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Abstract. We define a set of polynomial difference operators which allows us to solve the summation
problem and describe the space of polynomial solutions for these operators in equations with the polyno-
mial right-hand side. The criterion describing these polynomial difference operators was obtained. The
theorem describing the space of polynomial solutions for the operators was proved.
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1. Introduction and preliminaries

The summation of functions is one of the main problems of the theory of finite differences,
and the answer was given in the famous Euler—-Maclaurin formula obtained by Euler in 1733 and
independently by Maclaurin in 1738 (see [6,7,21]).

In [1,2,13] the problem of rational summation was studied, that is, finding sums of the form

S(@)=> (), (1)
t=0

where the function ¢(t) is a rational function. The solution to the problem consists in finding
a solution in symbolic form, that is, explicitly in the form of a mathematical function (formula)
and is called the indefined summation problem (see also [8,9]).

In the definite summation problem, the function ¢ can depend not only on the summation

x
index, but also on the summation boundary z, that is, S(xz) = > ¢(t,z) (see, for example,
=0

[11,20]).

*grigrow@yandex.ru
Tlein@mail.ru
faplyapin@sfu-kras.ru
(© Siberian Federal University. All rights reserved
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The problem of indefinite summation is reduced to solving the so-called (see [8,9]) telescopic
equation — the inhomogeneous difference equation

(0 —=1)f(z) = p(x), (2)

where ¢ is a shift operator: §f(z) := f(z + 1).

By analogy with the problem of integrating functions, the solution f(z) to equation (2)
is called the discrete antiderivative of the function p(x). If f(x) is the discrete antiderivative
function ¢(z), then the required sum is

S(x) = flz+1) = f(0). (3)

Formula (3) is called the discrete analogue of the Newton—Leibniz formula.
Euler’s approach to the problem of finding a discrete antiderivative is based on the operator
equality § = e, which allows us to write (2) in the form

P ]

where D is a differentiation operator.
The expression in square brackets on the right-hand side of the last equality is called the
D < B
Todd operator and is understood as follows: [ b 1| = —'Dm, where b, are Bernoulli
e~ — m=0 1.
numbers (see, for example, [3,6,10,17,19]). Thus, we obtain the Euler-Maclaurin formula

Soe= [ et 3 TR+ o 0)
t=0 0

m=1

in which the required sum is expressed in terms of the derivatives and the integral of the func-
tion p(t).

Remark 1. In the summation problem we can use other operators instead of 6 —1. For example,
we can consider the operator (§ — 1)(6 — 2) and solve the difference equation

flx+2)=3f(x+1)+2f(x) =p(x), =0,1,2,....

If a solution to this equation is found then the sum S(x) can be written as S(x) = f(z + 2) —
2f(z+1)—[f(1)—2f(0)]. For n =1 polynomial difference operators P(§) = co+c1d+-- -+ ¢, d™,
where co + -+ + ¢ = 0, has a similar property (effect), see Theorem 2.3.

Euler’s approach to the problem of indefinite summation of a function ¢(t) = @(t1,...,t,) of
several variables suggests that you need to find a multidimensional analogue of (2), and compute
a discrete antiderivative to obtain an analogue of the Newton-Leibniz formula (3). In Section 2
we implemented it to sum a function over the integer points in an n-dimensional parallelepiped
(Lemma 2.2 and Theorem 2.3).

Bernoulli numbers and polynomials play an important role in classical one-dimensional sum-
mation theory and various branches of combinatorial analysis. Bernoulli polynomials are solu-
tions of difference equation (2) with polynomial right-hand side p(t) = t*:

B,(t+1)— B,(t) = pt' .

In the third section of this paper, we use spaces of polynomial solutions (generalized Bernoulli
polynomials) to sum functions of several discrete arguments.
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2. Operators with a summing effect and a discrete analogue
of the Newton—Leibniz formula

To formulate the main result of the paper (Theorem 2.3), we need the following definitions and
notations. For a given function of several discrete arguments ¢(t) = ¢(t1, ..., t,), we consider the
problem of finding the sum of its values over all integer points of an n-dimensional parallelepiped
with a "variable" vertex z € Z4:

O(x)={teRL:0<t; <ajj=1,...,n} (4)

This sum can be written as follows:

S@ =33 et ot = 3 wlt). (5)

t1=0 t,=0 tell(x)

To solve the summation problem means to find a formula expressing (5) in terms of a (finite)
number of terms independent of z.

Operating on the complex-valued functions f(x) of integer arguments x = (x1,...,x,), we
define the shift operator §; with respect to the j-th variable

(ij(x) = f(l‘l, sy Tj—1,T5 + 1,5(1j+1, PN ,.’L‘n), (S?j = (Sj o---0 6j7
~——
a; times
where (5? is the identity operator. Some properties of the shift operator were studied in [12].
Denote P(0) = > co0* — polynomial difference operator with constant coefficients c,,
0<axl

a=(a1,...,an), L= (l1,...,ln) € Z%, and the inequality [ > o means l; > a;,j =1, ...,n.

We will also use the notation [ % «, if there is at least one jo for which [, < ay,.

The difference equation for the unknown function f(z) is written as follows:

PO)f(x) = p(x), = € ZZ. (6)

Definition 2.1. A polynomial difference operator P(8) of the difference equation (6) is called
an operator with a summing effect if the sum (5) can be represented through solutions f(x) to
this equation at finite set of points regardlessly of the numbers of summands in S(x).

In this case, naturally, f(z) can be called the discrete antiderivative of the function ¢(zx), and
the corresponding expression solving the summation problem (5) is a discrete analogue of the
Newton—Leibniz formula.

For any point =, we define the projection operator 7; along the z; axis:

mix = (21, .., %-1,0,Zj41,...,%n)

and define its action: 7, f(x) := f(m;z).

Let P(A) be the power set of A and V := P({1,...,n}),J = {j1,...,Jk} € V. If we
denote m; = mj, o...omj,, then the set of vertices of the parallelepiped II(z) can be written as
{myz,J € V}. Note that gz = x.

Lemma 2.2. In (6) let P(§) = R(6)(0 —I), where R(0) is a polynomial operator. Then for any
solution f of (6), the discrete analogue of the Newton—Leibniz formula is

Y ) =RE) Y (~0* f(rs(e+ 1)),

teTl(x) Jev

where #J is a number of elements of the set J.
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Proof. Since

>0 =) = D00 = DI m ) = (65— (D 07 )mif(t) =
tj:U tj:O tj:O
fj+1 1 zj+1
=@ -1) mif (1) = (07 = mf (@),

we get

hense, since 7; and J;, permute for j # k, we have

n

1J+1 Jex5+1
L1677 =) = > (~)*657 agmy,

Jj=1 Jev

where J = {1,...,n}\J, § = (61, ,6n).
Thus we conclude that

n

Yoo @) [T07 m; — mp) f(t) = R(8) S (—=1)* f(ms( + D).

tell(z) j=1 Jev
O

Note that the case R(d) = 1 was proved in [18].

We see that in Lemma 2.2 finding the value of (5) is reduced to calculating the values of the
function f(z) at the vertices of the parallelepiped II(x + I), the number of which is 2" and does
not depend on x. Thus, the operator P(6) = R(6)(6 — I) has a summing effect.

We denote 0 = (01,...,0,), where 9; is the differenctiation operators with respect to the
Jj-th variable, j = 1,...,n, and O* = 94" ... Ok,

Theorem 2.3. In the summation problem (5), the polynomial difference operators
H (6, —1) = R(8)(6 — I)

and only they have a summing effect, where R(0) is a polynomial.

Proof. We transform (5), assuming that f(¢) is a solution to the difference equation (6) and using
the equality f(t) = 6'f(0) yields

S@y= Y wlt)= Y POfH)= ) &P@E)0). (7)

tell(x) tell(x) tell(x)
5w+[ _
Next, we use the multiple geometric progression formula Y ¢ = 5T and expand the
tell(x) -

O P(I) (Z—

al

characteristic polynomial in a Taylor series at the point I = (1,1,...,1): P(z) = >
0<ax!
I)*. Then we transform the resulting expression

Py = PO ey o PPD ppan

! a!
a>0 I<a<l
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and to express (5) as

sw= | S E e -0 > s

afl

+ Z 8QP(I) (5_1)0471 (61:+I —I) f(O), (8)

al
I<a<l

where 0+ — [ = (672 — 1) ... (621 — 1),

Note that the number of summands in the second sum of the right-hand side of (8) does not

depend on numbers of summands in S(z), but in the first sum it does. If P(§) = R(0)(§ — 1),
then the first term is absent and P(J) has a summing effect.

0*P(1

On the other hand, if P(d) has a summing effect, then > ()

a>0 al
aZl

(6 — I)* =0, but then

re = S LED 5 pe— - 1R,

al
I<axl
o0“P(I
where R(6) = Y '( )((5 — D)oL, O
I<a<l @
Example. Find the sum
T o
S(m1,m2) =Y >ty ta)
t1=01t2=0
for the function
(t1.t2) = _
P2 (t1 +ta+1)(t1 +t2+2)(t1 +t2+3)°
We note that the function
f(t t ) — 1#
tr2) = 21+t +1

is a solution to the difference equation (61 — 1)(d2 — 1) f(¢) = @(t). Since P(§) = (61 —1)(d2 — 1),
R =1, the sum is

S(JJ):f($1+1,1'2+1)—f(331+1,0)—f(0,$2+1)+f(0,0):
1 1 1 1
=z - - +1).
2<$1+$2+3 T1+2 x94+2 >

3. Polynomial solutions to a multidimensional difference
equation
Bernoulli numbers and polynomials play an important role in the classical one-dimensional

summation theory. Bernoulli polynomials are solutions of the difference equation (2) with the
polynomial right-hand side o(t) = t#~1:

(Bu(t+1) = B(t)) ="~ 9)

==
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Bernoulli numbers and polynomials are well studied (see, for example, [6,19]) and have nu-
merous applications in various branches of mathematics (see [5,15,16]).

One of the options for finding the Bernoulli polynomials is to use the operator equality § = .
From (9) we find the formula for the Bernoulli polynomials

H -1 H -1
B,(t) = = 1,
w(t) §—1 el —1
whence we get
D
B,(t) = tH 10
M( ) 6D -1 ’ ( )
where — 1= > B,,—' is a differential operator of infinite order, B, = B, (0) are Bernoulli
e~ — v=0 V.
numbers.

The action of the operator 1 on polynomials is well defined. We obtain a formula for

eD _
finding the Bernoulli polynomials

"B
Bu(t)=)_ Dt

v=0

Remark. The above scheme for finding the Bernoulli polynomials can be viewed as a method
for finding a particular solution of the equation (2) in the case when the right-hand side of ¢(t)
is a polynomial.

We are interested in computing polynomial solutions to difference equation (6) with poly-
nomial right-hand sides. In this case, without loss of generality, we can consider the case
o(t) =t =t ...tk In addition, we are interested in polynomial difference operators P(d)
with a summing effect, which, by virtue of Theorem 2.3, can be written in the form

P(8) = R(9) ﬁ(f% - 1M, (11)

where R(9) is a polynomial difference operator with constant coefficients, R(I) # 0.
We consider the difference equation

n
RO [J - VM fe) =1, tez, (12)
j=1
and find its particular polynomial solutions by analogy with the one-dimensional case, that is,
we use the operator equalities 0; = eP7, j =1,2,...,n.
1 g

The function Td(§) = is holomorphic at the point £ = 0 and therefore

R(e?) jl;ll (€5 — 1)k
admits its expansion in some neighborhood of zero as a power series

l;k,m m
Td(g) = ) e (13)
m=0
Substituting the differentiation operator D; into (13) in place of the variable ¢;, we define the

differential operator of infinite order:

5k,m, m
Td(D) =Y D™ (14)
m>0 ’
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For ky = ... =k, =1 and R(6) = 1, the operator defined in (14) is called the Todd operator (see,

for example, [4,14]). In the general case, it is natural to call it the generalized Todd operator,

and the numbers by ., — generalized Bernoulli numbers. Any polynomial solution to equation

(12) is called the Bernoulli polynomial associated with the polynomial difference operator (11).
The case R(0) = 1 was considered in [18].

We set (™) = p(u — 1) (s — 2) -~ (j — (m — 1).

Theorem 3.1. Let P(J) be an operator with summing effect of the form (11). Then the set of
Bernoulli polynomials associated with this operator is described by the formula

~ k:’_
by ™) ghtk—m SN b )
fla)y=> = £33 g [ a), (1)
| _ k i i
os<m<p me (,LL + k m)( ) i=1 m;=1
where ¢, are arbitrary polynomials in (n — 1)-th variables x1,...,[i], ..., Tp.
Proof. From the difference equation (12), using 6; = P4, j = 1,2,...,n, and the definition of

the Todd operator, we obtain

l;k,m m Bk’m m —m
D¥f(z) = Td(D)z" = Y — DMt = > W“( )gh=m, (16)
o<m< o<m<
Integrating (16) k; times over the variable x; for all j =1,...,n, we get (15). O

Example. As an illustration of the application of (15), we present the solution of the difference
equation

(01 = 1)(02 — 1) f(z,y) = zy. (17)
We have P(0) = (01 — 1)(02 — 1), R = 1, (1, p2) = (1,1), (k1. k2) = (1, 1), and f(z,y) =

- - b b b b
= Bi111(x) + Q(x) + S(y), where Byy11(x) = %ﬁf + 211.‘(11 22y + 111.‘120xy2 + 111111 Ty

is the generalized Bernoulli polynomial, Bll,m are the expansion coefficients of the generating
function

DD,
D~ 1)(ebs 1)

into the Taylor series at the point D = 0; Q(z), S(y) are arbitrary polynomials in one variable.

Calculations give: bi1.00 = 1, b11.01 = —5 bi1.10 = 5 b = 1
Thus, any polynomial solution to (17) has the form

flay) = i(%gy2 — 2%y —zy® + 2y) + Q(z) + S(y).

The second author is supported by the Russian Science Foundation no. 20-11-20117.
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CymvmmMma dyHKINIT 1 MOJINHOMHAAJJIbHBIE PeIlleHns
MHOTI'OMEPHOI'0 PA3HOCTHOI'O ypPaBHEHUSsI

Anppeit A. I'puropnen

Esrennii K. Jleiinaprac
Cubupckuii deiepaibHblii YHUBEPCUTET
Kpacnosipck, Poccuiickas Peepariust

Anekcanap II. JIanuu
Cubupckuii deiepajbHbIl YHUBEPCUTET
Kpacnosipck, Poccuiickaa Penepariust
TocynmapcrBennsniit yuuBepcurer O@3pMOHT
®spmonT, 3anagnas Bupmxnana, CIITA

Annoranus. Onpeesien HaGOP MOJIMHOMHUAJIBHBIX PA3HOCTHBIX OIIEPATOPOB, MO3BOJIAIONIAN PEINTh 3a-
Jady CyMMUPOBaHHsI, U OIIMCAHO IIPOCTPAHCTBO IOJMHOMUAJIBHBIX PEIIeHHil 3TUX OIepaTopOB B ypaB-
HEHUsX C MOJMHOMHUAJIBLHON MpaBoil yacThio. 1loyven KpuTepuii, ONMUCHIBAIONINI 9TH MOJINHOMHUAIbLHBIE
pa3HocTHBIe omepaTopsl. JlokazaHna TeopeMma, OMUCHIBAIOIIAST TPOCTPAHCTBO MOJMHOMHUAIBHBIX PENTeHNH
JJ1s1 OIIEPATOPOB.

KuroueBsbie cioBa: qncia beprymm, maoroanenst Beprysin, 3amada cyMMUPOBaHMS, MHOTOMEPHOE
pa3HOCTHOe ypaBHeHHe, hopmyra Jitepa—Makaopena, omeparop Tomga.
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1. Introduction and preliminaries

It is well known that Cauchy problem for an elliptic equation is ill-posed. The solution of
the problem is unique but unstable (Hadamard‘s example). For ill-posed problems the existence
of a solution and it belonging to the correctness class is usually assumed a priori. Moreover, the
solution is assumed to belong to some given subset of the function space, that is usually a compact
subset [1]. The uniqueness of the solution follows from the general Holmgren theorem [2].

The Cauchy problem for elliptic equations was the subject of study for mathematicians
throughout the twentieth century and it continues to attract the attention of researchers to
this day.

The development of special methods that allows one to deal with ill-posed Cauchy problems
was stimulated by practical demands. Such problems can be found in hydrodynamics, signal
transmission theory, tomography, geological exploration, geophysics, elasticity theory, and so on.

A solution of the Cauchy problem for the one-dimensional system of Cauchy—Riemann equa-
tions was first obtained in 1926 by Carleman [3]. He proposed the idea of introducing an addi-
tional function into the Cauchy integral formula which allows one to take the limit in order to
damp the influence of integrals over that part of the boundary where the values of the function
to be continued are not given. The idea of Carleman was developed in 1933 by Goluzin and
Krylov [4]. They found a general way to obtain Carleman formulas for the one-dimensional
system of Cauchy—Riemann equations.

Resting on the results of Carleman and Goluzin—Krylov, Lavrent’ev introduced the concept
of the Carleman function for the one-dimensional system of Cauchy—Riemann equations. The
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© Siberian Federal University. All rights reserved
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method proposed by Lavrent’ev [5] consists in approximation of the Cauchy kernel on the addi-
tional part of the domain boundary outside the support of the data of the Cauchy problem.

The Carleman function of the Cauchy problem for the Laplace equation is a fundamental
solution that depends on a positive parameter. It tends to zero together with its normal derivative
on the part of the domain boundary outside the Cauchy data support as the parameter tends
to infinity. Using the Carleman function and Green’s integral formula, a Carleman formula is
produced. It gives an exact solution of the Cauchy problem when the data are specified exactly.
Construction of the Carleman function allows one to construct a regularization if the Cauchy data
are given approximately. The existence of the Carleman function follows from the Mergelyan
approximation theorem [6].

Fock and Kuni [7] found in 1959 an application of the Carleman formula to the one-
dimensional system of Cauchy-Riemann equations. When part of the domain boundary is a
segment of the real axis they used the Carleman formula to establish a criterion for the solvabil-
ity of the Cauchy problem for the system of Cauchy—Riemann equations on the plane. An analog
of the Carleman formula and criteria for the solvability of the Cauchy problem were obtained for
analytic functions of several variables [8,9], for harmonic functions [10-12] and also [13-16].

A fairly complete survey on Carleman formulas can be found in [5,11,17,18|.

In the present paper, a regularized solution of the Cauchy problem for the system of elasticity
equations is constructed on the basis of the Carleman function method.

Let us assume that © = (21,...,2m) and y = (y1,...,ym) are points in R™, D, is a bounded
simple connected domain in R™. Its boundary is a cone surface:

X a1 = TYm, a%:y%—&-...—i—yfn_l, thg;-—p, Ym >0, p>1.
Let us also consider a smooth surface S that lies inside the cone.
Let us consider in domain D, the system of equations of elasticity theory

pAU (z) + (A + p) graddivU (z) = 0;

here U = (Uy,...,Uy,) is the displacement vector, A is the Laplace operator, A and p are the
Lame constants. For brevity, it is convenient to use matrix notation. Let us introduce the matrix
differential operator

A(0x) = || Aiz (9) lmscm,

where 5
Aii(0g) = 0ijuA + (X .
Then the elliptic system of equations can be written in matrix form
A(0,)U(x) = 0. (1)

Statement of the problem. Let us assume that Cauchy data of a solution U are given on S,

Uly) = fly), yeS,
T(9y,n(y)U(y) = g(y), yE€S, (2)

where f = (f1,..., fm) and g = (g1,...,gm) are prescribed continuous vector functions on
S, T(0y,n(y)) is the strain operator, i.e.,

0
i a )
on mxXm

T(0,.1()) = |T53 0y 12(5)) lmscrn = \

0 0
A =— —— + o
nayj—l—,unjayi—&—u
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d;; is the Kronecker delta, and n(y) = (n1(y), ..., nm(y)) is the unit normal vector to the surface
S at the point y.

It is required to determine function U(y) in D, i.e., to find an analytic continuation of the
solution of the system of equations in the domain from the values of f and g on a smooth part
of S of the boundary.

In this paper, the Cauchy problem for system of static equations of elasticity theory is solved
for cone type domains by the method of regularization of the solution according to Lavrentiev.

In earlier works [14-16], this problem was considered either in two or three-dimensional spaces
or for other special domains for which it is required to construct special matrices of fundamental
solutions in explicit form that depends on the domain and dimension of the space.

Similar problems were considered for an arbitrary domain, by expanding the fundamental
solution into a series in terms of spherical functions [12,19].

Let us suppose that instead of f(y) and g(y) their approximations fs(y) and gs(y) with
accuracy 4, 0 < d < 1 (in the metric of C) are given. They do not necessarily belong to the
class of solutions. In this paper, a family of functions U(z, f5,9s5) = U,s(z) that depends on
parameter o is constructed. It is also proved that under certain conditions and special choice of
parameter ¢(d) the family U,s(x) converges in the usual sense to the solution U(z) of problem
(1), (2) as § — 0.

Following A. N. Tikhonov, U,s(x) is called a regularized solution of the problem. A regularized
solution determines a stable method of approximate solution of the problem [1].

2. Construction of the matrix of fundamental solution
for the system of equations of elasticity

Definition 2.1. Matriz I'(y, ) = ||Ts; (Y, Z)||mxm., is called the matriz of fundamental solutions
of system (1), where

0 ..
1 1
. m > 2
2 _ m _ plm=—2"
q(y,z) = (1 My =l
—Inly—z|, m=2,
2T

and wy, is the area of unit sphere in R™.

Matrix I'(y,x) is symmetric and its columns and rows satisfy equation (1) at an arbitrary
point x € R™, except y = x. Thus, we have

A(aw)r(y’x) =0, y 7é .

Developing idea of Lavrent‘ev on the notion of Carleman function of the Cauchy problem for
the Laplace equation [5], the following notion is introduced.

Definition 2.2. The Carleman matriz of problem (1), (2) is (m x m) matriz H(y,z,0) that
satisfies the following two conditions

1) I(y,x,0) = I'(y,x) + G(y, x,0), where o is a positive parameter, and matriz G(y,x, o)
satisfies system (1) everywhere in domain D with respect to the variable y.
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2) The following relation holds
[ (N2.0)1 4+ 170, 011052 0))ds, < =(0),
aD\S

where €(o) — 0 as 0 — oo uniformly in x on compact subsets of D. Here and elsewhere |II|

m 1
denotes the Euclidean norm of matriz 11 = |||, i.e., [II| = ( > Hfj) *. In particular,
ij=1

m 3
|U| = ( > Uf) for a vector U = (U, ...,Up).
i=1
Definition 2.3. A vector function U(y) = (U1(y),- .., Un(y)) is said to be reqular in D if it is

continuous together with its partial derivatives of second order in D and partial derivatives of

first order in D = D|J0D.

