b])? @1

On the other hand, multiplying the difference of equation (1) for k = y; and k = y2 by u,, —uy,
in terms of the inner product in L2(€2) and integrating by parts in the first term of the resulting
equality,we obtain

<M(uy1 - uyzvum))l + /89 0(“2}1 - uy2>2d5 + yl”“m = Uy, H2 = (y2 - yl)(uy27 Uy, — uyz)' (22)

In accordance with (4) and the non-negativity of y, the left side of (22) can be estimated as

(M (1, — 11y, 10y, )1+ /a ity = e s = > ol =

The right term of (22) is estimated with the use of (15) as

1 mo
(Y2 — Y1) Uy, , uy, — Uy, )| < %L’W - y1|2\|a||2 + 7““1}1 - uyz”?
Hence, we obtain the relation
1
[y, — uy, |l < —llalllyz — y1l. (23)
mo
Then, joining (21) with

_ 2ymo((a,b) = VD)
- [lallll]

T = T0,

and (23), we obtain the inequality

lall bl (¥ — p)
((a,b) + 2V D)2

which implies the continuity of operator A. Thus, according to the Brouwer fixed point theorem,
operator A has a fixed point k* € [0, 79] and the pair {u*, k*}, where function u* satisfies (1)—(2)
with k = k*, gives a solution of problem (1)—(3).

It remains to prove that the solution of problem (1)—(3) is unique under assumption (10). In
this case, operator A is a contractor on the segment [0, 7] because A satisfies (24) with

_ llalllloff (¥ = p) (a,b)
q= < <1.
(a,b) +2vD  ((a,b) +2v/D)?

Let us assume that (v/, k') and (u”, k") are two solutions of problem (1)—(2). Then k’, k" are the

fixed points of operator A. By (24)

| Ay, — Ays| < ly1 — vl (24)

|k/ _ k/ll — |Ak/ _ Ak//| < q|k/ _ k/ll
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whence k' — k" = 0. This in turn implies v’ — u” = 0 in view of (23). Theorem is proved. O

Under assumption (10) the solution {u, k} depends continuously on the input data of original
problem.

Remark 1. Condition (4) is valid when m(z) > mg > 0 almost everywhere in Q, or
o(z) > o9 > 0 almost everywhere in 9f, here mg, oy are some constants. In the last case left
inequality holds due to the Friedrichs inequality.

Remark 2. The main theorem is correct for a more general type of operator M:
M = —div(M(z)V) + (mV) + m(z)I,
where m € Lo (2) is vector of functions m;(z), i =1,...,n.

This work was supported by Russian Foundation of Basic Research [grant no. 20-31-90053].
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O06 oxHoIT 0OpaTHOIl 3a/1a9e A4 JLITAIITUIECKOTO YPaBHEHUS
CO CMEeIIaHHBIMI I'PAHUYHBIME YCJIOBUSMMU TPETHEro poaa

Anekcansp B. BesuceBuu

Awnnoranusi. B gannoit pabore paccMmaTpuBaeTcs obpaTHas 3ajada IS SJIAITHIECKOTO ypaBHEe-
HUsl C TPAHUYHBIMU yCJIOBUEM TPETHErO POJia M YCJIOBUEM HMHTErPAJILHOIO Iepeolpeesenus. Jlokazano
CyIIIECTBOBaHUE U €JNHCTBEHHOCTD PEIEHNS, & TaK¥Ke HelPEePbIBHASI 3aBUCUMOCTh PEIIEHUsT OT BXOJIHBIX
JAHHBIX.

Kirogesble ciioBa: O6p&THaﬂ 3a/lava, KpaeBad 3a1a4a, JJIJIMIITHIECKOE YpaBHEeHUEe, TeOpeMa CylieCcTBO-
BaHUA U €IUHCTBEHHOCTU.
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Introduction

The satisfiability problem (SAT) in Boolean propositional logic is the question to determine if
any given formula F is satisfiable (i.e. if there is a substitution of literals TU E-F ALSE instead
the propositional letters from given formula F' making the formula TRUF). Extended SAT
problem is to find a such substitution if the one exists. SAT is an NP-complete problem, and is
one of the most intensively studied problems.

As well known SAT was the first known NP-complete problem, that was proved by S.Cook
at the University of Toronto in 1971 (cf. [1]) and also independently by L.Levin in 1973 (cf. [2]).
Remarkably that before these results, the idea, the concept, of an NP-complete problem did not
even exist, so was totally out of consideration. .

That generated a very active area in complexity theory; since the SAT problem is NP-
complete, and only algorithms with exponential worst-case complexity are until now known
for it, better algorithms for SAT where in grate demand. In particular researchers looked for
efficient and scalable algorithms for SAT for formulas in restricted form; and during the 2000s
algorithms making dramatic advances in our ability to automatically solve problem was developed
(cf. [3,4,10-12]). In this paper we will prove that SAT may be solved in polynomial time.

1. Proof, deterministic algorithm with random any choice

We first need to restrict the amount of necessary formulas in our considerations. We will do
this restriction by Theorem 1 placed below. Actually this result was known for long ago, for
example the author introduced reduced normal forms for inference rules in [5,6] where he solved
Friedman problem about recognition inference rules for intuitionistic propositional logic. This
technique was efficiently applied in [5-9] for study inference rules and unification. The point here
is that the premises of such rules are exactly the normal reduced forms for just formulas. These
approach also possibly was observed even earlier when researchers used reduction formulas for
3-Sat problem and relative subsequent research (cf. [3,4,10-12]). I am not sure about history

*Vladimir_Rybakov@mail.ru
(© Siberian Federal University. All rights reserved
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and priority not being very expert in the SAT area. Though it turned out that Theorem 1 is
also very useful for positive solution SAT problem and we present it now.

Definition. We say that Boolean formula F has reduced normal form if

F=ANAs N NAy,

where

Aj = le V Bj2 V Bjs’
and Bj, € {p,—p}, p € Prop and Prop is a set of letters.

In the sequel we may consider also A; containing less then 3 disjunct members. Simply for
convenience and simplicity in notation we will always refer to 3 disjunct members, thinking that
it might be less.

Theorem 1. There is a polynomial algorithm constructing by any given boolean formula G a
formula F in reduced normal form which has the following properties. (1) F has all variables
of G and some more in amount not bigger then the length of G. (2) F is equivalent to G w.r.t
satisfiability. (3) Any substitution o for F' satisfying G acting at only variables of G satisfies G,
(and vice versa any substitution satisfying G may be computably extended on additional variables
of F satisfying it).

Proof. It is a simple statement; as much as I remember I myself proved it first time in my works
for constructing reduced normal forms for inference rules in my research to resolve Friedman
problem about recognizing admissible rules in intuitionistic logic cf. [6], 1984. A short draft of
the proof is as follows. In fact, we simply shall specify the general algorithm described already
several times in [5-9] to the language of our logic.

So, let we start. If ¢ = a o 3, where o is a binary logical operation and both formulas a and
B are not simply variables or unary logical operations applied to variables (which both we call
final formulas), take two new variables z, and zg and the formula

fi = (zq0xp) A (za = a) A (zg = B).

If one from formulas « or § is final and another one not, we apply this transformation to the
non-final formula. It is clear that f and f; are equivalent w.r.t. satisfiability.
If ¢ = =« and « is not a variable, take a new variable z, and the formula

f1 1= x4 A (24 = Q).

Again f and f; are equivalent w.r.t. satisfiability. We continue this transformation over the
resulting formulas

/\'yj/\/\zalzai

VISDA i€l

until all formulas a; and «; in the formula above will be either atomic formulas, i.e. logical
operations applied to variables, or variables.

Evidently this transformation is polynomial. Further, we transform the formulas using = in
the ones using only disjunctions and conjunctions and negations. After that we obtain formula
in form as required for reduced normal forms. The only point is that the conjuncts may continue
less that 3 disjunct formulas, we then may double some until 3 members. As the result we get
the final formula fo which evidently has all required properties. Q.E.D.

Now we turn to SAT problem. In the sequel a literal is either a propositional letter or
a letter with applied negation (—p for p). Below we will always refer to only 3 disjuncts in
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F=ANAsN---NAy,, where A; := B;, V Bj, V Bj,. But we could admit less disjuncts, simply
we keep all 3 for simplicity of notation.

Theorem 2. If a formula F has reduced normal form then there is a polynomial algorithm
verifying its satisfiability and constructing its some unifier if F is satisfiable.

Proof. Let
F=A NAs N NAg,

where

Aj = le V Bj2 \Y ng,

and Bj, € {p,—p},p € Prop where Prop are propositional letters. Assume F' has exactly m
letters.

It is evident that F' is satisfiable iff there is at least one path from A; to Ay passing through
each A; via some unique Bj, (in this A;) not containing contradictory literals along all path.