In the theory of partial differential equations solution functions of potential type play an im-
portant role. As an example of such representation, the formula of Somilian—Bettis is considered
below [20].

Theorem 2.1. Any regular solution U(x) of equation (1) in the domain D is represented as

Ulx) = LD(F(y,m){T(Gy, n)U(y)} —={T(8y,n)l'(y,x)}*U(y))dsy, © € D, 3)

here A* is conjugate to A.

Suppose that Carleman matrix II(y, x,o) of problem (1), (2) exists. Then for the regular
functions v(y) and u(y) the following relation holds

/6D [(W){AB,)U(y)} — {A(9y)v(y)} U(y)ldy =

=ADW@uvmmwwrwﬂ@mwwvwmmy

Substituting v(y) = G(y,z,0) and u(y) = U(y) into the above relation, we obtain
/BD [G(y, 2, 0){A(0,)U (y)} — {A(9y)G(y, x,0)}"U(y)ldy = 0. (4)

The theorem follows from (3) and (4).

Theorem 2.2. Any regular solution U(x) of equation (1) in domain D, is represented as
Ulx) = /8D ((y, z,0){T(8y, n)U(y)} = {T(9y, n)Il(y, z,0)}"U(y))dsy, x€ Dy,  (5)

where (y, z,0) is the Carleman matriz.

Suppose that K(w), w =u+iv (u and v are real) is an entire function that takes real values
on the real axis. It satisfies the following conditions

K(u) #0, sup [vPKP (w)] = M(p,u) < oo, p=0,...,m, uc R.
v>1
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Let
s=a’= (yl - x1)2 +--+ (ym—l - Z‘m—l)2~

For a > 0 function ®(y, z) is defined by the following relations. If m = 2 then

K(ivu? + o2 + y9) } udu
V2 + a2 +ys —zo ] V2 + o

—QWK(xg)(I)(y,x):/ Im{
0
Ifm=2n+1, n>1 then

Con K (2,)®(y, )

ot /OOIm|: K(ivu® 4+ a2 + ym) ] du
ds"=1 Jy VU2 + 02 + Y — T | VU2 + a2’

where C,,, = (—=1)""1 - 27" (m — 2)7w,, (2n — 1)!. If m = 2n, n > 2 then

g2 K(ai + ym
CmK($m)(b(y7x) = aanImOé(a:»y 7.%) )’

where Cp, = (—=1)" "} (n — 1)!(m — 2)wp,.
The following theorem is valid [10]

Theorem 2.3. Function ®(y,x) can be expressed as

1 1
CI)(y,q;) = ﬁln; +92(y7x)7 m=2, r= |y - xlv

2—m

(D(y,l‘): )+gm(y7x)a m>37 7":|y_33‘7

W (M — 2

where g, (y,x), m = 2 is a functions defined for all values of y,x and it is harmonic with
respect to variable y in R™.

Using function ®(y, z), the following matrix is constructed

A+ 3u
I(y,2) = W (0, 2) s =] 3275 57

N m(% - xa)@@(yaf)“me,Z7] =1,2,....,m. (9)

6ijq)(ya J})—

3. The solution of problems (1), (2) in domain D,

I. Let 9 = (0,...,0,2m,) € D,. Let us introduce the following designations

2 2 2
B="TYm —Qo, ¥=TTm —Qp, g =27 +...+TH_1, r=|x—1yl,

s=a’= 1 —21)*+ ...+ Wm-1 — Tm_1)®, w=iTVUZ+ a2+ B, wo=iTa+f.

Let us construct a Carleman matrix for problem (1), (2) for domain D,. The Carleman
matrix is explicitly expressed in terms of the Mittag-Loffler entire function. It is defined by
series [21]

Ep(w)—ZM, p>0, Ei(w)=expuw,
p
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where T'(+) is the Euler function.
Let us denote the contour in complex plane w by v = ~(1,0), 0 < 6 < I, p > 1. It is in the
P

direction of nondecreasing argw and it consists of the following parts.
Dray argw=—0, |w|>1
2)arc — 60 < argw <0 circle |w| =1,
3ray argw=196, |w|>1
Contour ~ divides complex plane on two parts: D~ and DT. They are on the left and the
right sides of +, respectively. Suppose that 21 <0< %, p > 1. Then the following relation

p
holds
E,(w) = expw’ + ¥,(w), we D

E,(w) =¥ ,(w), E,’)(w) = \I/;)(w), we D, (10)
where e e
_p exp ’ _ P €xp
Up(w) = 2mi | (- el U, (w) = o /7 de (11)
W) @) p [ epl(C Rew)
ey () = S = o | e
VU, (w) =V, (w)  plmw exp ¢*
ImV,(w) = £ oF L = 5 A (<—w)(<—@)d<’ (12)

ImW,(w) _ L/ 2exp§p((—Rew)dC.

Imw v (C=w)*(¢ —w)?
In what follows, 6 = 21 + %2, p > 1,9 > 0. It is clear that if 21 + &2 < |argw| < 7 then
P P
w e D™ and E,(w) = ¥,(w).

Let us set
P Cq expCp
E — d k=1,2,... =0,1,2
kaq 27T’L C U}) C) » s ) q ) Lty 4y
T &g . . .
If 2 + 5 S < |argw| < 7 then the following inequalities are valid
0
M,y Mo
E <— |E; S — 3
M3
E <————, k=12,..., 13
I k,q(w)‘ 1+|w|2’“ ( )

where M, My, M3 are constants.

Suppose that § = 21 + %2 < 17 p > 11in (10). Then E,(w) = ¥,(w), cos pf < 0 and
p p

/|C|qexp(cosp9|qq)\d(| <oo, ¢=0,1,2,.... (14)
8!
In this case for sufficiently large |w| (w € DT, w € D~) we have

. . &2 . _ . €2
—_ — -, — = _— 15
min|¢ —w| = w|sin 7, min|¢ ~ @] = |w|sin (15)
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Now from (10) and

for large |w| we obtain

(- Y <k

= 27sin 2 |wl|?

const
[ 1€l os poicie jac) < T
~

r(1-0) = o2 [ewiedc
p 27 ), '

It follows from this that M

E <—1

From (11), (15) and

1 1 2¢ ¢?

(T R e () I (S

for large |w| we obtain

, el _l 1 const
-1 (1) S <

or v

/ 2

B0 = T
Considering (16), for k = 1,2, ... we have
1 _[(=DF ¢* ] [(—1)’“ ¢*
e | e =
1 k
+

TwPE T PR —w]

Taking into account previous relations and (14), (15), for large |w| we obtain

1 1 const
-1
‘E;W(w) - (1 - p) w2k = |w|2k+1
or L
E} = 3 k=12
| k,q(w)| 1+|w\2k’ y 4y

Therefore, since

(C—w)(¢ =) =C* = 20(Ym — Tm) + U2 + %+ (Ym — Tm)?, * =35,

then
on—1 1 (=) L(n —1)!

st (C—w)(¢—w) ((—w)"({—w)"
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Now we obtain from (11) that

A CDT =Dl (¢~ (Y — Tm)) X

dsnAR Ey(w) = 2mri [y (¢ —w) (¢ —w)"
P I (0 [ e

ds" =t /uZ + o2 i v ((=w)™(( —w)

Then from (3.) we have

dg,

_dc,

dr—1 const - r
dsn—l

d"=t ImE,(w)
ds" 1 \/u2 1 o2

For o > 0 we set in formulas (6)-(9)

E < ——
e ”(w)‘ 1+ [w]?

const - r
Sl wf?

Then, for p > 1 we obtain
a\y¥,T
(I)(ywr):(pff(y,‘r)zua y7é33,

where ¢, (y, z) is defined as follows:
if % m = 2 then
e E,(cw) udu
o\¥,T) = Im £ )
#o(y: ) 0 ivu? + a? +yo — x2 Vu? + o?

if m=2n+1,n > 1 then

dn=t [ Ep(U%w) udu

, ) = —— Im ) z,
Pl = 4oy T @ g et

if m=2n, n > 2 then

dn—2 , E, (a%w) .

%oy, ) = dsn—2 ma(ia + Ym — T

Let us define matrix II(y, z, o) using (9) for ®(y,z) = ®,(y,x).
It was proved [10]

Theorem 3.1. Function ®,(y,x) can be expressed as

1. 1
Qo(yax) = %ln; +92(y,’15,0'), m=2, r= ‘y*l'|,

,,,27777,

‘ba'(yvx) = m +gm(y,x,a), m = 37 r= |y 71‘|a

where gm(y,z,0), m > 2 is a function defined for all y,x and it is harmonic with spect to
variable y in R™.

We obtain from this theorem
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Theorem 3.2. Matriz Il(y,x,0) defined in (7)-(9) and (17) is a Carleman matriz for problem
(1), (2).

Let us first consider some properties of function @, (y,x).
LLetm=2n+1, n>1, z€D,, y#x,02=09>0then
1) for 8 < a the following inequalites hold:

O.m—2
ﬁeXP(—U’Y’)),

Tm

15 (y, 2)| < Ci(p)

0d, o™
)| < Calp) S xp(-077), y € 0D,
0 0%, omt2 .
ox: on (y,fl?) < 03(/)) rm eXp(iaﬂYp)a i=1...,m, (18)
2) for 8 > « the following inequalities hold:
o.m72
|20 (y,2)] < Calp) =g exp(=07" + o Rewy),
0P, o™
T 0.)| < Colp) s expl-on? + R € 0D,
0 0%, omt2 .
(’955871<y7x)‘ < Cs(p) . exp(—o7” + oRewf), i=1,...,m. (19)
3

ILLet m=2n, n>2, v€D,, ©#y, 0=09>0then
1) for 8 < « the following inequalities hold:

m—3

=~ g
|(I)G'(yax)| < Cl(p) — exp<_0-fyp)7

T.m

m

‘ 0d,

%( < 52(/))

y,-T) Tm_l exp(fo-’yp)a JBS 8Dp’

0m+2

0 09, .
—exp(—07’), y€ID,, i=1,...,m, (20)

0z, On (y,2)
2) for 8 > « the following inequalities hold:

< 6’3(P)

r

m—2

Cu(p)Z —5 exp(—07” + o Rewy),

1o (y,7)| < Calp)

TTTL

m

— exp(—07” + oRewf), y € 0D,

< Cs(p)

Tm

0P,
)

O.m+2

0 0%,
< Cs(p) .

aSCZ‘ 8n (y,x)‘
III. Let m =2, x€D,, x#y, 0> 09 >0 then
1) if B < « then

exp(—07” + oRew()), y € dD,, i=1,...,m. (21)

1o (y, 2)| < Cr(p) B~ (o7 7)]

0P, E1 0%7
]ay@,x)\ < (o 2T, (22)
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2) if B > « then

1@, (y,)] < Cr(p) B~ (07 7)(In —5—) exp(o Rewf)),

‘ e < Cs(p)E, 1(0P’Y) ! exploRewf). (23)

Tyi(y’x)

Here all coefficients C;(p) and C;(p), i=1,...8 depend on p.

Proof of Theorem 3.2. From the definition of II(y, z, o) and Lemma 1 we have
U(y,z,0) =I'(y,z) + Gy, z,0),

where

G(y,l‘ o _HGk] Y, z, U)mem =

o) — 5y~ ) g, 0)
2H )\+2M k]gm Y, x, 2#()\+2ﬂ) Y J aylg’m Y,z, .
m 82
Let us prove that A(0,)G(y,x,0) = 0. Since Aygm(y,xz,0) =0, Ay = > 902 and taking
k=1 OYj

into account relation for the jth column G7(y,, o)

1 0

el -

gm(ya$ 0)

we obtain relation for the kth components of A(9,)G’(y,z,0)

m

A+ 3u A p 0
EA Ayl =——— 0k, ———(yj— ;) =—
z 7,] ya'r 0) /’L y 2#(}\—"2#) 5k]gm(y7‘x’0’) 2M()\+2M)(y] x])aykgm(y"raa) +
0 .
+ A+ p)—divG (y,x,0) =
(A+ 105 =divG (1.,0)
Apu 92 Atp 02

Yy, r,o )+ ng(yax O—)*O

" 2u 2 a2V 2000+ 20) 03

Therefore, each column of matrix G(y,z,o) satisfies system (1) with respect to the variable y
everywhere in R™.

The second condition on the Carleman matrix follows from inequalities (18)—(23). The proof
of the theorem is complete. O

For fixed z € D, we denote the part of S, where 3 > a by S*. If x = 29 = (0,...,0,2,,) € D,
then S = S*. Consider the point (0,...,0) € D,. Suppose that

U U 0B,(0,x)  09,(0,2)
%(0)  OYm (0), on  Oym
Let
Us(y) = /*[H(ya%a){T(aym)U(y)} —{T(0y,n)(y,,0)} " U(y)ldsy, =€ D,. (24)

Theorem 3.3. Let U(x) be a regular solution of system (1) in D,, such that

U@ +1T(8y,n)U(y)| < M, y € %. (25)
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Then
1)ifm=2n+1, n>1and forx € D,, o= 09> 0 the following estimate is valid:

|U(2) = Uy ()| < MCy(2)o™ ! exp(~07”),
2)ifm=2n, n>1, x€ D, o=>=o09>0 the following estimate is valid
U () = Us ()| < MCy(z)o™ exp(—07”),

where
dsy

Cule) = Culp) [ B k=12,

ap, T

Ck(p) is a constant that depends on p.

Proof. 1t follows from (5) that
Ul(z) 2/*[H(yvx,a){T(ayvn)U(y)} —{T(9y, M)I(y, z,0)}*U(y)ldsy+

+ [ Mo (T, mU W) - (10, (2. 0)) Ulw)lds,, o€ D,y
D\ S

Therefore, we have from (24) that
U(z) = Us(2)| < / [y, z, 0 ){T(8y, n)U (y)} = {T(9y, n)Il(y, z,0)}*U(y)]ds, <
aD,\S*
< [ NG0)| + 7@,y 2,0)] [0 )Ly )] + [U ) s,
8D,\S*

Taking into accoun inequalities (18)—(23) and condition (25), we obtain for § < o and m = 2n+1,
n>1

d
V(@) - Un(@)] < MCi(p)o™ exp(-07%) [ 0,
op, ™™
For m = 2n, n > 1 we obtain
m P dSy
U(z) — Uy (2)| < MC2(p)o™ exp(—a7”) —
ap, T

The proof of the theorem is complete. m]

One can determine U(z) approximately if, instead of U(y) and T'(9,, n)U (y), their continuous
approximations f5(y) and g5(y) are given on surface S:

max [U(y) = ()| + max |70y, m)U(y) = 95()| <8, 0< 3 < 1. (26)

Function U,s(z) is defined as follows

Uss(x) =/ [y, z,0)95(y) = {T(8y, )1y, z,0)}" f5(y)ldsy, © & Dy, (27)
where LM
= — _— [— P
7= T In 5 R I;lé‘ié( Rewy.

Then the following theorem holds.
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Theorem 3.4. Let U(x) be a regular solution of system (1) in D,, such that
Uy)| + T8y, n)U(y)| < M, y € ID,.

Then,
1) if m=2n+1, n>1 then the following estimate is valid

5 M\
U@) - Uas(a)| < )@ (1n5)
2) if m=2n, n>=1 then the following estimate is valid:

U () = Uss ()] < Ca(2)6®" (ln M) :

where

Cul) = Culp) [ T k=12

oD, T
Proof. Tt follows from (5) and (27) that

U(z) = Uss(x) = / [y, z, o ){T(8y, n)U(y)} = {T(9y, n)Il(y, z, o)} U (y)]dsy~+
8D,\S*
+/S* [y, z, o ){T(8y, n)U(y) — 95 (y)} +{T(9y, n)Il(y, z,0)}"(U(y) — f5(y))]dsy =
=1 + I>.

Taking into account Theorem 3.3, we obtain for m =2n+1, n > 1,

d
|I1| = MCy(p)o™ exp(—avf’)/ =,
ap, T
and for m =2n, n>1 d
s
1] = MCalp)o™ exp(-or?) [ L.
op, T

Let us consider |I5] :

2| = /S (H(y, z, 0)| + [T(9y, )T (y, z, 0)[) (|T(y, n)U (y) = 95(y)| + [U(y) = f5(y)]) dsy-

Taking into account Theorem 3.1 and condition (26), we obtain for m =2n+1, n>1

~ d
|I5] = C1(p)o™ 6 exp(—oy” + JRewg)/ Sy
op, ™™
and for m =2n, n > 1,
~ m o ds,
|I2] = Ca(p)o™d exp(—ovy” + o Rewy)) prg
oD,

Therefore, from

1 M
o= ﬁln 5 RF = I;léxé(Rewg.

The theorem is proved.

Corollary 1. The limits
Ull)n;o Uys(z) = Ul(x), %gr(l) Ups(z) = U(x)

hold uniformly on any compact set from D,,.
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Ba,uaqa Komm AJId YPaBHEHHU A TEeOopHuu YIIPYyIrocTu

Oaumkan . MaxmyaoB
Nk60a . Huészon

CaMmapKaHICKHUI TOCYJapCTBEHHBIN YHUBEPCUTET
Camapkans, Y36ekucran

Annoraiusa. PaccmarpuBaercs 3ajada 006 aHAJIUTUYIECKOM IPOIOJIPKEHUN PEIIEHUSI CUCTEMbBI TEOPUU

VIIPYTOCTU B 00JIACTH 110 3HAYEHUSIM PEIIEHMsI U €ro HAIPS>KeHWI Ha YaCTU I'PAHUIIBI STOM 00JIaCTH, T. €.

3aga4a Komrm.
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Abstract. Examples of computing power sums of roots of systems of equations, including transcenden-
tal, are considered. Since the number of roots of such systems is, as a rule, infinite, it is necessary to
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Introduction

Basing on the multidimensional logarithmic residue, L. A. Aizenberg has obtained formulas
for power sums of roots of systems of non-linear algebraic equations in C™ [1, Theorem 2, Corol-
lary 2]. These formulas enable us to find sums of values of holomorphic functions in roots without
calculation of roots themselves, and to develop a new method of investigation of systems of equa-
tions in C". For different types of systems, such formulas have different forms.

This was proposed by L. A. Aizenberg [1], and the development of this idea was continued in
monograph [2]. The main idea of the method is to find power sums of roots of a system in positive
degrees, and then use either one-dimensional or multidimensional Newton recurrent formulas to
recover them. Unlike the classical elimination method, this method is less time consuming and
does not increase the multiplicity of roots. The base of the method is a formula [1] obtained by
using the multidimensional logarithmic residue for evaluation of sums of values of an arbitrary
polynomial in roots of a given system of algebraic equations without calculation of the roots
themselves.

As a rule, we cannot obtain formulas for the sums of roots of non-algebraic (transcendent)
equations, because the set of the roots can be infinite, and power series of their coordinates
can be divergent. However, the non-algebraic systems of equations arise, for instance, in the
problems of chemical kinetics [3]. Therefore, such systems demand further investigations.

The power sums of negative degrees of roots of various transcendent systems are studied in
papers [4-9]. These sums are calculated by means of residue integral over skeletons of polydisks
with center at the origin. Note that this residue integral in general is not a multidimensional

*elfifenok@mail.ru
© Siberian Federal University. All rights reserved
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logarithmic residue, or the Grothendieck residue. There exist formulas of residue integrals for
various types of homogeneous systems of lower orders, and established connections with power
sums of roots of the system in negative degree.

More complicated systems are investigated in the works [7,8]. Here the lower homogeneous
parts allow expansion into product of linear factors, and the cycles of integration in the residue
integrals are determined by these factors.

The subjects of the paper [9] are algebraic and transcendent systems of equations, where
the lower homogeneous parts of functions form non-degenerated system of algebraic equations.
Formulas were found for the residue integrals, power sums of the roots in negative degree, and
multidimensional analogs of the Waring formula, i. e., the relations between the coefficients of
the equations with the residue integrals. In the next section we use the results of this article.

1. Principal statements

Consider a system of equations f(z) = 0, where f(z) = (f1(z), f2(2),..., fn(z)) are functions
of the form

fi(z) = Pi(2) + Qj(2) = 0, (1)
where P; is the lower homogeneous part of the function, i.e. degree of all monomials (in all
variables) in @); is strictly greater than in P;.

Pi(z) = Z v, 2"
|83 [1=m;
and functions ¢); develop in Taylor series in a neighborhood of the origin that converge absolutely
and uniformly:

llad||>m;
For non-degenerate systems of polynomials P, i.e. such that there exists only one their
common zero — the origin, one can show that ([9, Lemma 1]) the cycle

FP:{ZGCHI‘PHZTJ', 73->0,jzl,7}

is a compact set that does not intersect with the coordinate axes for almost all 7.
Denote by .J, the residue integral

St / 1 df
YT @ry=Dn ) o f
T'p
-1 / 1 dfy |, dfo df»
@ry=1)n ) ettt T f

I'p

where v = (71, - Yn)-

Theorem 1.1 ([9], Theorem 1). Under the assumtions made, for a system of equations of the
form (1) we have

A-Q”
Jy = Z (—1)lellan [W] ) (2)
eIyl +n
where A is the Jacobian of the system (1), Q% = Q7' - ... - Q%~, and M is a linear functional

that to a Laurent polynomial assigns its free term.
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We shall additionally assume that the system of polynomials P does not have zeroes at the
infinity in the space C" and consider the case Q;(z) are polynomials of degree s; with the
condition: for each ¢

deg,, P; <deg,, Qi, degzj P> degzj Qi, 1#7.
1
We make in the functions f;(z) = Pj(z) +Q;(z) the change z; = — assuming that all w; # 0.
wj
We get
1 1 1 ~ ~
W) = (B + @),

w w m}
1 n wyew o wn

where P]( ) and @](w) are polynomials with the property deg ﬁj > deg @j, and j:(w) =

Pj(w) + Q;(w).
Denote by I's the cycle

I‘I;:{we(C":|]5j|:6j, Ej>0}.
Then for an arbitrary multi-index v the integral J, is equal to ([9, Lemma 9])

Jy = (_1)n /uf“Jrl w72+1~-~w2"+1 . del/\d—fz/\.../\@

@rv/=1)" ’ i o
Moreover, if wi,...,w, are zeroes of the system f(w) = 0 (counting multiplicities) where
wk = (Wk1, Wk, - . . , Wk ) then
Jy = Zw““ 722“ o ~wj77"1+1.
These zeroes are related with the zeroes z1, ..., 2, of the original system that do not lie on the

1
coordinate axes via zp, = ——. Collecting obtained formulas and computing the integral in
Wm
(2) using the transformation formula for the Grothendieck residue, we get the main result.

Theorem 1.2 ([9], Theorem 6). Under the assumptions made, the power sum of roots of the
system (1) is equal to

P 1 p
Z T+l oetl N h s Rt

=1 Z]l 32 ‘e Z]n

1 £~Qv°‘dw
_ Z (el [t 2 T o
y

2my/—1)" ot
lal<lrll+n (2 f P
(~nIen T (S ksj)!m [uﬂ“ A-detA-Q° I, aby
- m ! n L BN BTN, )
KNI+ [Tajma (b)) [l wy”
where the summation is performed over all mteger non-negative matrices K = ||ks;||¢ ;=1 such

that the sum >, ks; = aj, and the sum Z js is denoted by Bs. The polynomial coefficients
as; are taken from the representation

Wit
E a]kpka

and det A is the determinant of the matriz of coeﬁ?cients.
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2. Examples

Example 1. Consider a system of equations in two complex variables

f1 (21,22) =1 +a12z1 +agze = O7
fa(z1,22) = 14 b1z1 + bazp = 0.

1 1
Let us replace the variables z; = —, z5 = —. Our system will take the form
w1 wo

{fl = wiwz + aywz + aswy = 0,

]?2 = wiwWs + b1w2 + b2w1 =0.

Subtract the second equation from the first one and pass to the system of the form

fi = wiws + ajws + azwy =0,
fa = (a2 — ba)wy + (a1 — by)wy = 0.

The Jacobian A of the system (4) is equal to

~ wy + a w1 +a
A=[2T7 TET O — (Cag + bo)wy + (a1 — by )wa + (a1by — aghy).
ag — b2 a; — bl

Note that

Q2 =0.

{P1 = WiWa,

{Ql = a1W2 + awi,

P, = (az — bg)u}l + (a1 — b1)w2.

Let us calculate det A. Since
wi = a1 Py + ai2Ps,

) _ _
wy = a1 Py + axnPs,

where P, = wiws, Py = (a2 — bo)wy + (a1 — by)ws. Therefore, the elements of a;; are equal

ay — bl w1
aj] = — . ajp=—1t
" ag — by 12 az — by
az — b2 w2
as] = — oy — 22
21 a1 — by’ 22 —
Therefore,
detA———22 "W _ (az — b2)wi — (a1 — br)ws
ag—by a1 —b (a1 —b1)(az — b2)

By Theorem 1.1

J0,0) = >
’ k11! kil - kar! - koo!
|K||=k11+ki2+ko1+ka2<2
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A Ak11+kar | Ak1a+kae ki1
A-detA-Qy Q3 B I R )
2(k k 2(k k
wl( 11+k12) .w2( 21+kaz)

k12 k21 k22‘|
bl

- 3 (=D (Ryy + k12)! - (k21 + ka2)! y
(0:0) k11! - k! - kor! - koo!
| K ||=k11+k12+ka1+k22 <2
M (—=1)kutka((ay — by)wy — (a1 — br)wa) - ((a1 — br)wa — (az — b)wy + (a1bs + aszbhy)) o
(al _ b1)1+k21+k22*k11 . (a2 _ b2)1+k11+k12*k21

y (a1w2 + a2w1>k11+k21 . QF12+k22
wfk11+k12 _w§k21+k22 ’

Calculate the values of the sums using the fact that ég =0.

(0,0,0,0) :
((ag — bg)w1 — (a1 — bl)'wg) . ((a1 — b1)w2 — (ag — b2)’LU1 + (a1b2 + a2b1)) _
fm{ (a1 —b1) - (a2 — b2) }70’
(1,0,0,0) :
((a2 = b2)w1 — (a1 — b1)w2) - ((a1 — br)we — (a2 — b2)wi + (a1b2 + a2b1)) - (a1wa + azwy) |
n| (a2 — 02 7 |-
_az(a1by — azb1)
a2 — b2 ’
(0,0,1,0) :
((a2 = b2)wr — (a1 — b1)wa) - ((a1 — br)wa — (a2 — b2)wi + (a1ba + a2b1)) - (a1wa + azwy) |
Sm{ (a1 —b1)? - w3 } a
—a1(a1by — azb1)
- a; — b1 ’
(2,0,0,0) :
((a2— b2)wi— (a1 — b)wz) - (a1 — b)wa— (a2 — ba)wi+ (arbza+ azb1)) - (arwa2+ azw1)? - (a1 —b1)]
Em{ (az = b2)? - wi } a
_ —a%(al — bl)
a2 — b2 ’
(0,0,2,0) :
o [((a2— bo)wi — (a1 = bi)w) - ((a1— b)wa — (az— bo)wi + (a1ba+ azb)) - (arwa+ asw1)® - (as— b)) ] _
Em{ (a1 —b1) - w3 } a
_ —ai(az — by)
al — bl ’
(1,0,1,0) :
B ((a2 — b2)wr — (a1 — by)ws) - (a1 — br)wa — (a2 — b2)wi + (a1bs + azby)) - (a1wa + azw)? _
m{ (a1 —b1) - (a2 — b2) - w} - w3 }
_ —a%(ag — b2)2 —a%(al — b1)2 aa
= (o= b)(as —ba) " (a1 = b)(az — by) T Awaz
Therefore,

ag(albg — agbl) _ al(albg — agbl) _ 20/%(012 — bg) _ 20,%(&1 — bl)
agfbg alfbl alfbl a27b2 '

J(0,0) = daraz +
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Calculate the power sum of the root system (3) directly. We multiply the first equation of
the system by bs, the second by as and subtract one from another. Thus

az — by
2= 5
arby —ashy’
ay — by
29 = ———— .
arby — azby

By Theorem 1.2

i 1 (a1b2 — CLle)2

J — )
(0,0) Zj1 - %2 (a1 — b1)(ag — be)

Jj=1

which coincides with the value found above.

Example 2. We shall use the result of the previous example in the case of a non-algebraic
system. Recall the well-known expansions of the sine into an infinite product and a power series:

sm\f B L (—1)k2k
H( ) “ L @

which uniformly and absolutely converge on the complex plane and have the order of growth
equal to 1/2.
Consider the system of equations
sin+/a12z1 + aszs oo a1z1 + agzo
1-————| =0,

f1(21,22) = = ]I m2n2

Vaizi +agzs s
sin BE O _ 5 (bbb
Vbizi +bazy = s2m?

Using the formula obtained above in Example 1 and the well-known expansion of the series,
we obtain that the integral Jy ¢ is equal to the sum of the series

f2 (21, 22) =

J _ i (a1by — CLle)Q
(0.0) m4(s2a1 — m2b1)(m2by — s2az)’

m,s=1
oo oo
J 4a1a2 + a1b2 - a2b1 a1 a9
0.0) =D > -
(0,0) m4m?2 m4m?2 m2b; — s2a; m2by — s2ay
m=1 m,s=1
oo o0
Z 2a2(m?b; — szal) 2a2(m?by — s%ay)
B 4 4 2 - Z 4004 (12 2 :
m4ma(m?2b s2a mimA(m2b; — s%a
m,s=1 27 2) m,s=1 ( 1 1)

The value of this series is found in the articles [5] and [7].
The author was supported by the Russian Foundation for Basic Research (project no. 19-31-
60012).
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IIpumepsbl BbIYNC/IEHNSA CTEIIEHHBIX CyMM KOPHEI cumcTeM
yYpaBHEHUI1

EBrenus K. MsplimikuHa
NucruryT Bhraucinresnsaoro mogenuposanns CO PAH
Kpacnosipck, Poccuiickass @eneparus

Awnnoranusi. PaccMoTpenbl TprMephl BRITUCIEHUS CTEIIEHHBIX CyMM KODHEU CHCTEeM yPABHEHU, B TOM
YHUCsIe TPAHCIEHIEHTHBIX. TaK KaK YuCiI0 KOPHEH TaKuX CUCTEM, KaK IIPAaBUJIO, OECKOHEYHO, TO HEOOXO-
JUMO U3YYUTh CTEIEHHbIE CYMMbI KOPHEH B OTpUIATE/IbHOM cTeneHu. [IpuBeneHbr (hopMyJIbl 11T HAXOXK-
NIeHUsI BBIYETHBIX MHTEIPAJIOB, UX CBSA3b CO CTENEHHBIMU CyMMAMHU KODHEN B OTPUIATEIHLHON CTeleHw,
MHOTOMepHbIe aHajioru ¢popmysa Bapunra.

KuroueBsbie ciioBa: TpaHCIEHJIEHTHBIE CUCTEMbI YPaBHEHU, CTEIIEHHBIE CYMMbI KOPHEil, BIYETHbIE WH-
TerpaJibl.
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Abstract. The article deals with the problems of the implementation of underwater-surface variants
of the seismo-electric method of direct search for hydrocarbons in the conditions of the Arctic waters.
An estimate is given of the strength of the secondary electric field when a gas reservoir is excited by
the action of a seismic source based on an accompanying geophysical vessel and receiving signals on
an automatic underwater vehicle. The article also discusses the issues of hardware implementation and
navigation binding of waterborne devices.
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Introduction

The seismic-electric method of direct hydrocarbon prospecting is based on the excitation of
an electric field in porous rocks under the influence of acoustic radiation in the form of seismic
shocks. The first publications on this effect were made in the works [1-4].

In [5], the results of marine prospecting operations by a seismic survey complex based on
a geophysical vessel and seismic braids towed behind it with pneumatic guns and hydrophones
are presented. The so-called "binary" technology of parallel illumination of the geo-section by
an artificial electric field created by a towed flooded cable with a current was used [6], which,
according to the authors, provides a significant increase in the sensitivity of the method.

It is extremely difficult to implement this technology on land due to the need to create large
illumination currents and install branched earths that require heavy vehicles for transportation.

In addition, due to the influence of the processes of the formation of an electric field in a
layered inhomogeneous medium, additional interference uncorrelated with the seismic signal is
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received at the input of the sensors of the electric signal of the SE effect. In addition, there
remains the problem of moving the grounding of the electric illumination cable along the obser-
vation profile.

Using the example of setting this method at the Minusinsk gas condensate field [7,8] as a
semi-active one, that is, without the use of illumination by a special electric field, and a passive
method with extracting information from the seismic and electrical noise of the Earth, the author
of this article with colleagues showed the possibility of such work on land to the depth of the gas
reservoir more than 2 km.

In publications [9-15] It contains various aspects of underwater-subglacial marine seismic
exploration based on the use of an accompanying geophysical vessel and towed or located on the
bottom of the sea seismic braids.

There are projects to install seismic stations on the sea ground, which makes it possible to
significantly reduce the impact of sea surface waves.

1. Calculation results

We will give a numerical estimate of the magnitude of the electric field strength on the
sea surface for the specified search parameters: the depth of the position of the productive
hydrocarbon reservoir; its power; the conductivity of the seawater reservoir and the surrounding
rock.

The pressure of a seismic wave on the hydrocarbon interface with the surrounding rock
leads to the appearance of an additional electric charge in the hydrocarbon medium due to
the displacement of the deposit surface in the electrostatic field of the Earth. In this model,
hydrocarbon deposits are represented as a capacitor whose potential fluctuates synchronously
with the seismic pressure field.

In the design scheme, a pulsed non-explosive source is located in the stern area of the base
geophysical vessel below the waterline, and the receivers of seismic and electrical signals are
placed in the hull of the AUV moving ahead of the vessel on its course at a distance of 200 m
(Fig. 1). The electrical conductivity of seawater corresponds to o3=4 S/m, and the depth of the
sea h1=100 m. Productive gas reservoir with an area of S¢=3000x1000 m and power hy=10 m
located at a depth of hy=1000 m. Electrical conductivity of the gas medium of the formation
02=107% S/m, density po=100 kg/m?, velocity of propagation of longitudinal seismic waves in
gas is V5=>500 m/s.

The pressure of a seismic impact on the formation surface for the far zone of the source is
estimated as [16]:

_ARn As
n TI'R?] - r1+ 7o

Py e~ 2281050 = 1.6 - 10* Pa. (1)

. .
Here, A\g1 = f—l is the apparent wavelength corresponding to the first Fresnel zone;
s

fs = o = 100H z is the average frequency of the pulse spectrum of the source with a duration
-

of T=5-10"3s;

0 is the angle of incidence of the wave on the formation;

r12 = 11 + 79 = 1100 m is the distance between the source and the reservoir surface;
a=10"% 1/m is coefficient of absorption of a seismic wave by a rock.
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Fig. 1. Calculation scheme for estimating the electric field of the SE effect of a reservoir gas
deposit. 1 — a geophysical vessel; 2 — a seismic emitter; 3 — an automatic underwater vehicle;
4 — the surface of the sea; 5 — the seabed; 6 — a productive reservoir of hydrocarbons

The coeflicient of passage of a seismic wave into a productive reservoir:

2p2V3
Bpp = —— =~1. 2
p2Va + p3V3 @)
Absorption in water in the "radiator—bottom" section is not taken into account due to the
smallness of its size. The displacement of the upper boundary of the reservoir under the action
of a seismic shock is determined through the solution of the Newton differential equation:

— + ———F;=0. (3)

Here, m = V53751 p3 is the mass of the displaced reservoir medium, determined by the depth
of impact passage into the reservoir medium during a long pulse 7;
V3
fs
F3 = P35 is impact force on the formation surface;
F¢ is resistance force of the formation medium;
Z is displacement of the reservoir surface under the impact of a seismic pulse.

S| = )\233 = is he area of the Fresnel wave zone on the formation surface;

Solution (3), gives:
1 P3T

Pc \ Vsps’
1 =
( +V3m)

The intensity of the electric field in the formation created by the impact of a seismic wave

7 =

(4)

can be estimated as:
Solution (3), gives:

2 Oh,4’ ()
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Here, Ey=120 V/m is the intensity of the natural electric field of the Earth, causing the full
charge of the reservoir.
The current arising through the reservoir element is defined as:

Z
Ig = EQ)\%SO';),F. (6)
4
The total current passing through the entire surface of the formation will be higher by an
1L
amount n = 12 2,
A%,
53
Z
I3y, = EO@LlL?;T' (7)
4

According to our experiments at the Minusinsk gas condensate field, the calculated depen-
dence of the intensity of the secondary electric field over the productive gas reservoir is of a
two-humped nature, which corresponds to the field of a vertical electric dipole with a current I3y;.

Under the action of this current, the electric charge of the entire formation will be:

Qs = IsxT. (8)
Taking into account (6, 7):
E 4L
Qs = =, 9)
4
The current density caused by this charge at the observation point:
Iss K
jx = —— (10)

471'(7’2 + T6)27

Here, K = e~ (P1751+F272) ig the absorption coefficient of the electric field in water and rock.
Because jx = o1 FE3, then the modulus of the electric field strength at the receiving point:

Fa — EngLlLQZef(ﬂl’%‘l’ﬂQ'r‘g)
3= droahy(re + r6)?

(11)

For the following private parameters: E3=120 V/m; 03/00=10"2; L; - Ly=3-105 m?;
Z=1.6-10"% m; 715=1100 m; K=0.22, value E3=3.8 uV/m.

The obtained estimates are in good agreement with the experimental data [7], which allows
us to recommend this technique for calculations before the fake search work. Unlike the known
approaches, this technique allows to estimate the required impact force of a seismic source at a
given depth of search at a simple engineering level.

The graphs of the envelope signals of the secondary electric field along the observation profile
are of a two-humped nature, and correspond to the field of a vertical electric dipole created by
a pulsating charge of a "capacitor" equivalent to a productive reservoir.

In a spherical coordinate system, the electric field strength of the dipole on the Earth’s surface

is estimated as [17]:
2Pcosf _

B (9) = =57 p—ar, 12

( 471'5057"36 (12)
2P sin 6

Eyg(f) = ———e™ . 13

0(0) 47r505r3e (13)

Here P = Ih4 is dipole moment at current [;
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r =72+ 75

€o is dielectric constant;

¢ is dielectric constant of rock;

hs is dipole length (productive reservoir capacity);

[wuo
o= % is the attenuation coefficient of the electric field in the rock;

w is operating frequency; o is electrical conductivity of the medium @ is spherical angle.

Fig. 2 shows a graph of the envelope of the horizontal component of the vertical electric field
of the dipole along the motion profile of the search engine with the following parameters: =1 A;
f=10 Hz; £=10; 0=10"2 S/m; hy=500, 1000 m.

5 1,2E-5
2
g —h=500m
5 1,0E-5
2 g
=
8% 80E6 —h=1000 m
2z
S& 60E6
st —h=2000 m
o 5 40E6
S
“= o
S £ 206
=
a
&  O0E+0
£ 2000 3000 4000 5000 6000 7000 8000

X distance, m

Fig. 2. Distribution of E,(mV/m) at he = 1000 m
In Fig. 3, the finite element method calculates the distribution of the field on the Earth’s
surface by area, which makes it possible to determine the search area in 3D modification. In this

case, you can use several AUVs running a parallel course, capturing subglacial areas.

-5 -4 -3 -2 -1 0 1 2 3

£

5 km

Fig. 3. Distribution of E,(mV/m) at hy = 1000 m

The capacitance of a capacitor equivalent to a reservoir can be defined as:

. geoln Lo
= 7Z ,

where &( is constant. ¢ is dielectric constant of the «capacitor> medium.
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Taking for example €=10; by L, - Ly = 3-10° m?; Z=1.6 - 10~ m, we get C=0.26 F. In this
case, the time constant of the discharge of the formation on the surrounding rock:

ha

T, =C—>"—.
P CGngLg

(15)

By 02 = 1075 S/m, we get T), ~ 0.1 s.

Since the duration of the seismic pulse was assumed as 7 = 5-1073 ¢ and relationships
T,/T = 20, then, with the continuous repetition of shocks, characteristic of the action of a
seismic wave, there will be a constant increase in the intensity of the secondary electric field on
the surface.

Due to the fact that the length of the anomaly along the motion profile of the search engine
approximately corresponds to the double depth of the position of the productive reservoir, then
at the speed of movement V = 1 m/s, this anomaly will be passed in time T}, = 2h/V = 2-10% ¢
and during this time, 200 seismic source impacts will act on the formation. If we take 20 periods
of their repetition for averaging signals, then the signal-to-noise ratio increases in /20 = 4.5
times, which corresponds to their group processing of classical seismic survey from 20 geophones.

Since in these conditions it is not required to accurately determine the coordinates, it is quite
possible to use in the work a navigation reference to the difference-dimensional long-wave systems
such as "Laurent" (USA), "Zeus" (Russia) in the frequency range of 100 kHz.

2. Hardware

It is possible to create the following complexes of the seismoelectric method:

1. is a small-sized submarine (seismic source) and a group of automatic underwater vehicles
(AUV).

2. is a basic geophysical vessel with a seismic source and an AUV group.
3. is a basic underwater robot with a group of seismic sources and a group of PPR.

4. is a basic geophysical vessel without a seismic source and an AUV group with reception of
electrical and seismic noise of the earth in the frequency range 0.1-20 Hz [11].

According to the first variant of the seismic source, it is located on a submarine (GROOVE)
of a small class with a displacement of 100-200 tons (Fig. 4). The AUVs are placed in the bow
torpedo tubes, through which they are pushed along the course of movement at a distance of
100200 m. When working with the 3D AUV method, they are positioned orthogonally to the
course. The AUV is controlled from the PA via a hydroacoustic channel. Navigation binding is
implemented either from the accompanying vessel, or directly by receiving signals from the above-
mentioned long-wave navigation systems. It is advisable to use broadband electromechanical
emitters with pseudorandom coding of a sequence of seismic signals providing a minimum power
level as an on-board seismic source [18,19].

The second option (Fig. 1) does not require the development of a special submarine. The third
option (Fig. 4) differs from the first by placing the seismic source on an autonomous underwater
operation.

Finally, the fourth modification of the system does not require illumination of the geo-section
by an artificial seismic source. The natural noise fields of the Earth are used with the processing of
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bottom soil
h=100-5000 m
u productive formation

Fig. 4. Underwater seismic survey system USSS-M-1: 1 — submarine hull; 2 — torpedo tubes;
3 — screw drive; 4 — seismic emitters; 5 — shock plate; 6 — deckhouse; 7 — reflected wave from
the ground; 8 — hydroacoustic rays of the control channel; 9 — automatic underwater vehicles;
10 — shock wave in the geological environment

electrical and seismic signals by the method of mutual correlation according to the algorithm [8]:

R(1) = %/F(t) -S(t — 7)dt. (16)

Here E(t)- and S(t — 7) is accordingly, signals from sensors of electric and seismic noise fields,
normalized by dispersion [8];
T is observation time.

Of course, all four options require the management of the commands of the base geophysical
vessel through the sonar channel, which is simultaneously the carrier of all outboard means.
Today, there are many developments of underwater robots of the required class all over the
world, so it is only necessary to create the hardware and software necessary for conducting
search operations [20].

3. Navigation binding of coordinates of underwater vehicles

Next, we will consider the methods of radio navigation anchoring the coordinates of the
AUV in an underwater position relative to the accompanying vessel or by signals from long-wave
navigation systems such as "Loran" (USA or "Zeus" (Russia) [21]. In any case, it is necessary to
ensure the reception of navigation signals under water or under ice. In [22], the authors described
a parametric method for receiving electromagnetic signals in seawater based on controlling its
conductivity by acoustic radiation. If an electromagnetic signal with vertical polarization comes
from a third-party radio station on the surface of the water, then a horizontal component with
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an electric field strength is formed under the surface (Fig. 5) [23]:

By = Ezo
V600

Here X is the length of the electromagnetic wave, and the o is electrical conductivity of water.
E; is the intensity of the vertical component of the field on the sea surface. It can be seen from
(17) that seawater, due to the refraction effect, greatly reduces the signal energy.

1%\ E,E/ﬁ

\ Y LI .