We will try to construct such a path now. We do it by induction on j in A; so we do it by
induction on k in A1 A Ag A--- A Ag. Let k =1 then we have the path.

Inductive step. Assume that n steps are already done and (1) all sets Imp(B,,,) are con-
structed and any Imp(B,,) contains absolutely all possible literals g (in given m letters) to
which we cannot make step from B,,; that is g is any literal contradicting to some lateral in any
possible not contradictory paths leading from any disjunct from A; to By,,. (2) The sets To(By,)
contain all By, which themselves are reached by non-contradictory (no matter which) paths
from A; and from which we (non-contradictory) moved in B,,,. Note that we do not store (record
or memorize) paths themselves - we just fix (record) their existence by marking all B,,_;, from
which we made final steps to (By,). (That is why we summarize things (steps, actions) while
the procedure but do not multiply them.)

Of course we assume all sets T'o(By,) to be {By,} and for n = 1 all is ready, and for all i,
Imp(By,) = {—B,} if By, is a letter and I'mp(B;,) = {B1,} otherwise.

Now we turn to the inductive step itself, we try to move to (n + 1)-th conjunct from A4,,, to
make (n + 1)-th step. Assume that n steps are done and we arrived to B,,, (which informally
means by not-contradictory path; which in our formalism only means that To(B,,,) # 0§, orn = 1)
and all Imp(B,,;) and T'o(B,,) are constructed. Consider any By, 11,. Define immediately

Imp(BnJrlj) := [Imp(By,) N Imp(B,,) N Imp(Bp,)| U {_‘Bn+1j}

and
TO(BnJrlj )

are unions of all B,,, which do not contradict By, 41, and where To(B,, ;) are not empty (which, by
the way, means that B,,; are reached by some non-contradictory paths, and, recall the inductive
assumption, — sets Imp(B,,,) are already successfully constructed).

It is clear that I'mp(B,11,) is the set containing all literals to which we cannot step form
By 41, further at all, even, in particular, to literals which occurs A, ;2. Consider all By,
from level n + 2; if any of them occurs in Imp(Bp1,) we cross out such B4y, from further
consideration. And if that indeed holds for all B,,;1, the procedure stops and formula F is not
satisfiable.

If we can continue, recall that earlier we put in T'o(B,,+1,) all By, from which we arrived to
By11,. The step (n+1) is completed.

If we came to some By, the formula F is satisfiable otherwise not. And the sets To(B,,11,) give
us a satisfying substitution, if we will move from By, back to A; via sets T'o(By;) subsequently
using T'o(B,,,) towards A;. The trick here is that we do not do any choice at all; during moving
we just take any By, from T'o(B,1,) (and we have at most 3 options for that each choice) and
move towards A;.
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The interesting thing here is that we do not do choice at all — we can take subsequently any
from any occurring in B,,; moving to the origin A;. That looks as not deterministic algorithm
but in fact it is the one, a good one, since we can take any disjunct from at most 3 possible
options and any of them will lead us to success.

The amount of steps in this algorithm is polynomial: the general amount of steps used in our
inductive procedure in constructing Imp(By,) and T'o(By+1;) is at most k. And in the inductive
step itself from n to n 4+ 1 for constructing Imp(BnHj) and To(BnJrlj), the amount of steps
is at most 3 x [3 x (2m)?] (m is the number of letters in formula) for computing intersections

Imp(By,) N Imp(Byp,) N Imp(B,,)]. Q.E.D.

This research is supported by High Schools of Economics (HSE) Moscow; supported by the
Krasnoyarsk Mathematical Center and financed by the Ministry of Science and Higher Education
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ITpoGsiema BhimoauuMocTu popmyii B 6ysieBoii joruke (SAT)
IMOJIMHOMUAJIbHA,

Baaagumup B. PribakoB

Cubupckuii deiepajbHbIil YHUBEPCUTET
Kpacnospck, Poccuiickas Penepanus

WucturyT cucrem nudopmaruku um. A. I1. Epmosa
Hosocubupck, Poccuiickas @eneparust

Awnnoranus. Haxomurces momHOMUaIbHbBINA ajroputM pernatomumii mpodsiemy SAT B Byneoit soruxye.

KuroueBsie cioBa: 0Oysesa Jioruka, mpobjeMa BBIIOJHIMOCTH, ajropurM SAT.

- 671 —



	J_MATH_1_цв
	мат.физ.14.5 (1)