()

6 7

12

N\ N\

Fig. 5. The scheme of reception of the control signal of underwater vehicles: 1 — the hull of the
vessel; 2 — the surface of the sea; 3 — acoustic beam parametric channel (PC); 4 — autonomous
underwater vehicle (AUV); 5 — radio control AUV; 6 — equipment hydroacoustic control channel
(HCC); 7 — antenna HCC; 8 — seismic emitter; 9 — PC transmitter; 10 — PC navigation signal
receiver; 11 — hydrophone and magnetic receiver; 12 — seabed; 13 — PC electromagnetic field
vector

For example, when A= 3000 m (frequency 100 kHz) and o = 4 S/m, the refractive index
is vV60Ao= 848. When taken under ice due to a significant decrease in their conductivity, the
refractive index is reduced by 60 times. The parametric effect of controlling the conductivity
of seawater additionally reduces the signal level by the modulation coefficient m=10"2 at the
density of the acoustic radiation power flux I=1 W /m?.

If the power of the acoustic emitter on the underwater vehicle is P, [W], then , when the sea
surface is irradiated from below , the power flux density will be:

P,
_ PQ

a — 47Th2 (18)

Here h is depth of the underwater vehicle position UV, 3 is absorption coefficient of acoustic

radiation of seawater; () is the directivity coefficient of the acoustic antenna UV.
From (17), the required power of the acoustic emitter will be:

4Arh?1l,
— 2T 2 ph,

P,
Q

(19)
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For example, let the depth of movement of the AUV, relative to the sea surface, be h = 10 m.
If an acoustic transmitter is used on the AUV for a parametric navigation channel, highlighting
the surface of the sea with a power flow density II, = 1 W/m? on the frequency f, = 100 kHz,
then at the wavelength \,=0.15 m and effective area of the acoustic antenna S, = 0.01 m?, at
the absorption coefficient 5=0.36 fs/Z dB/km, we get P, = 2 W. According to the graphs, Fig. 3,
the required accuracy of the navigation reference of the AUV, at the depth of the position of the
productive reservoir of hydrocarbons hy = 1000 m, will make Az = 1/2, hy = 500 m.

Such accuracy can be achieved using signals from long-wave navigation systems, or by re-
ceiving signals to the AUV by parametric method by direct reading from the sea surface, or by
broadcasting satellite navigation system signals via the onboard radio station of the accompany-
ing vessel.

Conclusion

A quantitative assessment of the intensity of the secondary electric field of the seismoelectric
effect of a productive gas reservoir of hydrocarbons is given for the specified search parameters:
the depth of the reservoir position; its size; the electrical conductivity of the host rock and the
hydrocarbon medium; the position of the carriers of the field sensors in the marine environment
and the impact force of the seismic source.

To work in Arctic conditions of difficult ice conditions, it is recommended to use automatic
underwater vehicles that allow the implementation of the seismic-electric method, including under
ice.

The problems of navigation binding of automatic underwater vehicles are discussed.

The work is supported by the RFBR Project no. 20-07-00267.
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PusnkKo-TeXHNnIeCKne OCHOBBI CeﬁCMOSHeKTpH‘IeCKOFO
MeTOoJa IIPAMBbIX ITOMCKOB YIJIEBOAOPO/JA0B B YCJIOBUAX
ApKTI/IKI/I C NCIIOJIbB30BaHMUEM aBTOMATNMYECKNX
IIOABOJHBIX aIllllIapaTOB

T'eoprmit 4. I1laitxypoB
Exarepuna A.KoxoHbKoBa
Powman I'. Il1aiinypoB

Cubupckuii deepabHbIil YHUBEPCUTET
Kpacuosipck, Poccuiickasa Pemeparms

Awnnorarusi. B crarbe paccMaTpuBarOTCs TPOOJIEMBI PEAJTM3AIIUN TOIBOIHO-HAIBOIHBIX BAPUAHTOB Celi-
CMO3JIEKTPUYIECKOTI'0 METOJIA IPSIMBIX IOUCKOB YIVIEBOAOPO/IOB B YCJIOBUSAX apKTUYECKUX Mopeil. /laercs
OIIEHKA HAIPS2KEHHOCTH BTOPUYIHOTO JIEKTPHUIECKOTO [I0JIS IPU BO3OY2KIEHUH I'a30BOr0 IUIACTA YAapaMu
CEeCMUYECKOr0 UCTOUYHHUKA, 0A3UPYIOIIErocs: Ha, COITPOBOXKIAIONIEM T'e0(PU3NIECKOM CY/IHE, U IIPUEeMa, CUT-
HaJIOB Ha, aBTOMAaTUIECKOM MOABOMHOM ammapare. OBCyKIAI0TCS BOIIPOCHI alllTapaTyPHON pean3aluu 1
HABUTAIIMOHHON MPUBA3KNA POOOTOB B IOIBOIHOM IIOJIOXKEHUU.

KirroueBble ciioBa: mONCK yrjaeBoaopoaoB, apKTUYeCKHue BOJbI, CeﬁCIvIOS.HeKTpH‘-IeCKHfI MeTO/d, IMMOABO/I-

HbIE anIrapaThbl.
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Abstract. We consider the ill-posed Cauchy problem for the polyharmonic heat equation on recovering a
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In this short note we continue to investigate the ill-posed Cauchy problem for parabolic
operators in various function spaces, see [1, 2| for the second order operators in the Holder
spaces, or [3-5| for the second order operators in the anisotropic Sobolev spaces. Actually the
general schemes related to investigation of the ill-posed Cauchy problem for elliptic operators
(see [6-8] for the second order operators or [9,10] for the Cauchy—Riemann system in one and
many complex variables or [12,13] for general elliptic operators with the unique continuation
property) are still applicable in this new situation.

In the present paper we concentrated our efforts on the solvability criterion of the ill-posed
Cauchy problem for a simple class of Petrovsky 2m-parabolic partial differential operators

(0 + (=A)™), 1)

where m > 1 and A is the Laplace operator in R, n > 1, that are often called polyharmonic
heat operators, see [14, Ch.2, Sec. 1], [15]. Namely the problem consists of the recovering a
function, satisfying the equation (9, + (—A)™)u = 0 in a cylindrical domain in the half-space
R™ x [0,400), via its values and the values of its normal derivatives up to order (2m — 1)
on a given part of the lateral surface of the cylinder. The crucial difference between the heat
equation (or the parabolic Lamé system) and the polyharmonic heat equation is the fact that the
fundamental solution of the polyharmonic heat operator is given by a non-elementary function.
The situation resembles somehow the matter with the fundamental solutions to the Helmholtz

9 L. X _eiwo x|
operator A + ¢2: for n = 3 it is given by Il

it is represented by the Hankel functions of the second kind (actually, some versions of the Bessel
functions), see, [16, Ch. III, Sec. 11]. Of course, it is not a surprise, because after an application
of the Laplace transform L with respect to the variable ¢ (if applicable) to (1), one arrives at the
parameter depending elliptic equation

(here ¢ is the imaginary unit) while for n = 2
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(7 + (=A)™)L(u) = 0, (2)

coinciding with the Helmholtz equation for m = 1 regarding the generalized function L(u) as
an unknown and 7 as a real parameter. Actually, this seemingly simple approach, reducing the
parabolic equations to elliptic ones, is known for decades, see [17]. It gives a lot of qualitative
information on the connection between the corresponding solutions of the differential equations
of different kinds. However one needs very delicate properties of the Laplace transform in order
to obtain really useful formulas solving the parabolic problems with the use of elliptic theory,
see for instance, [3]| for the heat equation and the related remark on properties of the Laplace
transform [18]. Thus, we will act in the framework of mentioned above scheme invented by
L.Aizenberg and developed in [12].

1. Preliminaries

Let 2 be a bounded domain in n-dimensional linear space R™ with the coordinates
x = (x1,...,7,). As usual we denote by Q the closure of 2, and we denote by 99 its boundary.
In the sequel we assume that OS2 is piece-wise smooth. We denote by Q1 the bounded open cylin-
der Q x (0,T) in R"™! with a positive altitude 7. Let also I' C 9 be a non empty connected
relatively open subset of 9Q. Then I'r =T x (0, T) and ' =T x [0, T].

We consider the functions over subsets in R” and R"*1. As usual, for s € Z, we denote by
C*(£2) the space of all s times continuously differentiable functions in Q. Next, for a (relatively
open) set S C JQ denote by C*(Q U S) the set of such functions from the space C*(f2) that all
their derivatives up to order s can be extended continuously onto 2U S. The standard topology
of these metrizable spaces induces the uniform convergence on compact subsets in QU.S together
with all partial derivatives up to order s. We will also use the standard Banach Holder spaces
C*(Q) and C**(Q) (cf. [19], [20, Ch.1, Sec. 1], [21]), and the related metrizable spaces C**(QUS).

Let also LP(Q), p > 1, be the Lebesgue spaces, H*(f2), s > 0, stand for the Sobolev spaces if
s € N and for the Sobolev-Slobodetskii spaces if s > 0, s & N.

To investigate the polyharmonic heat equation we need also the anisotropic (2m-parabolic)
spaces, see [20, Ch. 1], [21, Ch. 8] for m = 1 and [14] for m > 1. With this aim, let C?"%*(Qr),
m € N, stand for the set of all the continuous functions « in Qr, having in Qr the continuous
partial derivatives 9/ 93w with all the multi-indexes («, j) € Z7 x Z, satisfying |a|+2mj < 2ms
where, as usual, |a| = Y ;. Similarly, we denote by C?*™sT%:5(Qr) the set of continuous

Jj=1
functions in Qr, such that all partial derivatives 9°u belong to C?™**(Qr) if 8 € 7% satisfies
|B] <k, k € Z,. Of course, it is natural to agree that C?"*+9%5(Qr) = C?™5(Q7), C*0(Qr) =
C(Qr) and C°(Q) = C(2). We also denote by C?™T%:((QUS) 1) the set of such functions u from
the space C2m5+k:5(Q)7) that their partial derivatives 87 0%+ u, 2mj+|a| < 2ms, |8 < k, can be
extended continuously onto (2U S)r. The standard topology of these metrizable spaces induces
the uniform convergence on compact subsets of (2 U S)r together with all partial derivatives
used in its definition (the cases S = 0 and S = 9D are included).

We use also the anisotropic Holder spaces (cf., [20, Ch. 1], [21, Ch. 8]) for m = 1 and [14] for
m > 1. Let C?ms+ksAN2((QUS)7) stand for the set of anisotropic Holder continuous functions
with a power \ over each compact subset of (QUS)7 together with all partial derivatives 92T58]u
where |3| < k, |a] +2mj < 2ms. Clearly, C?ms+k:5AA2(Qr) is a Banach space with the natural
norm, see, for instance, [21, Ch. 8] for m = 1 and [14] for m > 1. In general, the space
C?msthsAN2((QU S)r) can be treated again as a metrizable space, generated by a system of
seminorms associated with a suitable exhaustion {€;};en of the set QU S.

In order to invoke the Hilbert space approach, we need anisotropic (2m-parabolic) Sobolev
spaces H?™%*(Qr), s € Zy, see, [20,22] for m = 1 or [14] for m > 1, i.e. the set of all the
measurable functions u in Q7 such that all the generalized partial derivatives 8] 9%u with all the
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multi-indexes (o, j) € Z'} x Z satisfying |a|+2mj < 2ms, belong to the Lebesgue class L?(Qr).
This is the Hilbert space with the natural inner product (u,v)g2ms.sq.). We also may define
H?™%5(Qq) as the completion of the space C?™%*(Qr) with respect to the norm || - || yzms. (.,
generated by the inner product (u,v)gzms.s(o.). For s =0 we have H%(Q7) = L?(Qr).

We also will use the so-called Bochner spaces of functions depending on (x,t) from the strip
R™ x [T1,T3]. Namely, for a Banach space B (for example, on a subdomain of R™) and p > 1,
we denote by LP([Ty,T5],B) the Banach space of all the measurable mappings v : [T1,T3] — B
with the finite norm |[u|| zr (7, 10,8y = llu(-, )5l Lr(17,,1)), See, for instance, [23, ch. Sec. 1.2].
The space C([T1,Tz],B) is introduced with the use of the same scheme; this is the Banach
space of all the continuous mappings u : [T1,T2] — B with the finite norm ||ul|c(ry,7),8) =

SUPye(ry, 1) 1w )1 5-

Let now A = > 92 _ be the Laplace operator in R™ and let £,, = 9; + (—A)™ stand for
j=1

iy

the polyharmonic heat operator in R™*!. Of course, for m = 1 it coincides with the usual heat

operator.
n

Nowlet 0, = Y vj 8%. denote the derivative at the direction of the exterior unit normal vector
j=1

v=(v1,...,v,) to the surface 9Q. If 9Q € C?*™~! then the higher order normal derivatives 97
are defined near 0€2. We fix also a Dirichlet system {B; }?ZLO_ ! of order (2m — 1) consisting of
boundary differential operators with smooth coefficients near 02, i.e. ordB; = j and for each
x € 0N the characteristic polynomials o(B;)(x, () related to the operators B; do not vanish for
¢ =v(x). The sets (1,0,,02,...0*™ 1) and (1,0,,A,0,A, A%, ... A"~ 1 9,Am~1) are precisely
the Dirichlet systems because o(97)(x,v(z)) = 0(9,A)(z,v(x)) = o(A)(z,v(z)) = 1 for each
jeN.

We consider the Cauchy problem for the polyharmonic heat equation in the cylinder Qp in
the sense of the Cauchy—Kowalevski Theorem with respect to the space variables, cf. [24].

Problem 1. Given m > 1, functions u; € C*"~IT19Tr), 1 < j < 2m, and f € C(Qr) find a
function u € C*™1(Qr) N C?*m=1O9(QUT)r) satisfying

Lnou=f in Qrp, (3)
Bju(x,t) = ujy1(z,t) on Ty for all 0<j < 2m—1. (4)

If the hypersurface I and the data of the problem are real analytic then the Cauchy—
Kowalevski theorem implies that problem (3), (4) has one and only one solution in the class
of (even formal) power series. However the theorem does not imply the existence of solutions to
Problem 1 because it grants the solution in a small neighbourhood of the hypersurface I'r only
(but not in a given domain 7!). We emphasize that, unlike the classical case, we do not ask for
the hypersurface I' or/and the coefficients of the operators B; or/and the data f or/and u; to
be real analytic.

Of course, the above trick with the Laplace transform suggests us that the problem is equiva-
lent to an ill-posed problem for the strongly elliptic operator (—A)™ in Q with the Cauchy data
on I', i.e. Problem 1 is ill-posed itself, too.

2. Solvability conditions

We begin this section proving that Problem 1 can not have more than one solution in the
spaces of differentiable (non-analytic) functions.

To investigate Problem 1, we use an integral representation constructed with the use the
fundamental solution ®,,(z,t) to polyharmonic heat operator L,,. If m =1 then
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2
=]

e ant .
if t > 0,
Oy (z,t) = ¢ (2vapt)" (5)
0 ift <0

see, for instance, [19,25]. Unfortunately, if m > 1 then the fundamental solution can not be
represented as an elementary function, see, for instance, [14, Ch. 2, Sec. 1], [15],

Foo 1-n/2
—n/2m n—1_—p2™ |33|P ‘.’17|p .
b, (z,t) = Fn,mt /0 pe (t1/2m> Inj2-1 <t1/2 )dp ift >0, (6)
0 if £ <0,

where k,, ., is a normalization constant and .J,, is the Bessel function of the first kind and of order
p (see, for example, [16, Ch. 5, Sec. 23]).

The fundamental solution allows to construct a useful integral Green formula for the operator
L. With this purpose, Denote by {Cy,...Ca,—1} the Dirichlet system associated with the
Dirichlet system { By, ... Ba;,—1} via (first) Green formula for the operator A™ i.e.

2m—1

/ < Z C’gm_l_ijju) ds = (Amu,’U)L’Z(Q) - (u, AmU)LQ(Q)
oo \ =)
for all u,v € C*(Q). For instance, if {By,... Bopm_1} = (1,0,,A,0,A, ... A™~ 1 9,A™~1) then
{Co,...Com_1}=(1,-0,,A,-0,A,,...A™"1 —9,Am~1),

Consider the cylinder type domain Qr, 7, = Qr, \ Qr, with 0 < T} < T and a closed measur-
able set S C 9Q. For functions f € L*(Qp, 1,), v; € L2([0,T], H*™==Y2(Sr)), h € H/2(Q)
we introduce the following potentials:

Tor () (2, 1) = / Bz — g, Oh(y)dy, Gom ()(,1) = / / Bz —y, t— 1) f(y.7)dydr,

Q T Q

VI (o)), ) / / C;®,, — Yus(y, P)ds(y)dr, 0< < 2m — 1

(see, for instance, [19, Ch. 1, Sec. 3 and Ch. 5, Sec. 2], [20, Ch. 4, Sec. 1], [26, Ch. 3, Sec. 10] for
= 1). The potential Io 1, (k) is an analogue of the Poisson integral and the function G 1, (f)
is an analogue of the volume heat potential related to m = 1. The functions VS(,OT)l (v) and VS(’,lT)“l (v)
are often referred to as single layer heat potential and double layer heat potential, respectively,
if m = 1. By the construction, all these potentials are (improper) integrals depending on the
parameters (z,t).
Next, we need the so-called Green formula for the polyharmonic heat operator.

Lemma 1. For all 0 < Ty < Ty and all u € *™Y(Qq, 1,) the following formula holds:

2m—1

}= Iom (u) + Gar,( Z Vadlr, (B (7)

u(z,t) in Q1
0 outside Qdr, 1,

Proof. See, for instance, [27, ch. 6, Sec. 12| for m = 1 and [28, theorem 2.4.8| for more general
operators, admitting fundamental solutions/parametreces. O

Formulas (5), (6) mean that the kernels ®,,(x — y,t — 7) are smooth outside the diagonal
{(z,t) = (y,7)} and real analytic with respect to the space variables. In particular, this means
that the 2m-parabolic operator L,, is hypoelliptic. Moreover, any C’Qm’l(QThT2 )-solution v to
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the polyharmonic heat equation £,,,v = 0 in the cylinder domain Qg 1, belongs to C*°(Qxp, 1,)
and, actually v(z,t) is real analytic with respect to the space variable x € ) for each ¢t € (11, T5)
(for m = 1, see, for instance, [25, Ch. VI, Sec. 1, Theorem 1] and for m > 1 see [14, Ch. Sec. 2,
Sec. 1, Theorem 2.1]). Then Green formula (7) and the information on the kernel ®,, provide
us with a Uniqueness Theorem for Problem 1.

Theorem 1 (A Uniqueness Theorem). If T' has at least one interior point in the relative topology
of 92 then Problem 1 has no more than one solution.

Proof. For m = 1 see [1, Theorem 1, Corollary 1]. For m > 1 the proof can be done in the
same way with natural modifications. Indeed, under the hypothesis of the theorem there is an
interior (in the relative topology of I'!) point xzy on I'. Then there is such a number r > 0
that B(zg, r) N 9Q C T where B(xzg, r) is ball in R™ with center at xg and radius r. Fix
an arbitrary point (z/,t") € Qp. Clearly, there is a domain Q' > z’ satisfying ' C Q and
Q' NoQ CI'nB(xg, r). Then (2',t) € QF 7, with some 0 < Ty <Tp <T.

But v € sz’l(Q’Tl,TQ) N sz’l’O(Q’Tl’TQ) (for m = 1 see, for instance, [19, Ch. 1, Sec. 3 and
Ch. 5, Sec. 2] and for m > 1 it follows from [14, Ch. 2, Sec. 1, Theorem 2.2|) and £,,u = 0 in
Q7. 1, under the hypothesis of the theorem. Hence formula (7) implies:

’U,(l‘,t), ( ) € QTl Ts et
D = To i (u V“’, (Bju) (z,t), (8)
0, (,t) ¢ QTI’TZ oD Ty
because Bju =0 on I'r for all 0 <j <2m —1.

Takmg into account the character of the singularity of the kernel ®,,,(x —y,t—7) we conclude
that the following properties are fulfilled for the integrals, depending on parameter, from the right
hand side of identity (8):

IQ/’TI (u) S CQm’l({{L‘ S Rn,Tl <t < TQ}),

Voo ooy coer, (Bju) € C*™ Y ({z € R*\ (9 \I), Ty < t < T})

(see, for instance, [19, Ch. 1, Sec. 3 and Ch. 5, Sec. 2], [20, Ch. 4, Sec. 1] or [26, Ch. 3, Sec. 10]
for m=1). Moreover, as ®,, is a fundamental solution to the polyharmonic heat operator then

Lon(x, )P, (x —y,t —7) =0 for (x,t) # (y,7),

and therefore, using Leibniz rule for differentiation of integrals depending on parameter we obtain:

LyIo 7, (u) =0 in the domain {x € R", T <t < T},
Lo Vaihpgy (Bju) =0in QF, 7, = {z € R"\ (9 \T), Tt <t < Tp} for all 0 < j < 2m — 1.

Hence the function 0
v(z,t) = I 1 (W) (@, 1) + Vo p o, (Bju) (2,1),

satisfies the polyharmonic heat equation (£,,v)(x,t) = 0in Q7, 5,. As we mentioned above, this
implies that the function v(z, t) is real analytic with respect to the space variable z € R™\ (OQ'\I')
for any Ty < t < Ty . By the construction the function v(x,t) is real analytic with respect to z
in the ball B(zg,r) and it equals to zero for € B(wg,r) \ Q for all Ty < t < Ty. Therefore, the
Uniqueness Theorem for real analytic functions yields v(x,t) = 0 in QF, 7,, and in the cylinder
Q7. ,, containing point (z/,¢'). Now it follows from (8) that u(z’,t) = v(2,#') = 0 and then,
since the point (z/,t') € Qr is arbitrary we conclude that u =0 in Q. O

Now we are ready to formulate a solvabilty criterion for Problem 1. As before, we assume
that T is a relatively open connected subset of Q. Then we may find a set O C R” in such a
way that the set D = QUT'UQT would be a bounded domain with piece-wise smooth boundary.
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It is convenient to set Q= = . For a function v on Dy we denote by v its restriction to Q;
and, similarly, we denote by v~ its restriction to Q. It is natural to denote limit values of v* on
I'r, when they are defined, by vﬁET. Actually, for m = 1 similar solvability criterions for Problem
1 were obtained in [1] and [4].

Theorem 2 (Solvability criterion). Let A € (0,1), Q belong to C?>™ '+ and let T be a relatively
open connected subset of OQ. If f € COOANN2(Qr), u; € C?m=30MN2(Ty), 1 < j < 2m, then
Problem (3), (4) is solvable in the space C*™ 1 AN2(Qp) N C?m=1L0AN2(Qr UTr) if and only
if there is a function F € C°°(DT) satisfying the following two conditions: 1) L, F' =0 in Dy,

2) FZGQQ( )+ Z ujJr]_) m Q%

Proof. Necessity. Let a function u(z,t) € C?™LAN2(Qr) N C2M—L0AN2(Qn UTr) satisfy
(3), (4). Clearly, the function u(z,t) belongs to the space C2™1LAN2(QL) N C2m=L0AN2(QF
for each cylindrical domain Q. with such a base €’ that ' C Q and Q' N 9Q C I'. Besides,
Lu = f e COOMN2 (@) Without loss of the generality we may assume that the interior part
I of the set Q' N AN is non-empty. Consider in the domain D the functions

2m—1
F=Gaolf Z V” (uj+1) and F = F — xq,u (9)

where Y/ is a characteristic function of the set M C R"*1. By the very construction condition 2)
is fulfilled for it. Note that xo,u = xq;u in D/, where D' = Q' UTI"UQT. Then Lemma 1 yields

2m—1

F =G\ o Z Vi (w41) = Taro(w) in Df. (10)

Arguing as in the proof of Theorem 1 we conclude that each of the integrals in the right hand
side of (10) is smooth outside the corresponding integration set and each satisfies homogeneous
polyharmonic heat equation there. In particular, we see that F' € C>°(D/.) and LF = 0 in D/,
because of [25, Ch. VI, Sec. 1, Theorem 1]. Obviously, for any point (z,t) € Dy there is a domain
D’ containing (x, t). That is why £,,F' = 0 in D, and hence F belongs to the space C*°(Dr).
Thus, this function satisfies condition 1), too.

Sufficiency. Let there be a function F € C°°(Dr), satisfying conditions 1) and 2) of the
theorem. Consider on the set D7 the function

U=F-F (11)

As f € COOMNM2(Qr) then the results of [19, Ch. 1, Sec. 3], [20, Ch. 4, Secs. 11-14] for m = 1
and [14, Ch. 2, Sec. 1, Theorem 2.2| for m > 1 imply

GQ,O(f) c CQm,l,A,A/Q(@) N C2m—1,0,>\,)\/2(DT) (12)

and, moreover,
LinGoo(f)=finQr, LG o(f)=0in Q7. (13)

Since u; € C?m=3,0MX2(T'r) then the results of [20, Ch. 4, Secs. 11-14], [19, Ch. 5, Sec. 2| for
m =1 and [14, Ch. 2, Sec. 1, Theorem 2.2] for m > 1 yield

VI () € C=(QF) N C2m=ROANM2(QFUTD)),  LOVE, () =0in QrUQf.  (14)

Since F' € C°(Dy) C CYOAN2((QF UT)r) then formulas (11)-(14) imply that U belongs
C2mLAN2(QE) 0 C2=LOAN2(QF UT)r) and LU = xp, f in Qp UQF. In particular, (3) is
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fulfilled for U~. Let us show that the function U~ satisfies (4). Since F' € C°°(Dr) we see that
I*F~ =9*F* on I'r for a € Zy with |a| < 2m — 1 and

2m—1 ] +
OFy, = (8°‘Gsz,0(f) + > o (vgﬂg(ujﬂ))) ,
: -

Jj=0

Thus, it follows from formula (12) that for all 0 < < 2m — 1 we have

s (a(( ges)) - (o) oo

Hence, in order to finish the proof we need the following lemma.

Lemma 2. Let T € C?™1+X gnd uj € C?m=30AN2(T ), 1< 5 < 2m. Then

(5 o) (o (E ), v vtz

Proof. 1t is similar to the proof of the analogous lemmas for the heat Single and Double Layer
Potentials (see, for instance, [1, Lemma 3], [26, Ch. 3, Sec. 10, Theorem 10.1] for m = 1 and a
different function class or [12, Lemma 2.7] for elliptic potentials). a

Using Lemma 2 and formulas (12), (15), we conclude that B, iUir,, = w1 for all 0 < j <

2m — 1, i.e. the second equation in (4) is fulfilled for U~. Thus, function u(x,t) = U~ (x,t)
satisfies conditions (3), (4). The proof is complete. a

We note that Theorem 2 is also an analogue of Theorem by Aizenberg and Kytmanov [10]
describing solvability conditions of the Cauchy problem for the Cauchy—Riemann system (cf. also
[11] in the Cauchy Problem for Laplace Equation or [13] in the Cauchy problem for general elliptic
systems).

We note also that formula (11), obtained in the proof of Theorem 2, gives the unique solution
to Problem 1. Clearly, if we will be able to write the extension F' of the sum of potentials

2m—1 .
Gaolf)+ X VF(JO)(’U]‘_A'_l) from Q. onto Dr as a series with respect to special functions or a
i=o b

limit of parameter depending integrals then we will get Carleman’s type formula for solutions to
Problem 1 (cf. [10]). However, for the best way for this purpose is to use the Fourier series in the
framework of the Hilbert space theory, see [5]. Unfortunately, this is not a short story because
one needs approximation theorems in spaces of solutions to the homogeneous polyharmonic
heat equation that we are not ready to prove right now. Thus we finish our paper with a
statement extending Theorem 2 to the anisotropic Sobolev spaces, leaving the construction of
the Carleman’s type formulae for the next article.
First of all, we need the following lemma.

Lemma 3. Let 90 € C?™*! and let T be a relatively open connected subset of OQ with boundary
a0 € O?MHA. [If u; € CPHl=i0AN2(T, 7), 1 < j < 2m, then there exist functions 0; €
C?mt1-5.0.A, )‘/2(89T) such that ; = uj onTp, 1 < j < 2m, and a function @ € C2™1AN2(Q)
such that Bjt = Gj41 on (0Q)7 for all0 < j < 2m —1.

Proof. We may adopt the standard arguments from [29, Lemma 6.37] related to isotropic spaces.
Indeed according to it, under our assumptions, for any s < 2m and any v € C**(T') there is
CS A(09) such that v =g on L. The construction of the extension involves the rectifying
diffeomorphism of JI" and a suitable partition of unity of a neighbourhood of 9", only. Thus, we
conclude there are functions 4; € CQT’L_j+1’O’A’)‘/2(8QT) such that 4; = u; on I'r, 1 < j < 2m.
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Next, we use the existence of the Poisson kernel Pp2m q(x,y) for the Dirichlet problem related
to the operator A?™ see [30]. It is known that the problem is well-posed over the scale of Holder
spaces in . Namely, if 90 € ¢t s > 2m — 1, then for each 692T0 111] € C* I (09Q) the
integral

2m—1
0lo) = Parm @32 0)e) = [ (X <Bj<y>PAm,Q><x7y)vj<y>)ds<y>
7=0
belongs to C**(Q) and satisfies A>™v = 0 in Q and Bjv = v; on 99 for all 0 < j < 2m — 1.
Now, we set

g (x) = Pazm a(@725 ' j11)(, 0)(z) € C*"HA@) N C*™H(Q).

Now, we may take as @(x,t) € C?™LAN2(Qr) N C?=10AN2(Qr) the unique solution to
the parabolic initial boundary problem

Oyt t) + A?ma(z,t) =0 in  Qp,

@70y Byi(x,t) = @57 Mg (z,t)  on (99Q)r,

(z,0) = tp(x) on Q,
see, for instance, [20, Ch. 5, Sec. 6] for m = 1 or [14, Ch. 3, Sec. 1] for m > 1. But of course,
there are other possibilities to choose a function @ with the desired properties. O

Under the assumptions of Lemma 3, we set

2m—1
F=Gaolf)+ Y. Vadlolijr) + Iao(a). (17)
j=0

Corollary 1. Let A € (0,1), 99 belong to C*™ 1A and let T' be a relatively open connected
subset of 0Q with boundary OT € C?*"HA. If f € COONN2(Q), uy € C2m—I+HLOAN2(T L) | then
Problem (3), (4) is solvable in the space C*™ AN2(Qp)nC2m=10; 2 A2 (QrUT )N H?™ N (Qr) if
and only if there is a function F € C>®°(Dr)NH?*™Y(Dy) satisfying the following two conditions:
1)) LF =0 in Dy, 2°) F = F in Qf.

Proof. First of all, we note that, by Green formula (7), we have F = Goo(f — L) + xa, @ and
then F € C?"1AA2(OF) because of (12). On the other hand,
2m—1

- F= Z (')Q\F 0 (@jy1) + Io,0(a). (18)

This means that the function F — F satisfies the £(F — F) = 0 in Dy and hence the function
F extends to Dy as a solution of the heat equation if and only if function F extends to Dy as
a solution of the polyharmonic heat equation, too.

Let Problem (3), (4) be solvable in the space C?™1AA2(Qp) N C?m=L0AN2(Qrn U Tr) N
H?™1(Q7). Then formulas (9) and (18) imply

F=F—xapuc H™Y Q%) and LF =0 in Dr.
Now, as F € H*>™'(QE) N C(Dr) (see [25, Ch. VI, Sec. 1, Theorem 1]) we conclude that
F € H?™Y(D7), i.e. conditions 1°), 2’) of the corollary are fulfilled.

If conditions 1’), 2) of the corollary hold true then conditions 1), 2) of Theorem 2 are fulfilled,
too. Moreover, formulas (11) and (18) imply that in Dy we have

U=F—-F=F—FcH™QF) (19)
and the U~ is the solution to Problem 1 in the space G2 1AA/2(Qp)NC2m=10AN2(Qp UT7) N
HQ”M(Q%) by Theorem 2. O
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O HekoppekTHOIi 3agade Komm s perntenmii
MOJIMTAPMOHUYECKOT'0 YpaBHEHUS TENJIONPOBOJHOCTH

Nnpsa A. KypuiaeHko
Anekcanap A.IMlnanyHos

Cubupckuii deiepaibHbIl YyHUBEPCUTET
Kpacuosipck, Poccuiickas @epeparims

AnnoTtanusi. Mbl paccMaTpuBaeM HEKOPPEKTHYIO 3ajady Koy /1Jisl IOJIMrapMOHIIECKOTO OIlepaTopa
TEIIONPOBOIHOCTHU O BOCCTAHOBJIEHUH (DYHKIINH, YAOBIETBOpsomeii ypasaenuto (0;+(—A)™)u = 0 B un-
JIMHIpUYECKO# obsractu B ostynpocrpanctse R™ x [0, +00), tae n > 1, m > 1, a A — oneparop Jlamaca,
110 33JIaHHBIM €€ 3HAYEHUsIM M 3HAYEHMsIM ee HOPMAaJIbHBIX NIPOM3BOJHBIX J0 mnopsiaka (2m — 1) BkJio-
YUTETHFHO Ha 9acTU GOKOBOH MOBEPXHOCTH IUIWHApA. HaMu MOJy9eHbI TeopeMa e€IUHCTBEeHHOCTH JIJIst
sroii 3agayu Komm B anuzorponssix npocrpancrsax CobosieBa, a Takyke HEOOXOAUMBIE U JOCTATOYHDLIE
YCJIOBHS €e Pa3pelInMOCTH B TePMHUHAX BEIIECTBEHHO-aHAJIUTHYIECKOTO MPOJOIKEHHU MapaboTuuIecKIX
MTOTEHINAJIOB, ACCOIMUPOBAHHBIX C JaHHBbIMU Komm.

KuroueBrble ciioBa: IOJUTapMOHIYECKOE yPABHEHUE TEIJIONPOBOIHOCTH, HEKOPPEKTHBIE 33/1a9H, METO/T
WHTEI'PAJIBHBIX IIPEJICTABIICHU.
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Abstract. In this paper, we introduce an estimator of the least squares regression function, for Y right
censored by R and min(Y, R) left censored by L. It is based on ideas derived from the context of wavelet
estimates and is constructed by rigid thresholding of the coefficient estimates of a series development of
the regression function. We establish convergence in norm Ls. We give enough criteria for the consistency
of this estimator. The result shows that our estimator is able to adapt to the local regularity of the
related regression function and distribution.

Keywords: non-parametric regression, Ls error, least squares estimators, orthogonal series estimates,
convergence in the La-norm, twice censored data, regression estimation, hard thresholding.
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Regression is defined as being the set of statistical methods widely used to analyse the rela-
tionship between a variable and one or more others. For a long time, the regression of a random
variable Y on a vector X of random variables designated the conditional mean of Y given X.
Nowadays, the term regression designates any element of the conditional distribution of Y given
X, as a function of X. We can for example be interested in the conditional mean, the conditional
median, or the conditional variance. In presence of functional data, which are doubly infinite
dimensional problems, the appeal to non parametric estimation is unavoidable. The starting
point in this regards is a prediction problem that leads to the regression function due to the
minimization of the mean squared error i.e., Lo risk. In this setting, one can usually consider
the model Y = m(X) + & where ¢ is centred and is independent of X with the explained variable
fully observed. In the case of complete observation of (X, V'), an abundant literature in this field
can be found for instance in Gyorfi and al (2002) and references there in. However, in several
situations the variable of interest X may be subject to randomly right and left censoring in the
same sample. The lifetime Y is right censored by a variable R (which itself represents a survival
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time) and the minimum between Y and R is censored by a censorship variable on the left. A
symbolical example of this model is the one given in Morales and al. (1991) that investigates the
cause of death of trees on a farm. This kind of censoring model is exactly the Model one studied
in Patilea and Rolin, for which local averaging estimates of m(x) = E(Y|X = z) has been in-
troduced by Messaci (2010). In Kebabi and Messaci (2012), least squares estimator of m(z) has
been proposed and its Lo—norm convergence has been established. In this paper, we are mainly
interested in least squares estimation approaches of the regression function for the Model I of
Patilea and Rolin. Particularly, we investigate a least squares method based on wavelets. The use
of a wavelets based approach is motivated by the possibility to achieve optimal convergence rates
despite the high dimensionality of the problem. Moreover, wavelets are excellent approximators
for signals with rapid local changes such as cusps, discontinuities, sharp spikes, etc. On the
other hand, accurate wavelet decomposition, using only a few wavelet coefficient, can represent
signals allowing dimensionality reduction and sparsity. So explicitly, the purpose of this paper is
the construction of non-linear orthogonal series estimates by rigid transformation (thresholding)
of the coefficients estimates of a regression function series development. The first part of our
study is devoted to the introduction of the least squares estimators of the regression function
for censored data and to some convergence properties. An important idea is introduced which
consists in the estimation of orthogonal series of the regression function. Then, we present the
estimation of the coefficients of these series, based on a wavelet system, is presented. In the
second part, we list the proofs.

1. Model and recalls

Let (X,Y) be a random vector with values in R? x R with E(Y)? < oo and the dependence
of Y on the value of X is of interest. Let R and L be censoring positive random variables.
More specifically, the objective is to find a function f : R? — R such that f(X) is a "good
approximation" of Y.

1.1. Model

We introduce orthogonal series estimates of m(x) = E(Y|X = z) with respect to sample
of iid D, = {X;, Z; = max(min(Y;, R;), L;), A;} from the same distribution as (X, Z, A) or
Z = max(min(Y, R), L) and

0 if L<Y<R,
A=< 1 if L<RKY,
2 if min(Y,R) < L.

Indeed, let f : R? — R be an arbitrary (measurable) function and denote X distribution par u
then

EIf(X) — Y = BIf(X) = m(X) + m(X) — Y|? =
— EIf(X) - m(X)[? + Elm(X) - Y| =
= Blm(X) = Y+ [ 17(2) = m(e)Pulde).

In the sequel we will denote by Fy the distribution function of the random variable V' and by
Sy =1 — Fy its survival function and Ty = sup{t : Fy(t) < 1} and Iy = inf{¢: Fy (t) # 0} the
end points of the support of the variable V. Assume that the variables X,Y, R et L satisfies the
following hypotheses

Hy: Y, R and L are independent.
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H,: (L, R) is independent of (X,Y).

Hs: 3T <Tgand I > I such that,Vn e NVi(1<i<n): 4, =0=>1<Z; <T as.
Hy : Fy, is continuous on 0, ool

Hs : Tr <Ty <Tp <ooand Iy < I < Ig.

H, is an inherent hypothesis of Patilea’s et al . H3 seems to be acceptable because I < Z; < T
when A; = 0. Hj5 guarantees in particular that the model is identifiable.
Let h a mapping on R? x R — R, we introduce as unbiased estimator of E(h(X,Y’)) the amount

WX, Z;
Z {A:=0} Sr(Z)F () Z) (1)

Indeed, under hypothesis H1, Hy and Hy. The problem is that functions Sg and Fy, are generally
unknown, we will replace them respectively with their estimators. Let (Z})1<j<nm, (M < n) be
the distinct values of Z; listed in ascending order.

1.2. Estimation and proprieties

Set . .
Dij = 2N zi=z; 4=k}, and Nj = 3 1(z.< 21y,
i=1 i=1

thus, [22] suggest estimating Sk by

S.t)= ][ {1UJ_1D_“N_} and U; 1 =n [] {1D2’}, (2)

/2] <t i-t J<ISM

and by inverting time in the Kaplan et al estimator, we can deduce the estimator E, from Fy,
(left censoring case) witch is

A= I {1_1“""}} (3)

) J
JlZ;>t

Recall that under hypothesis H; and Hp, [22] have proven that

tset]}g Sn(t) — Sgr(t) . 0 a.s. (4)
And .
tselﬁg E,(t) — Fr(¢) R 0 a.s. (5)
Note that hypothesis Hs implies that
Sr(T) > 0 and Fr(I) > 0. (6)

In view of equations (4) — (6), we deduce that for n sufficiently large
S.(T) >0 and E,(I) > 0 a.s.

If Y is uncensored , the regression function estimator of the least squares , obtained by minimizing

the empirical risk Lo, is arg min— Z|f( ;) — Yi|?, where F,, is a class of functions that is

n i=
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depending on the sample size n. Thus, in our context, according to the relation h and after
having estimated Sg and Fp, the least squares estimator of m(z) is given by

~ 1L f(X,) = Z| (0 )
m, =argmin— » ljg_on—"———|[=-:=0]. 7
e n; =g (Z0)Fn(2:) \O "

F,, is a certain family of functions which will be clarified in the theorem. We see that S, (Z;)
does not vanish in the expression of m, if A; = 0. It is easy to check that Fn(ZZ) does not
vanish either if A; = 0 but since Y is bounded, we are going to make some assumptions on our
estimator. For that reintroduce the notation of the next use of truncation.

For 0 <t < oo and z € R, define

t ifx>t,
T[O,t] (.’,U) = r if 0 § €T § t,
0 ifz<0,

and for f : R? — R, define (Tjg 4 f)(x) = T4 (f(z)). We can also use again the fact that this
mapping verifies the following relation.

Vb >a, |Tpp(x)— Tpo,aq@)| < (b-a) (8)
Y being limited and due to M,, = max(Zy, ..., Z,) with M, j T}, a.s, we finally propose
n—-+oo
as an estimator of m(x)
mn(m) = T[O,Mn](mn(m))- (9)

1.3. Wavelet bases

Let F,, be the set of all piecewise polynomials of degree M (or less) with respect to some
partition of [0, 1] consisting of 4n'~ intervals (or less). Let G be set of polynomials of degree
M (or less), let P, be an equidistant partition of [0, 1] in [log(n)] intervals. Denote G o P, the
set of all piecewise polynomials of degree M (or less) with respect to P,. We will also need the
following notations

L7 = Tiogn(Fn).

Frr={Vf€GrpoP,|flle <log(n)}.

Now adapting the proofs given in Kohler et al [17], We get the following result concerning the
convergence of the introduced estimators. We refer, for example to Gyorfi et al [7] for some
definitions and results of the Vapnik et al [23] theory, used in this work.

We introduce orthogonal series estimates in the context of regression estimation with fixed,
equidistant design, which is the field where they have been applied most successfully. Let
(x1,Y1),...,(2,,Y,) be data according to the model Y; = m(x;) + €; where z; are fixed (non-
random) equidistant points in [0,1] , &; are i.i.d. random variables with ; = 0 and E(¢;) < oo
and m is a regression function f : [0,1] — R.

Assume that m € La(p) where p is Lebesgue measure on [0, 1]; and (f;)jen is an orthonormal
basis in Lo(u), ie

i = [ B@ntuan ={ § 3 47
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Each function in Ly(u) can be arbitrarily approximated by linear combinations of (f;);en. Then
m can be represented by its Fourier series with respect to (f;);en,

m = chfj where ¢; = (m, fj)r,(u) = /m(m)fj(x)u(dx) (10)
j=1

Orthogonal series estimates use the estimates of coefficients of a series expansion E|f(X)—Y|? =
E/m(X)-Y|?+ [|f(z) — m(z)|*u(dz) to reconstruct the regression function and in the model

Y; = m(x;) +€; , where z1, ..., z, are equidistant in [0, 1]; coefficients ¢; can be estimated by
1 n
& = E;Yifj(xi),j eN. (11)
1=

The traditional way to deal with these estimated coefficients to construct an estimate

K
1 ~
mon = ijj>
i=1

m is to truncate the series expansion to an index K and to inject the estimated coefficients.
Here, we try to choose K such that the set of functions{f, .. ., fi} is the "best" among
all the sub-sets {f1},{f1, fo},{f1, f2,...} of {f;};en in view of the estimation error (7). This
implicitly assumes that the most important information m is in the first coefficients K of the
series expansion E|f(X) =Y |2 =E/m(X) - Y| + [ |f(z) — m(2)|?u(dz).
[5] have proposed a way to overcome this hypothesis. This consists in contaminating the
estimated coefficients, for example, we use all the coefficients whose absolute value is greater

than a threshold d,, (called hard thresholding). This leads to estimates of the form
K
an = Z N5, (éj)fj7
j=1

where K is generally much larger than K in (7), 6, > 0 is a threshold, and

¢ if |6 >
o if |G| =6,

in the series expansion, we truncate the estimate at some data-independent height B,,, in other
words, we define

B, if my,,(z) > By,
My (z) = (T, ) () = mp(x) if — B, < 1y(z) < By, (12)
0 if 171, () < — B,

where B,, > 0 and B,, — oo (n — 00).

In this paper, we study the consistency of our estimator of orthogonal series. for simplicity
we will consider the case where X € [0;1] a.s. It is easy to modify the definition of our estimator
so that we obtain a weakly and strongly universally consistent estimator for the univariate X. To
prove the strong consistency of our estimator we need to make somme changes to its definition.
Consider o € (0; ). Let functions f; and coefficients ¢; be as defined in (10) and (11). Write
(Cay fy)s - (Cays fixy)

switching (é1, f1), ..., (ck, fx) and

e1| > [éa = -+ > |ek| (13)
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let’s define the estimator m?,, as

min{K nl1=l}

mbo= > ms (&) f (14)

J=1

This ensures that m?3,, and a linear combination of no more than n'~* functions f;. And as in
E|f(X)-Y]?=Em(X) =Y+ [|f(z) — m(z)[*u(dz) we can show that
m?, =m®, ;- with J* C{1,...... , K} where J* satisfies |J*| < n'™®.

finally we combine the notation of the two estimates to obtain as an estimate of m,, the following
formulas m? and m,, whith Ty, < B,, = log(n) . We will also need the following notations

Ly =Tr, (Fp). Fr={9:3f € GuoPug=Tr,f}

2. Results

Theorem 2.1. Under hypotheses Hy — Hs, let M € N be fized, and m,, the m estimator defined
1

by 9, 14 , with Ty, < By, =log(n) and 6, < ————— . Then

(log(n) +1)?
/ [mn(z) — m(a))” p(dz) — 0 a.s.
R n—oo
The following lemma will be used to establish our main result.
Lemma 2.2. We set the quantity my,,(x) = Tjo7,(Mn(2)) and with equations (2), (3), we have

/ i () — () ? () <
Rd

< 2 sup

+ 15
o (15)

I8N 1F(X) = zif* v
ngl“”’:@sﬂ(znﬁazo Elf) -]

+no22(M + 1)7(109(’2 U

3. Proofs

We set the quantity m,(x) = T, 1, (M (x)). We first show that the theorem is proved

/ Imn(z) —m(z)]? p(dz) — 0as. < / [ (z) — m(z))? p(dz) — 0 as.
Rd n—oo Rd n— oo
Indeed, according to equation (8), we have |m,,(x) — m, (z)|?> < |Tr, — M,|, which implies that

M () — M (2)]> < (Tp, — M,)? = 0 as..
Rd

Since by Hs we have lim M, = T}, a.s Kebabi et al [12]. First, we prove the Lemma 2.2, and

n—-+oo
finally, we prove the theorem.
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Proof Lemma 2.2. We start by proving, first we have
[ m(e) = () ) =
Rd
= {B(m, () = YD) - inf BA7CX) - YT+

+{ it BIFCO - Y = Blm(x) - P}

feF,

In addition, the regression function satisfies

inf B[f(X)- Y]~ Em(x)- Y= inf / (@) — m(@)] u(da).

fEF: feF: Jpa
furthermore
B (jma(X) =Y [P,) — inf E|f(X) Y] =
= sup { B (jma(X) - Y] |Dn)— E(1f(X) =Y D)} =
ferxy
_ 1 — [ (X3) — Zi|?
= su E(|1ma(X)=Y?|D,) — = 1y gyt 2l
fef%{ (1) =P 122 n; =0 (20 F(Z0)
1< I (X3) — Zi? 1 n (X3) — Zi|?
n; =g (20 En(Z) n; =g (20 En(Z,)
1 i (X;) - Zi|° 1 f(X:) = Zi|
+=) lia=01—3 = — D Ya=a i~
X)) =z -
I—O} ~ |f( } Qn,i,
; Su(Zi)Fo(Z:) ;

where the @), ; are explained below for all 7, 1 < i < 4.

e Since m € F,, ,m, € F,; and F;; C L, it is obvious that

Qur = s § (0 - YPID) = 1Y OB <
R " " RRRICHVATRTAN B
X;) - Zf* 2
< fSEUB Z{A_O}A( V(2 - E|f(X) =Y,
and
_ RS F(X:) — 2z’ 2
Qua = ;gg{n; AT At }<
1¢ f(Xi) = Zif
AR e AT R
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e Since m,(X;)<Tp and Z; <Tp a.s., we obtain 14, —o} [ (Xs) = Zi| = 11 a,—0y [ (X3) = Zi,
which implies

o As F) C F}* because of T7, < log(_n) and fix f € Gy o P,. In view of P, definition,
Lemma 18.1 in Gyérfi et al [7] exist J C {1,...,n} and f € F,, 7, such that f(X;) = f(X;)
and |J] < 2(M + 1)(log(n) + 1)? which implies that

|mn X;) — )_ Zi[? _
*Z R ATATT Z I ( DEW(Z)

|mn Xi) — f X)) —Z; |
*Z = <zz>Fn Z s ‘°}§n<zl> FlZs)

< no22(M + 1)%.

From 7 definition, it is obvious that

1 mn(Xs) = Zi[F  1¢ F(X0) = 2,2
Qns = sup {Zl{Ai—O}w - l{Ai_o}M} <

fery (M= n( i=1
! 1)?
< noza(M + 1)L+ D7
n
Inequality (15) is therefore proven. O

Proof Theorem 2.1. It remains to be proven that the three terms of Lemma 2.2 tend to zero
almost surely when n — oo. To do this, we will proceed in three steps. In the first step, we show
that

f(X0) = Zif 2
lim su —n—————— F|f(X)=-Y|"| =0 a.s.
nHOOfeB Z{A O}S(Z)F (7)) |f(X) \
To do this, we use the following inequalities
1 X)) - Zi
sup (25 1 amo LEVZE iy - v <
fec; ni:l S?L(Zi)Fn(Zz)
1< X)—zP 1& X))~ 7,
o | ISt MO ZE A 1505 2P
fecLsy ni:l Sn(Zz Fn(Zz) nz—l SR(Z’L)FTL(ZZ)

)

1 (X)) —ZiF 1 f(X) = 2]
+ sup |— leggpy—b——— — — Tea ot/ =l
feﬁpz n; T4 O}SR(Zi)Fn i nz:: {4 r(Z;) ;

feLs

1 X;) - Z;|?
+sp |23 Loy A= EL iy - v
1

Since f € £ implies that 0 < f(z) < 1L, we get — in view of — formulas (4)—(6)

F(X; Zi|?
=g [L5 o JEDEE 15, O

~
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2
<= 1L - sup S, (t) — Sgr(t)] — 0, as.
Sn(T)Sr(T)En(l) tert nmee
and
Xi) = %[
n2fsup Z{A_O}S ) Z{A 0} ) (Z)
T2 .
p |Fn(t) — FL(t) = 0 a.s.

FL(D)Sa(T)Ea(D) ekt

Let’s introduce the following notations V= (X, Z,14), Vi =(X1,Z1,14,),-.-,Va=(Xn,Zn,14,)
n i.i.d random vectors with the same distribution as V.

Define
", :{h;Rd x [0,T] x {0,1} = R* : 3f € £ such as,
1alf(z) — 2
h(z,z,14) = —~——
(2 14) = =5 R

V(z,2,14) € R% x [0, 7] x {0,1} }

T2
Functions of H,, are positive and bounded by ——~%—— and
PosIY Y Sr(T)FL(I)
Ly |f(X) — 2 1a]f(X) = 2 2
Er(V)=E|—~-—+———| =E|E| ———~-— | X,Y =E X)—-Z|").
v) < Su(Z)Fu(2) Su(Z)Fu(2) | (1700) = 2r°)
under Hi,Hy et H4. In addition we have
F(X) = Zi|)? 2
= Sup Z {Aﬁo}m— Elf(X)-Y[| =
1 n
= sup |—» h(V)—=ER(V)|.
Sup n; V) (V)

For all hy and ho € H,, let fi and fo be their corresponding functions in £} then

1 1f1(X0) = Zil? 7 |f2(Xi) = Zil?
=0 Sr(Z:) Fr(Zs) ta =0 Sr(Z)F(Zy) |

o %%Z ((F1(X0) + f2(X3) = 22) (F1(X) = fa(X0))| <

which implies N (g, H,,, V") < N E%IZL(U, E:‘wX{l), where N (e, F,,, Z]') denotes the over-
lapping number. Theorem 9.1 in Gyérfi et al [7] gives, for all § > 0

{fséu?}[)n Zh > 6} <8E {N <516TL L X exp —128Tf ,
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which is, in view of Theorem 9.4, Theorem 9.5 and Lemma 13.1 in Gyorfi et al [7], we get
sup h(V; (V)| >dp <
{fe?-tn Z }

2(M+2)nt—e
28872 ) - (_ n52s§(T)Fg(1)> |
()"

< 8(Gn)t | —
o) ( 5 (Sr(T)Fr 1287}

The formula combined with the Vi, e VG+ of the theorem where Vi, ers stands for the
VC dimension of the set of graphs of functlon in Gy , allows to apply Borel Cantelh lemma, to
get

f(X0) - Zi)? 2
Z a0y g s~ BlIX) ~ Y]

sup

— 0 a.s.
fEL‘* n—o0

In the second step, we get

l 1)? !
(log(n) +1)° — 0 a.s because 6, <

2
nd2(M +1) n n—00 (log(n) +1)%

In the third step, we prove that

. 2
inf x) —m(x dr) — 0 as.
ot [ 1) = me) i)
Since m can be approximated arbitrarily closely by continuously differentiable functions, we
may assume without loss of generality that m is continuously differentiable.For each A € P,

choose some 24 € A and set f* = > m(xa)la.Then f* € Gy o P, and for n such that
A€P,

[m|ee <Tp <log(n) we get

inf r) — m(zx)|? dzr) < su *X—mx2<4—>0.
eomat®™ o | 18@) = (@) () s 1) @) < ot
where ¢ is constant as a function of the first derivative of m. O
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Henosmas ornienka pyHKIIUM perpeccu MeToJIOM
HauMeHbIINX KBaJApPaTOB HA OCHOBE BeNBJIETOB

Puma lyac
Unbxem Jlapycn
Cymusa Xapdyimnu

Kadenpa maremaruku
Yuupepcurer 6parbeB MeHTYypHu
Koncrantun, Amxup

Amnnoranus. B 31oil crarbe Mbl BBOAMM OIEHKY (DYHKIIMN PEIrPECCUU METOJIOM HAMMEHBIINX KBAJIPATOB
s Y, nensypuposansoro cupasa R, u min(Y, R), nensypuposansoro ciesa L. OH OCHOBaH Ha HIesiX,
TOJTy YEHHBIX M3 KOHTEKCTA BEHBJIET-OIEHOK, ¥ MOCTPOEH IIyTEeM XKECTKOI MOpPOroBoit 00paboOTKM OIEHOK
KO3 DUIMEHTOB Pa3BUTUA Psifia (PYHKIUU PErPECCUr. YCTAHABIUBAEM CXOIUMOCTH 10 HOpMme Lo. Mbr
JaeM JOCTaTOYHO KPUTEPHUEB JJIsl HEIPOTUBOPEUYMBOCTH ITOU OIEHKH. Pe3yIbraT mMoKa3hIBAET, 9TO HAIIA,
OIIEHKA CIIOCOOHA aAIITUPOBATHLCH K JIOKAJIBHON PEryJIsIDHOCTA COOTBETCTBYIONMIEH (DYHKIIMNA Perpeccuu
U pacIpesiesIeHus.

KuaroueBbie cjioBa: HemapamMeTpudecKasi perpeccus, ormmbdKa Lo, OIMEHKA METOJ0M HAUMEHBIITNX KBa/I-
paTOB, OIEHKN OPTOTOHAJIBLHBIMU PsiTaAMHU, CXOIUMOCTb B HOpMe Lo, TBaXK bl I€H3y PUPOBAHHbBIE JAHHBIE,

OIIEHKA PErPEeCcCHM, *KECTKUI ITOPOT.
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Abstract. We investigate the existence of solutions for a system of nonlinear ¢-Hilfer fractional Volterra—
Fredholm integro-differential equations with fractional integral conditions, by using the Krasnoselskii’s
fixed point theorem and Arzela—Ascoli theorem. Moreover, applying an alternative fixed point theorem
due to Diaz and Margolis, we prove the Kummer stability of the system on the compact domains. An
example is also presented to illustrate our results.
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Introduction

Fractional order differential equations have become one of the most popular areas of research
in mathematical analysis, engineering, economics, control theory, materials sciences, physics,
chemistry, and biology (see [1,2] and the references therein). Scientists have applied various
mathematical approaches through diverse research-oriented aspects of fractional differential sys-
tems. For instance, existence, stability, and control theory for fractional differential equations
were studied [3,4]. For the first time, Alsina and Ger [5] studied the Hyers-Ulam stability for
differential equations. Recently, mathematicians have paid more attention to the study of sta-
bility for a wide range of differential systems [6-9]. Volterra integro-differential equations which
are an important class of these equations have arise widely in the mathematical modelling of
many physical and biological processes, for example biological species coexisting together with
increasing and decreasing rate of growth, electromagnetic theory, Wilson-Cowan model and many
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more [10,11]. Although they have considerably been studied in science and engineering, fractional
integro-differential equations with mixed fractional operators have been newly introduced [12-15].

In this article, motivated by the research going on in this direction, we study a new system
for nonlinear ¢-Hilfer fractional Volterra-Fredholm integro-differential equations with fractional
integral conditions of the form

¢ p
DY w(n) :A(w(n))+9(n7w(n))+/0 h(n,s,w(s))ds +/0 t(n, s, w(s))ds,

new:= (O,IJ], (1)

Iy %w(0) =wo, Wy R,

where 7"]D)gf;‘z’(.) is a ¢-Hilfer fractional derivative of order 0 < ¢ < 1 and type 0 < v < 1, and
1,77 is a ¢-Riemann-Liouville fractional integral of order 1 —~(y = ¢ + v(1 — <)) with respect
to the mapping ¢. Furthermore, g: w x R — R and h,£: w? x R — R are given mappings, and
A is a closed linear operator. In the following, we show the existence of solutions to equation (1)
based on the Krasnoselskii fixed point theorem and Arzela—Ascoli theorem. Using Kummer’s
control function, we introduce a new concept of stability and further deduce that the solution of
equation (1) is stable in Kummer’s sense.

1. Preliminaries

In this section, we present some important definitions and mathematical concepts on the
fractional calculus. For details, please see [2,16] and the references therein. Let [n,m] be a
finite and closed interval with 0 < n < m < oo and €[n, m| be the space of continuous functions
0 : [n,m] — R equipped with the following norm

lollenm = max lo(m)]

Furthermore, the weighted space € 4(n, m] is defined as
€1 mm] = {o: (n,m] = R; ((n) — ¢(n))' Vo(n) € €[n,m|} where 0 <~y < 1.

with norm

lolley_, ymm = max |(¢(n) — p@))' " o(n)|,
n€n,m]

where ¢ : [n,m] — R is an arbitrary function, and n € [n, m].

Definition 1.1. Let (n,m),—co < n < m < +0oo be a finite or infinite interval of the line R, T’
be the gamma function, and ¢ > 0. Additionally, let ¢p(n) be a positive function defined on [n,m)]
so that ¢'(n) = 0 on (n,m] and ¢ (n) is a continuous function on (n,m). The left-and right-sided
fractional integrals of a function o with respect to the function ¢ on [n,m| are defined by

I520(x / ¢'(n —¢(n)) " o(n)dn

and
o) = i [ # el - o) ety

respectively.
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The fractional integrals with the above definition have a semi-group property given by
IS1V0o(x) = IS 0(x) and  IS1Y%o(x) = IS p(2).

Additionally, for ¢, > 0, we have [17]:
o _ . I'(o
(i) i o(x) = (6(z) — ()7 then I5¥o(x) = )

I'(c+o)
(o)
T(s+0)

Definition 1.2. Let (n,m),—oco < n < m < 400 be a finite or infinite interval of the line R,

@'(n) #0 for alln € (n,m), and ¢ > 0, n € N. The left-sided Riemann—Liouville derivative of a
function o with respect to ¢ of order ¢ correspondent to the Riemann—Liouville is defined by
1

D<*0(n) = (=) 1ot

:ﬁ (Qy(n)dx> X /n o' (t)(d(n) — (1)) o(t)dt.

Definition 1.3. Let n—1 < ¢ <nwithn € N, I = [n,m](—co < n < m < o) and g,¢ €
¢"([n,m],R) be two mappings such that ¢'(x) > 0 for all x € I. The left-and right-sided ¢-Hilfer
fractional derivatives ’H]Df)’f;qs(.) of the arbitrary function o of order ¢ and type 0 < v < 1 are
defined by

(6(x) = p(n))**~, and

(if) if o(z) = (¢(m) — ¢(2))” ! then I°¢ @ o(z) = (¢(m) — ()51,

v; v(n— 1 d\" —v)(n—¢);
"D ate) = L () 1)

@' (x) dx
and N
Hypsvid v(n—c)ip 1 d " ja-v)m-o
Do) = 1 () T ole)
respectively.

Theorem 1.4. If p€ €' nym], ¢ >0,0<v <1, andy=c¢+v(l —) then
MDY o) = e(e)  and MDY o(x) = o).
Additionally, we have

B3¢ Dyl = ofw) - I EOIT oo

and
Il b HD< i o(z) = o(x) — (¢(m) F(ﬁgx))W1 ]I(nl__v)(l—c);(bg(m).

Proof. Ref. [17].

The solution of a hypergeometric differential equation is called a confluent hypergeometric
function [18]. There exist different standard forms of confluent hypergeometric functions, such as
Kummer’s functions, Tricomi’s functions, Whittaker’s functions, and Coulomb’s wave functions.
In this paper, we apply the following Kummer (confluent hypergeometric) function to study our
stability:

. (P +k) 5"
@ (P1,P2s3) = 171 (P1,Pos3) = ];) T (P 1 k) Kl (2)
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which is the solution of the differential equation

2
5%4‘(‘132—3)%—‘131“() 0,

where 3,01 € C and P, € C\Z;. Kummer’s function was introduced by Kummer in 1837.
The series (2) is also known as the confluent hyper-geometric function of the first kind, and is
convergent for any 3 € C. In this article, we apply it on the real line R as our control function.
Clearly, for P37 = PB-, we have

‘131 Pr+k)s" S
P 3) =1 F = 9 I _ 3.
(F1, P2:5) = 171 (Br, Pris) ZF TR STkl
Letting ¢, v € w, we consider the following inequality for ¢ > 0
FBRE ) — A + 0 0(0) — [0 5,0(6))ds — [ b5, 00505 < )

< €@ (5, v;(¢(n) — ¢(0))°)

where @ is the Kummer’s function (see [18]), to define a new stability concept called Kummer’s
stability.

Definition 1.5. For a positive constant Cg, for all € > 0, and every solution v € (€[0,p],R)
to inequality (3), if we can find a solution w € (€[0,p],R) to Equation (1), with the following
property:

() — v(n)| < Ca € B (5,05 (6(1) — $(0))°) for all 5 € [0,p)

then we say that equation (1) has Kummer’s stability with respect to ® (s, v, (¢(n) — ¢(0))°).

Our approach is motivated by the fact that inversion of a perturbed differential operator
may result from the sum of a compact operator and a contraction mapping (see [19-21] and the
references therein). We begin by stating the following Krasnoselskii fixed point theorem, which
has many applications in studying the existence of solutions to differential equations:

Theorem 1.6 (Krasnoselskii fixed point theorem). Let X be a Banach space and M C X be a
closed, convex, and non-empty set. Additionally, let T, & be mappings so that:

o  Tu+ Guve IM whenever u,v € M,
e The operator ¥ is continuous and compact, and

o Mapping ¥ is a contraction.
Then, there exists a w € M so that w = Tw + Sw.

In addition, we mention an alternative fixed point theorem presented by Diaz and Margolis
in 1967, and it plays a crucial role in proving our stability result [22].

Theorem 1.7. Consider the generalized complete metric space (X,Y) and let © be a self-map
operator which is a strictly contraction mapping with the Lipschitz constant k < 1. Then, we
have two options:

(i) either for everyn € N;Y (9“*15, @“5) = 4o00; or

(ii) if there exists n € N so that the operator © satisfies Y(@”+1379"5) < oo for
some 3 € X, then the sequence {©"3} tends to a unique fized point 3* of © in the set
X*={oeX:Y (0"0,0") < co}. Furthermore, for all Z € X

1
Y (3,3) < —Y(5,0,).
(3:3°) < 7Y (5,65)
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Now, we are ready to prove that equation (1) is equivalent to an integral equation. Then, by
the above theorem, we infer that a fixed point exists for the integral equation, so equation (1)
has at least one solution.

Proposition 1.8. Assume that g : w x R = R and b : w? x R = R are real-valued continu-

ous mappings, and A is a closed operator, then the following integral equation is equivalent to
equation (1):

— -1 s
wl) = LI g b 15 ot i, wn) + [ bl utryir +

+ [ttt + o) ()

where v = 0 and we obtain from y=c¢+v(l —¢) for0<¢<1and 0<v <1 in (1).

Proof. Using the properties of the ¢-Hilfer fractional derivative outlined in the preliminaries, we
have where v = ¢ + v(1 —¢). So, by the above equality, we have

HDS Vit (n) = [V (93¢ DYVidap(n) = I7~5¢ DVi%w(n),

where v = ¢+ v(1 —¢). So, by the above equality, we have

" p
N*@DWw(n):A(w(n))+g(n,w(n))+/0 h(n,s,w(s))dﬁ/o E(n, s, w(s))ds.

Now, applying 17® to both sides of the above equation and using Theorem 1.4 , we obtain

991752 DTy (n) = 199 (.A( (m) + g(n,w / h(n, 7, w(T))dr —l—/ e(n, 7, w(r dT)

and

I D 0w (n) = 159 (A(w(n)) +g(n,w(n)) + /0 h(n, 7, w(r))dT + /Op E(77,T>w(7))d7) :
Then,

— $(0))7! .
wt) = LDt + a6 w) + | 6 u(r)ar+ [ et
Conversely, assuming that w € C[0, p| satisfies equation (4), we claim that the fractional integro-
differential equation (1) holds. We apply *D<%® to the equation (4) and imply by Theorem 1.4

that
DS () =

_ HD<,U;¢((¢(77) —¢(0))! wo + I5° A(w(n)) + I5%g(n, w(n)) + 59 /Os b(n, 7, u(r))dr+

p
+I<*¢’/ €, 7, w(r))dr ).
0
From *IDS¥®w = 0, we obtain
p
DS () = Aw(n)) + g, w / bt u(s)ds + [t u(s)ds.
0

This completes the proof. O
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Remark 1. Let w € €(w,R) satisfy inequality (3). Then the following integral inequality

holds

_IS+ g 77,

¢ /¢ D)1 (5, 05 (6(1) — 6(0))°) ds =
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Existence results

In this section, we study equation (1) under the following hypotheses:

e (H1). g € C(w x R,R). Moreover, there exists ¢; such that

lg(n, w)| < q:9M

where 1 € w,w € C([0,p],R) and My = ||wl[¢[o,y-

e (H2). There exist q%,q5 > 0 such that |h(n,s,w)| < qklw(n)|, |&(n,s,w)|

e (H3). The operator A is bounded and || Al < T

all n € w and w € €([0, p|, R).

e (H4). The function ¢(n) is uniformly continuous for all 7 € w.
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Lemma 2.1. Let the operator T : C[0,p] — C[0,p] given as

s p
| [ nonrwtar| 42| [ eoroar] + 52w
0 0
and assume that the hypotheses (H1)—(H3) are satisfied. Then, the operator T maps from the
closed ball B, = {w € C([0,p] : ||[w] < 7} into itself, if
I'(c+7) |ro

T'(v)es
D(s+7) — Fps [9bp + abp + a0 + FEED

where €y := (¢(p) — ¢(0)).

Proof. Clearly, we need to prove that if w(n) € B, then (Tw)(n) € B,. For all n € [0,p], we
have

wo + 15 a(n, w(n))+

T2

()
]

3
:
—

V)
~—
—~
<
—~

»
~—

|
-
—~

o
N
~—

2
|

—

[(Tw)(m)] < [wol + max | (¢(s) — $(0)' Vg(s, w(s) | ds +

1

r<> () — GO~
§(5)(6(s) — 9(0))7? PR

/ (n) S max (0(5) — 9(0)

p
X [/o |h(n, 7, w(r))|dT + ; E(n,T,w(T))dT] ds +
Jr||A|| /’7 ¢ (5)(p(s) — $(0)) ! max,ejo,n | (4(s) — ¢(0)) w(s \ds
I'(<) Jo (p(n) — ()t~ S
QT (7 (s)(¢(s) — ¢(0)7 ! quP ¢'(s)(¢(s) — (0 ))” !
< ol Tr Gy o)~ " o / ) — oy T
CIQTP ¢'(s ¢ (0)! All7 ¢>' ) ¢(0))7"ds
/ o Ty, o o) S
1 ¢ ( ) — ¢(0))7"
< ol + 5 [||A||T+q2rp+q2m+qmlr [N SO <
_ s+v-—1
<ol + L= (A + a4 g + qlsmn] B(s.)
where B is the beta function. From the formula
INOINGD;
B(s,7) = Tl )
we have
(7)) < ool + =GO (14 ahrp + afry + ]
Applying H3 and condition (5), we have
L(v)e;, (c+ 1)
This completes the proof. O

The following theorem shows the existence of solutions to the fractional differential equa-
tion (1) using Krasnoselskii’s fixed point theorem listed above.
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Theorem 2.2. Assume that hypotheses (H1)-(Hj) are satisfied. Then, equation (1) has a
solution.

Proof. Define & : C[0, p] — C[0,p] as

Sy = W= W‘ 0o + IS a(n, w(n)) + 152 [/ h(n, 7, w(r))dr| +

P
/En,rw }
0

(Sow) (n) := 15 (A(w(n))).

From Proposition 1.8, solving Equation (1) is equivalent to finding a fixed point for the operator
S defined on the space €0, p].

Suppose that 7 satisfies condition (5) and B, = {w € €([0,p] : ||w]] < 7}. Due to Lemma 2.1,
the operator & maps B, into itself. Now, we use Krasnoselskii fixed point theorem to show that

and

S has a fixed point. o

Claim 1. The operator 3 is continuous on B,. Let {w,} be a sequence in B, that converges
to w. We need to prove that $w,, — S1w. For each i € [0, p], we have

| (S1wn) () = (S1w) ()] <

1 @' (s)(p(s) — ¢() B v (s o (5). (20 (8)))—
<F(g)/o (1) — $(0))1— I&g’;](ﬂs) ?(0))" " "g(s, wn(s), (wn(s)))

~ glsvus). (w()|ds + /d )= SOV s (615) — 9(0))' " x

)) 56[0577]
X /
0

Since g,h and ¢ are continuous, and w, — w as n — oo in B,, we can conclude that
| (S1wn)(n) — (S1w)(n) |= 0 as n = +00 by Lebesgue dominated conoergence theorem.

h(n, 7, wn(1)) — h(n,r,w(r))‘dT —1—/0 ‘{3(77,7', wi (7)) — E(’I],T,1U(T))‘d7’:| ds.

Claim 2. S is an equicontinuous operator. To prove our second claim, we let 71,72 € w with
e <1 and w € B,

[(S1w) (m) = (S1w) (2)] <
(¢ (m) — ¢ (12)' " (6(s) — $(0))1

s I'(7) Ioo) +
o=l MRS [T g (a)o(e) - 0(0) s+
Aot - ?((Zj”l 93t [ oo - o) +
@ (”1)‘?((’?)1 g ™ 6 000) - 900 7as <
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(¢ (m) = ¢ (1)) ($(s) — $(0))' ™

ool +

(a1t + ge + gfe) /Onl ¢ (s)((s) — $(0))! ds <

(6 () — ¢ (n2))' ™ (6(p) — $(0))1 7
INGD)

_ 1—¢+~
LT (e (771}‘)(( +¢1()772)) (abv+ a5t + 10N x) .

70| +

Hence, we have

[(S1w0) (m) = (S1w) (n2)] <
COm) =o)L TO) @)~ ém)'
R D+ 1)(60) - 9(0))7

regarding (H4), the right-hand side of the above inequality tends to zero whenever 171 — 12 so it
clearly claims that 3 is equicontinuous. Furthemnore, using the previous lemma, it is uniformly

(ahe + gbe + g1 2Mv)

m0| +

bounded. Therefore, by Arzela-Ascoli Theorem, §; is compact on B,.

Claim 3. The operator S is a contraction. Let wy, ws € C1_- ([0, p]), then, we have

[(S2w1) () — (Sawz) ()] <

1Al [ #'(s) .
gF(<)/o G0 —o(ayi—s [wils) —wa(s)ld

AT () (op) — ¢(0))7 |
h I(s+1)

wi(n) — wa(n)].

By (H3), we infer that | A||T'(7)(é(p) — #(0))Y < T'(¢+1). Thus, S is a contraction mapping. By
Theorem 1.6, the mapping 7 has at least a fixed point, which directly implies that equation (1)
has a solution. This completes the proof.

3. Stability analysis

In this section, we present the Kummer stability with respect to ® (s, v; (¢(n) — ¢(0))°) for
equation (1) based on Theorem 1.7. We begin by assuming the following hypotheses:
(K1) g € C(w x R,R). Moreover, there exists £y > 0 such that

\9(777"01)—9(777"02” <‘(:Q Iml_m2| (6)

for all n € [0, p].
(K2) b, ¢: w? xR — R are continuous functions which satisfies a Lipschitz condition in the third
argument, i.e., there exist Ly, L¢ > 0 such that

|h(77757m)_[)(77a3a0)| <£h|m_n‘7 (7)
[€(1, 5,10) — £(1,5,0)| < Le[ro — v (8)

for all s,n € w and to,0 € R.
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Theorem 3.1. Suppose that g,h and ¢ satisfy K1 and K2. Additionally, let

D(c+1) = (2L +pLy +pLe) T(1)(0(p) — ¢(0))° )
F()(o(p) — ¢(0))° '

If a continuously differentiable function w :w — R for € > 0 satisfies

Il <

<

X

MDY () — Alw(n) = [ nsw)ds— [ tnsulo)as
<e® (<05 (6(1) — 0(0)))

for allm € w, then there exists a unique continuous function vy : w — R that satisfies equation (1)
and

[w(n) —vo(n)] <
- I'(c+1)e . 1) (10)
TT(s+ 1) = (2L +pLy +pLe + AN T () ((p) — 6(0))°

for allm € w.
Proof. Let Q) := C1_,4(0,p] be endowed with the following generalized metric, defined by
2*(w,0) = inf {C > 0+ () — v(n)| < CeB (6,05 (B(n) — 6(0))°) forall pew} (1)

for all w,v € 9. It is not difficult to see that (2),d*) is a complete generalized metric space [6].
Define the operator S : 9) — 2 by

_ y—1
(Sw)(n) = L d’“’” v + I (ACw(n)) + ISP a(n, w(n)+

+Ig?¢’[/bn,7w dT} IWUEn,Tw dT}

for all n € w and w € ). For any w,v € 9 ), choose a constant K so that d*(w,v) < K, i.e,

[to(t) — v(t)| < Ke® (s, v; (o(n) — ¢(0))°) (12)
for all n € w. So, using Remark 1, we have

|(Sw)(n) — (S )(n)l

F(lc /0 - lg(n,(n)) — g(t,0(n))|ds+
1" s
P(g /0 { 0 [5(n, 7, w0 (7)) — h(anyv(T))dT} ds+

¢’<s
+r(c) / (00 —
/(8

5 | [ o) ot lar | s

P
+F(<) /0 (o(n) — o(s))s (1) —v(n)| <
(2£g + pﬂh + pﬁg + ||A||) Ke /7} (b,(s)

F() o @0 — o())

(2£ + 0Ly +pLe + A T(V)(0(p) — ¢(0)° . B .
T+ 1) Ke® (s, v; (o(n) — ¢(0))°),

<

- (5,05 (¢(n) = ¢(0))%) <
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which indicates that

(2L +pLy +pLe + AN T (1) (S(p) — ¢(0))°
L(c+1)

for all o, v € (9, d*) . From (8), we have (2L4 + pLy + pLe + [ A|) T(7)(é(p) —¢(0))s < T'(s+1).
Hence, the operator S is a strict contraction. Moreover, for element vy € (2), d*), we have

d*((Sw), (Sv)) < d*(vo,v)

(Sv0) (1) = vo(n)| <

_ y-1 ©
<Joato— LI, - 155 (o) ~ 1327 | [0 () | < 158 (A o)

<€ (a, f; (o(n) — ¢(0)))

for all n € w. In summary, d* (Svg, v9) < 1 and d* (SHUO,SHHUO) < +oo foralln € N. According
to Theorem 1.7, there exists a unique continuous function tv : w — R such that St = 1w,
satisfies Equation (1) for all n € w and

#1520 oo) + 157 [0 onmon(rar] + 157 | [ enmon(r)) ar] + 55 (Aoata)

0

for every 1 € w. In addition, it follows from the above calculations that

I'c+1)
D(s+1) — 2Ly +pLy +pLe + AN T(7)(9(p) — ¢(0))*

d* (m7 UO) <

which justifies inequality (10). a

4. Application

This section presents an example which illustrate the validity and applicability of our main
results.

Example 1. Let K : [0,1] x [0,1] — R be a continuous function and w(n) be a continuous

function on [0, 1] so that |K (1, \w(n)| < 3FF((12//39))

Volterra-Fredholm integro-differential system

(e —1)~5. Consider the following fractional

n
HD3 Fie / K(n, Nw(n)dn + 5 sm(w(n)) +/ sin (gnw(8)> ds+
0

+/01 cos (?nw(s)) as (13

2.
415" w(0) = wy, g €R

1 1
for all n € [0, 1] and continuous real-valued functions w on [0, 1], we have £ sin(w(n))‘ < E lw(n)|.
Moreover,
¢ 1
. (3 3 2 2
[ sin (Frwte) ) ds| < Flcwl. | [ cos (Fnuts) ) ds| < Zlwn)
o 5 5 o 5 5
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1
for all n € [0,1]. Furthermore, by assumption, the operator 3 [ K(n, \)w(n)dn is bounded and
0

I I'(4
we have | [ K (n, \)w(n)dn| < I 4/3) for all n, A € [0,1] and continuous functions w.
0

2/9)(e —1)2/9’
So (H1)—(H3) are satisfied for q; = 1/5 and q% = 3/5, q5 = 2/5. Therefore, Theorem 2.2 proved
that equation (13) has at least one solution.

Conclusions

In this paper, we considered a class of fractional Volterra—Fredholm integro-differential equa-
tions including a closed linear operator. Next, we used the Krasnoselskii fixed-point theorem
to investigate the existing result under some mild conditions. Moreover, we introduced and
then proved the Kummer stability of ¢-Hilfer fractional Volterra—Fredholm integro-differential
equations on the compact domains.

The authors would like to thank the anonymous reviewers and the editor of this journal for
their helpful comments and valuable suggestions which led to an improved presentation of this

paper.
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Teopernvueckuii aHAJIN3 CUCTEMbBI HEJIMHEITHBIX
O-XMIbPEPOBCKUX JIPOOHBIX MHTETrpo-and depeHImaaIbHbIX
ypaBuenuii Boabreppa-®pearoabma

Axmen A. Xamyn
Henan M. Moxammen,

Kadenpa maremarukn & Uudopmaruxa
Yuusepcurer Tans
Tau3-96704, Memen

Pacyn Cax

Kadenpa maremarukn
Yuusepcurer A6ayn Banu Xana
Mapaan-23200, [Takucran

Amnnoranusi. CyImecTBoBaHIEe PEITEHUN CUCTEMBI HEJUHEWHBIX (-XMIH(PEPOBCKUX JIPOOHBIX WHTEIPO-
nuddepeHnraIbHbIX ypaBaeruit Bosbreppa—®pearonabma ¢ JpoOHO-UHTErPATLHBIMY YCIOBUAMU UCCIIE-
JyeTcs ¢ moMoIIbio TeopeM KpacHOCEIbCKOro 0 HeIoIBUKHOI TouKe n TeopeM Apiena—Ackonu. Bosee
TOrO, IPUMEHsIsI AJBTEPHATUBHYIO TEOpEMY O HemoABmxKHON Touke Jlmaca m Mapromuca, Mbl JTOKa3bI-
BaeM KyMMEPOBCKYIO YCTONYMBOCTH CHCTEMbI Ha KOMIIAKTHBIX obsacTax. Tak»Ke IpejicTaBiieH IpuMep,
WLTIOCTPUPYIOIINIA HAIN PE3YJIbTATHI.

KuroueBrbie ciioBa: ¢-xuiabdepoBCKOe APOOHOe UHTErpo-aumddepeHImaipHoe ypaBuenne Bosbrepa-
®pearonbma, ycroitumBocth Kymmepa, Teopema Apnena—Ackomnun, Teopema KpacHoceabckoro o uk-
CHPOBAHHON TOYKE.
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Abstract. To each analytic functional on the space O’(C™), a function f(z) holomorphic in a neighbor-
hood of the origin and an entire function of exponential type F(z) are associated so that the coefficients
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connection between the domain where the function f(z) extends to and the growth of the function F(z).
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Introduction

Let the function

FE) =Y e 0
n=0

be holomorphic in a neighborhood of the origin. In many branches of mathematics, the question
arises of existence of the coefficient function, i.e. such a function F(z) that

F(n)=c¢y,, n=0,1,2,... (2)

and the relationship between the properties of functions f(z) and F(z).
There always exists an entire coefficient function F'(z) of exponential type. Indeed, if 7 is a
contour around the point z = 0 in the positive direction, then by the well-known formula

1 —n—1
Cp = 27”[/f(z)z dz.

After the change z = e~ ¢ the contour v turns to a contour I' connecting two points P and Q
such that $(Q — P) = 27 and we get the integral representation

1
Cp = %/Ff(eg)e"C dc.

As is well known, the function

F@=%Lﬂﬂ%@
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is an entire function of exponential type (see, for example, [1, Sec. 1] for which the equality (2)
holds.
Recall that an entire function F'(z) is said to be of exponential type if there is an a such that
for a sufficiently large z we have
|F(2)] < el (3)

The lower bound H of such numbers a is called the type of the function F'(z).
A change of the contour «y leads to another function F*(z) with similar properties. If I and
I'™* are two such contours and I'* connects points P* and Q* for which ¥(Q* — P*) = 27, then

em [
F*(z) — F(z) = B(z)sinmz, B(z)= ?/P f(e$)e* dc.

As noted by L. Bieberbach ([1, Sec. 1]), the question arises of finding an entire function of
exponential type with the minimal growth, and the problem of finding a connection between the
domain where the function f(z) extends to and the growth of the function F(z).

To formulate the result we introduce the indicator function h(y) of the entire function F(z)
of exponential type which characterizes the growth along the ray argz = ¢:

In|F(re'
h(p) = limsup w.
T—00

Let K be the indicator diagram of the function F'(z), i.e. a convex compact set for which

h(y) is the support function.

Theorem 1. Let F(z) be an entire function of exponential type with the indicator diagram K.
The function f(z), for which F(n) = ¢,, n =1,2,... and ¢y is arbitrary, is holomorphic in
the connected component of the complement of the set e ¥ to the whole plane that contains the
point z = 0. For the convergence radius R of the series (1) the following estimate is valid

R>e MO, (4)

The proof of this theorem as well as a number of other results related to the case of entire
functions of coefficients F'(z) of exponential type can be found in the book [1]. A closer connec-
tion between the properties of the function f(z) and the entire function of coeflicients F'(z) of
exponential type can be formulated as conditions on a compact set K.

Theorem 2. Let K be a closed bounded convex set. In order for the function (1) to be holo-
morphic in the connected component of the complement of the set e to the whole plane that
contains the point z = 0 and not holomorphic in any larger domain of the same kind, it is nec-
essary and sufficient that the width of the set K in the direction of the imaginary axis is less
than 27 and there exists an entire function of the coefficients F(z) of exponential type with the
indicator diagram K.
If an entire function of the coefficients F(z) with the specified properties exists, then it is
UNLQUE,
R=e M0, (5)

and the function f(z) itself can be analytically continued to an infinite point along one of the
radii and in a neighborhood of infinity its series decomposition is



Vyacheslav M. Trutnev Fantappié G-transform of Analytic Functionals

Further application of the theory of analytic functionals and their G-transformation allowed
more universal methods to study the question of the continuation of the series (1) depending on
the nature of growth of functions F'(z) in the one-dimensional case and study the case of several
dimensions. The main references are [2-5]

1. Laplace and Avanissan-Gay transforms of
analytic functionals

Definition 1. The elements in the dual space O'(C™) of the space O(C™) of entire functions,
equipped with the topology of uniform convergence on compact sets, are called analytic functionals.
An analytic functional T is said to be carried by a compact set K if for every neighborhood w of
K there is a constant C,, such that

T(p)l < Cusuplel, @€ O(C"). (6)

If K is compact, we denote by O’(C™, K) the space of all analytic functionals carried by the
set K.

Definition 2. If T € O'(C™), we define its Laplace transform by
FT(C) :Tz(e(QZ))a Ce(cn7 (C,Z) :Clzl++CnZn
The Laplace transform is an entire analytic function of ¢. From (6) we obtain the estimate

[Fr(¢)] < Cu exp(sup R(z, ().

zZEW

Set
Hp (¢) = sup R(z, ().

zeEK

If K is convex we have

K ={z: R(z,{) < Hk(¢),( € C"}

otherwise

K Cc{z: R(z,{) < Hx((),( € C"}.

The following Ehrenpreis-Martineau theorem characterizes the Laplace transform of analytic
functionals (see [6]).

Theorem 3. If T € O'(C", K), then Fr(¢) is an entire analytic function and for every § > 0
there is a constant Cs such that

|Pr(Q) < Cs exp(Hg (¢) + 6[C]). (7)
Conversely, if K is a convex compact set and F({) an entire function satisfying (7) for every

d > 0, there exists a unique analytic functional T € O'(C", K) such that the Laplace transform
of T is F(().
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Let U ={2€C: —m <Qz<n}and Q =U" If K C Qis a compact set and Kj its
j-projection on C, (z1,...,2,) — zj, then we denote by e ® = {e7*: 2 € K} and we put

n

(k) = [[1C\ exp(~E;,))

Q(K) = [JIC\ exp(—K;)],

j=1
where C is a compactification of C. Let Op(€2(K)) denote the space of functions holomorphic in
Q(K) and continuous in Q(K) vanishing in Q(K) \ Q(K).
IfTeO(C"K), KCQ wedenote by G(T) its Avanissan—Gay transform (G-transform):

G(T)(2) =T ( 11 Wlexpcj

j=1
Proposition 1. Let T € O'(C", K), K C Q. Then
1. G(T)(z) € Op(QUK)).
2. In a neighborhood of the origin, we have

G(T)(z) = Z Fr(a)z®

ae(Nu{o}H

while the following expansion is valid at infinity:

G(T)(2) = (=1)" Y Fr(-a)z™".

aeN"?

3. The map G : O'(K) — Hy (QUK)), given by T — G(T), is an injection, but in general
it is not a surjection. When K C Q is a direct product, then the G-transform gives an
isomorphism between O'(K) and Ho(Q(K).

As a consequence of the these results on G-transform, we obtain an important uniqueness
theorem for entire functions of exponential type.

Proposition 2. A necessary and sufficient condition for two analytic functionals Ty, To € O'(Q)
to coincide is the identity Fr, (o) = Fr,(a) for every a € N™.

G-transforms of analytic functionals are similar to their Cauchy transforms and proofs of the
main results use duality of spaces of functionals and spaces of holomorphic functions on suitable
sets. Because of the structure of the Cauchy kernel in several dimensions similar results are
possible only in the case of compact sets given as products of plane convex compacts.

In this paper we propose to consider a projective analogue of G-transform associated with
the Fantappie transform of analytic functionals and to use a general form of analytic functionals
for convex domains and compacts, which was first established in the works of L. Aizenberg [13]
and A. Martineau.
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2. Sets and maps in projective space

Suppose, as usual, C™ is the space of row-vectors of dimension n with elements from the field
C. The complex projective space CP™ is defined as the set of one-dimensional linear subspaces
(or what is the same, complex lines passing through 0) in C"*!. We denote by p the map of
the set C"*1\ {0} into CPP", which assigns to a point the subspace containing it. Projecting the
open sets from C"*!\ 0, this map gives a topology in CP". As is familiar, p is continuous and
CP™ is compact in this topology.

The complex lines lying in the plane

{zeC"™: 2,41 =0}

are called infinite points of CP", and the other complex lines are called finite points. The map
p maps the plane
{zeC": 2,1 =1}

homomorphically onto the set of finite points of CP"™. Each point z = (z1,...,2,) can be
identified with the corresponding finite point p(z1,...,2,,1), and C™ is represented as an open,
everywhere dense set in the compact CP™.

As a rule, we shall define continuous functions on open sets in CP", defining their values (by
a formula) only on everywhere dense subsets.

Let D be an open set in CP™. The space O(D) consists of functions which are holomorphic in
D, and convergence in O(D) by definition means uniform convergence on each compact subset
of D. We define Oy(D) as the closed subspace in O(D), consisting of functions satisfying the
following condition: for any z € D\ C" one can find a neighborhood U of it in CP", in which f
is holomorphic and f(¢) = O(|¢|™™),( — .

By a plane of dimension k in CP™ is meant the image of a (k4 1)-dimensional linear subspace
of C"*! under the map p. In particular, the infinite points of CP" form a hyperplane in it, and
the closure of a complex line from C" is a line.

We denote by M(m,n) the set of all matrices of size m x n over the field C. In particular,
C™ = M(1, n). For any matrix A € M(m,n) we shall denote by A’ the transposed matrix. Then
for z € C™ and ¢ € C™ we have 2¢' = 21(4 + - -+ + 2,(s. To each k-dimensional plane o C CP"
there corresponds in a one-to-one fashion its dual (n — k — 1)-dimensional plane

o ={CeCP": 2’ =0 forall z€a}.

In particular, points and hyperplanes are the duals of each other.
For an arbitrary M C CP" the adjoint set of

M*:={C€CP": 21C1 4+ 2ns1Cag1 # 0 forall ze M}

consists of points dual to hyperplanes not passing through M. One can also consider M* as
the complement of the union of hyperplanes dual to points of M. Obviously if M; C Ms, then
M} D Mj. The set M** = (M*)* always contains M.

The condition M** = M means that through each point z ¢ M there passes a hyperplane
not passing through M, i.e., that M is Martineau linearly convex. It is known (cf., e.g., [21]),
that if M is open, then M* is compact, and if M is compact, then M™* is open.

Let D be an open set in CP™. The space O(D) consists of functions which are holomorphic in
D, and convergence in O(D) by definition means uniform convergence on each compact subset
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of D. We define the space O(K) for K as the inductive limit of the spaces O(D) over all open
Do K.

We define Oy(D) as the closed subspace in O(D), consisting of functions satisfying the fol-
lowing condition: for any z € D\ C" one can find a neighborhood U of it in CP", in which f
is holomorphic and f(¢) = O(|¢]),{ — co. We denote by Of(D) the space of continuous linear
functionals on Oy (D).

Definition 3. Let E be an open or compact set in CP™ and assume that E* is non-empty. We
define the Fantappiée transform

1
]-'OS(E)—)O()(E*) by ]:,U(Z):M(zlcl+...+zn+1§n+1).

We call E strongly linearly convezx if this correspondence establishes an isomorphism of the spaces
O(E) and Oy(E™).

It is known ([11, 17]), cf. also [12, p. 237]), that all convex compacta and all convex domains
are strongly linearly convex. Aizenberg showed in [13] that all Martineau linearly convex domains
with sufficiently smooth boundary, their closures, and also domains and compacta which can be
approximated by such sets are strongly linearly convex.

The main references are [7,8,10-15]

3. Fantappie G-transform of analytic functionals

Definition 4. If T € O'(C",K), K C Q we denote by FG(T) its Fantappie G-transform (FG-
transform,):

FG(T)(z) :=T; ( L > .

1+ 21641 4.+ Zﬂe(n
Theorem 4. Let T € O'(C", K), K C Q. Then
1. FG(T)(z) € Op((eX)*).

2. In a neighborhood of the origin we have

FG(T)(2)= ) (-1) o br(a)z. ®)

3. The map FG : O'(C",K) — Oq (((e75)*)) given by T — FG(T) is an injection, but in
general it is not a surjection. When e~ X is a convex compact set the FG-transform gives
an isomorphism between O'(C™, K) and Oq ((e®)*).

Proof.

1. Let T € O'(C™, K). Since the space O(C™) is dense in O(f), there is an extension of T to
the analytic functional S € O’(2) which is carried by the set K.

Consider a biholomorphic mapping (C1,...,¢n) = (w1, ..., w,) = (€, ...,€") of the set
Q2 to the set (C\ (—o00,0])™. Under this mapping the functional S € O’(C", K) corresponds
to the functional S; € O'((C\ (—o0,0])") carried by the set e, and more precisely by the
set (eX)** D eX. The restriction of the functional S; to the space O(((e®)**) defines some
functional € O'((e*)*).
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The FG-transform of the functional T takes the form of the Fantappie transform of the
functional pu:

1 1
G(T =T = ' )

But according to the known properties of the Fantappie transform, the function G(T')(z)
is holomorphic in Og ((e%)*).

2. Consider a series expansion of the kernel

L !
= _ 1)l af, C\a
1+21€C1 + "'—f—znecn B |Z( 1) al z (6 ) ) (10)
a|=0

20(e9)™ = 201 L. 20 (ef1) M L (eSn)%n,

For z in a sufficiently small neighborhood of the origin and for all { in some neighborhood
U of the compact K, each term of the series (10) is majorized by a term of the convergent
multiple geometric series

Z(,l)\alm o — 1

|| 20

It follows that the series (9) converges uniformly in ¢ € U and we get

60):) =T (s o) = Te( X VM Spee ) -

= Z (—1)“"'%%"7’4 (e(g’o‘)> = Z (—l)la‘MFT(a)zo‘.

lee| 20 || >0

3. The map FG : O'(C",K) — Op (((e7*)*)) is an injection.

Let T € O'(C", K) and FG(T)(z) = 0. The expansion (8) implies that Fr(«) = 0 for all
a. According to Proposition 2 we have T' = 0.

When e ¥ is a convex compact set the FG-transform gives an isomorphism between
O'(C",K) and Oy ((e*)*). This follows from the following sequence of isomorphisms

O'(C",K) ~ O'(K) =~ O'(e") ~ O ((¢¥)") .
The last isomorphism is valid due to the strong linear convexity of the compact set e, [

Example. Consider the function

_ 1 _ _plalal o
6 = e = Xy

Here F(a) = 1 for all « € N*. Take T = §p. This analytic functional is the only one for
which the Laplace transform Frp(«) = 1. According to Theorem 4 the function f(z) extends to
the domain

(e By ={1,..., )Y ={2: 142+ + 2, #0},

which coincides with the domain of holomorphicity of the function f(z).
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G-tpeobpazoBanne PaHTAIIIbE AHAJIUTHIECKUX
dbyHKITMOHAJIOB

Bsayecaas M. TpyTHesn

Annoranus. C KaxapiM aHaIuTHYeCKHIM (yHKIHOHAT0oM TipocTpancTsa O (C™) accomumpyrorcst Toso-
MopdHas B OKPECTHOCTH Hadasa KoopauHat dbyHKuus f(z) u nesast QyHKIMs SKCIOHEHIIMAJIBLHOIO THIIA
F(z) Takum o6pa3oM, 910 K03DMUIMEHTEI ¢ pasiiozkerust GyHKIUK f(z) OLpPeNessiFoTcsl 3HAYSHUSIMY
F(a). Usyuaerca 3ama9a 0 HAXOXKIECHUU CBA3U MEXKJy OOJIACTBIO, B KOTOPYIO MPOIO/IKAETC (DYHKIUS
f(2), u pocrom byuxuu F(z).

KuaroueBsbie cioBa: anamuntwdeckue GpyHKIUOHATBI, G-Tpeobpa3oBaHue, 1eble (DYHKIIUN, TPOI0IKE-

HIE TOJIOMOPGHBIX (YHKITHIA.
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Our work is devoted to the problem of multiple zeros of entire functions. For polynomials,
this question is a classical problem, and its solution is included in algebra textbooks (see, for
example, [1]).

Recall the statement. Consider a polynomial P(z) of degree n. Denote by S; the power sums
of the roots of a polynomial of degree j.

Theorem 1. In order for the polynomial P(z) to have multiple roots, it is necessary and sufficient
that

n Sl SQ . Sn—l
D(P) — a(2)n—2 Sl SQ 53 e Sn _ O
Sn—l 5% Sn+1 s SQn—Q

Here ag is the leading coefficient of the polynomial P(z).

The determinant of D(P) is called the discriminant of the polynomial P(z).

For entire functions, the question of multiple zeros needs to be clarified. An entire function
may have no zeros at all, like, for example, the function e?, or an infinite number of zeros like
sin z. Therefore, we have to consider various options here.

1. Let an entire function have the form

fz)=> arz*, f(0)=ag=1. (1)
k=0

The following statement is true ([2], corollary 1.4.1).

Theorem 2. In order for the function f(z) to be an entire function of finite order ko that has
no zeros, it is necessary and sufficient that the determinant

[25] ap 0 N 0
pp)=ay?|?2 0 Ul o k>, 2)
kak ar—1 Qarp—o2 ... aq
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where ko is the minimal number with this property.

2. Consider an entire function of finite order of growth of the form (1). Find the order p of
the function f. To do this, we apply the formula ([3], ch. 7)

N TEY) I

noeo  nlnmn P

If p is a fractional number, then the function f(z) is known to have an infinite number of zeros
(see [3]). First we will assume that p is an integer.

Let us take a sequence of complex numbers sy, s1, So, ... . It defines an infinite Hankel
matrix

(3)

The consecutive main minors of the matrix S are denoted by Dy, Dy, Do, ... . In addition,
we set D_1 = 1.

If for every p € N there exists a minor of the matrix S of order p that is not equal to zero,
then the matrix has infinite rank. If, starting from some p, all minors of larger orders are zero,
then the matrix S has finite rank. The smallest such p is called the rank of the matrix.

We recall a statement regarding matrices S of finite rank p ([4], ch. 16, Sec. 10).

Theorem 3. If an infinite Hankel matriz has finite rank p, then the minor Dy,_; # 0.

Thanks to the properties of entire functions, the power sums of oy,
= 1
= —, keN
£=D o
n=1 N

are absolutely convergent series for k > p. Here, the zeros of the entire function f(z) are denoted
by a,. We will arrange them in ascending order of modules 0 < |a1| < |ag| < ... < |ay| <. .. .

The smallest such & is denoted by kg and we denote s; = oopy45, 5 = 0,1,.... Consider an
infinite Hankel matrix S of the form (3). In the monograph ([2], Theorem 1.4.5) the following
statement is proved

Theorem 4. In order for the function f to have a finite number of zeros, it is necessary and
sufficient that the rank of the matriz S is finite, while the number of different zeros of f is equal
to the rank of S.

In this case, we can write the function f as follows:
f(z) = e 9P P(2), (4)
where Q(z) is a polynomial of degree p = p, and P(z) is a polynomial of some degree m
P(z) = Zbkzk =1+bz+...+by2"
k=0

The number m is the number of roots of the function f(z) together with their multiplicities.
To find the polynomial P(z), one needs to factorize the function f(z) (see Sec. 1.6.5 from [2]).
Take the logarithm of both parts in the formula (4). Let
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lnP(z):Z?)kzk:?}lz—&—...—i—i)nz”—&—....
k=1

The coefficients of @, can be found by the following formula (see [2], Lemma 1.2.1)

ay 1 0 0
(_l)n_l 2(12 aq 1 . 0
a, = —— | 3ag as a1 ... 0]=0 forall n>1,
n
na, apn—1 QAap—2 ... Q1

The coefficients by, are found from the theorem ([2], Theorem 1.6.4, [6]).

Theorem 5. The formulas are valid

(m 4 p) Gmp o (mApt+Damiprr . P+ 1) ap
(m+p+1)amipsr - (M+p+2)amiprz - (P+2)dpso
by — @Cm+p—1)aemtp-1 --- (2m +p) a2m+p o (p+m)apim
(m + p) Gm+p o (P apn 7
(m+p+1)amipr1 - (p+2)apt2
@m+p—1)amip-1 - (P+m)apim
k=1,....,m. In the numerator k, the th column s replaced by the column

—(m +p+ 1) Qpmtpt+1
—(m+p+2)amipt2

—(2m + p) G2m+p
Here m this is the smallest k for which by, is different from zero.

Corollary 1. A function f(z) has multiple roots if and only if the polynomial P(z) has multiple
T001S.

Let us give an example.
Consider the function

SNVOLE k , 2% 42t 162°

It is not difficult to calculate that the order of growth of this function is p = 1.
By Lemma 1.2.1 of [2]|, the power sums of S; with even numbers are 2, with odd numbers
are 0. Therefore, the rank of the Hankel matrix is S

2 0 2
0o 2 0
5= 2 0 2

is equal to 2.
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From Theorem 5 and Lemma 1.2.1 from [2] we get

__—1)2 1 _
Qg = 2 2 9 - )
(2 1o
ag = 3 2 2 1/ =0,
-2 1 2
2 1 0 0
-1 2 2 10 _ 1
MU= 2 1 2 1T T
16 2
3 —3 12
2 1 0 0 0
) 2 2 1 0 0
@573 —126 12 2 1 0l=op
L2 1 21
16 4 2
-3 —3 —3 1 2
From here we find
‘4(14 245 ‘—2 —2‘
5as 3a 0 0
by = — ~5 ~3 _ —0,
3&3 2@2 0 —2
4a4  3ag -2 0
‘3513 4ay ’ 0 2’
4a4 5a -2 0
(N e Sic] =—1.
3@3 2@2 0 —2
4G, 3as -2 0

The remaining by, is zero. Therefore, the polynomial P(z) is equal to
P(z) =1- 2%

It has two roots +1 and has no multiple roots. Therefore, the function f(z) has no multiple
roots.

3. Let an function f(z) of the form (1) have an infinite number of zeros, then the rank of the
matrix S (3) is infinite. Multiple zeros can only have finite multiplicities. Therefore, if f(z) has
an infinite number of zeros, then it has an infinite number of distinct zeros.

Multiple zeros are the common zeros of the function and its derivative, i.e., the zeros of the
resultant. So the question is whether the function and its derivative have common zeros.

The approach to determining the resultant of two integer functions is considered in a number
of papers [5-7], but for arbitrary entire functions of finite growth order it is not yet known how
to find the common zeros of the function and its derivative.

Let an entire function f(z) have the order p. Due to the properties of entire functions, power
sums oy,

1
O'k:ZJ, kEN,
n=1 "

are absolutely convergent series for k > p. Here, as before, a,, are zeros of the entire function
f(2). We will arrange them in ascending order of modules 0 < |a1| < |aa] < ... < |a,| <. .
The smallest such k is denoted by ky. We assume that kg is an integer.
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We will introduce, as in the previous section, power sums s; = oapy+4, J = 0,1,... and an
infinite Hankel matrix S of the form (3). Its rank is infinite.
Consider its submatrices of the order m:

So S1 S92 . Sm
S1 So S3 ce Sm+1

Sm = S9 S3 Sq e Sm+2 . (5)
Sm Sm4+1  Sm+2 .- S2m41

We introduce finite power sums

ag:ii k€N,
n=1

ak’
m __ m M
85" = 04y, +; and matrices
m m m m
S0 51 52 SnL
m m m
S1 S2 S3 Sm+1
m o __ m m m
Smo=]52 83 Sy Sm+4-2 (6)
m m
Sm Sm—i—l Sm+2 S2m+1
Consider an infinite matrix
_1 1 _1
a’fo 0/200 ’;0
1 1 1
ko+1 ko+1 ko+1
A 1° 2° 30 (7)
1 1
ko+2 ko+2 ko+3
1
Then we have
S=A-A,

where A’ is the transpose of the matrix A. If the function f has multiple zeros, then the matrix
A has the same columns.

Denote by A,, the main submatrix of the matrix A of order m. Then S’ = A,, - A, . If the
function f(z) has multiple zeros, then det A,, = 0, starting from some m. Since the matrix A,,
is a Vandermonde matrix up to a nonzero multiplier, the opposite is also true: if its determinant
is 0, at least two of its columns coincide.

Thus, the next statement is true.

Lemma 1. In order for the function f(z) to have multiple zeros, it is necessary and sufficient
that det A,,, = 0 starting from some m.

Since S = A,, - A, the following statement is true

Proposition 1. In order for the function f(z) to have multiple zeros, it is necessary and suffi-
cient that det S = 0 starting from some m.

In order to find det S}, we first need to factorize the function f (see point 2). Suppose that
after factorization, the function f(z) takes the form

o-fi(-3)

—243 —



Alexander M. Kytmanov, Olga V. Khodos On Multiple Zeros of an Entire Function of Finite. ..

Thus, the function f(z) is a function of genus zero (or an entire function of the first order of
growth of minimal type ([3], Chapter 7). In this case, the series

=1
> o

j=0 "7

absolutely converges. Then the coefficients ay, of the function f(z) take the form

oo

o= 3N

k=0 J1 Jk

The work was supported by the Krasnoyarsk Mathematical Center, funded by the Ministry of

Education and Science of the Russian Federation (Agreement 075-02-2022-876).

References

(1]
2]

3]

4]
5]
16]

7]

18]

19]

A .Kurosh, Higher algebra, Moscow, Mir, 1972.

A .M.Kytmanov, Algebraic and transcendental systems of equation, Krasnoyarsk, SFU, 2019
(in Russian).

A Markouchevitch, Theory of Functions of a Complex Variable, Vol. 2, Chelsea Publishing
Series, 1977.

F.Gantmacher, The Theory of Matrices, Chelsea Publishing Series, 1959.
N.G.Chebotarev, Collected works, Vol. 2, Moscow—Leningrad, AN SSSR, 1949 (in Russian).

A.M.Kytmanov, Ya.M.Naprienko, One approach to finding the resultant of two entire func-
tion, Complex variables and elliptic equations, 62(2017), 269-286.
DOI: 10.1080/17476933.2016.1218855

A M.Kytmanov, O.V.Khodos, An Approach to the Determination of the Resultant of Two
Entire Functions, Russian Mathematics, 62(2018), 42-51.
DOLI: 10.3103/S1066369X18040059

M.G.Krein, M.A.Naimark, The Method of Symmetric and Hermitian Forms in the Theory of
the Separation of the Roots of Algebraic Equation, Linear and Multilinear Algebra, 10(1981),
no. 4, 265-308. DOI: 10.1080,/03081088108817420

E.I.Jury, Inners and stability of dynamic system, Wiley, New York-London-Sydney-Toronto,
1974.

Kpatable Hyu menbiX (pyHKIU KOHEYHOTO TOPSAIKa POCTa

Anekcanap M. KeitmaHoB
Oapra B. Xonoc

Cubupckuii derepabHbIl YHUBEPCUTET
Kpacnosipck, Poccuiickass @eneparys

Awnnoranusi. CTaTbsl TOCBSIIEHA OMPEIEJICHUI0 YUCIa KPATHBIX HyJIEH eJ0i (DYyHKINN KOHEIHOTO TI0-

PsIKa pOCTa.

KuroueBrie cioBa: nenas pyHKIUSA, KPATHBIA HYJIb.

— 244 —



Journal of Siberian Federal University. Mathematics & Physics 2023, 16(2), 245-252

EDN: MNYKKX
VIIK 517.55

On the Blaschke Factors in Polydisk

Matvey E. Durakov*
Siberian Federal University
Krasnoyarsk, Russian Federation

Received 10.07.2022, received in revised form 15.09.2022, accepted 20.10.2022
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Alpay and Yger devoted to the multidimensional interpolation theory for functional spaces in special
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Introduction

In 1915 Wilhelm Blaschke introduced a very important class of functions of one complex
variable, which allowed solving important problems of interpolation theory in a unit disk.

Definition 0.1 ([1]). The one-dimensional Blaschke product is a function of the form:

B(z) = [ —X~ (1)

1— 2,2’
E>1 k

where {z1,22, ..., 2n, ... } 18 a sequence of points in the unit disk D C C.

In the case of a finite number of points {zx} from the disk, no restrictions are imposed on
them, however, when moving to a countable set of points, the so-called Blaschke condition is
added for the correctness of the definition:

> (1= |z]) < oo 2)

k=1

This concept made it possible to solve important problems of interpolation theory in a single
disk. For example, Blaschke’s theorem states that a sequence {z} in a disk is a zero set for a
holomorphic function bounded in D if and only if the series in (2) converges.

Except for the case of bounded functions, similar descriptions have been obtained for
functions from Hardy classes.

*durakov_m_1997@Qmail.ru
(© Siberian Federal University. All rights reserved
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Before proceeding to an analogue of the Blaschke factors in the multidimensional case, let

us take a closer look at the Blaschke factors in the one-dimensional case. Note that each factor

2k — X . . . .

b = . of the product (1) is a fractional rational function of the form:
z

_p() _ a5
q(z) q(z)
In the case when ¢ has real coefficients, the functions by can be represented as:
1
bk = Zq( /z)
q(z)

The idea of our generalization of the Blaschke factors 1is to construct such

‘elementary’ factors for several complex variables. We would like to note that such a
construction was carried out under the influence of the results of Alpay and Yger [2].

1. Multidimensional analogue of the Blaschke factor in the
space C3

By the analogue of the Blaschke factor in C* we shall understand the triple of special inner
rational functions in the unit polydisk of C3. We will construct inner rational functions using the
Lee-Yang polynomials (see [3]). In order to do this, we fix an arbitrary symmetric n X n matrix
(ajr) with real coefficients satisfying the condition 0 < |a;jx| < 1. The corresponding Lee-Yang
polynomial is constructed according to the given matrix as follows:

f(zl,ZQ,...,Zn) = ZH (Zj H Cljk> s

J jeJ k¢J
where J runs over the set of all subsets of {1,2,...,n}.

Let us present some important properties of this polynomial. Recall that the amoeba Ay
of the polynomial f is defined as the image Log V' of the zero set V = {z € (C\0)" : f(z) =0}
under the map Log : (21,...,2,) = (In|z1],...,In|z,]) (see [4, 5, 6]). Taking into account the
following expression:

f(ZlaZQa"';Zn) = ZlZQ...an(]-/Zl,]./ZQ,...,]./Zn)
the amoeba of the polynomial f is symmetric with respect to the origin. Moreover, the following

theorem is valid.

Theorem 1.1 (M. Passare, A. Tsikh [7]). Let A be the amoeba of the Lee-Yang polynomial, then
the closed positive and negative orthants =R’} intersect the amoeba A only at the origin:

R NA=-R".NA={0}

Consider the Lee—Yang polynomial in three variables associated with the matrix

ail a b
(ajg)=1| a ax c |,
b C ass

where {a11,a22,ass, a,b, ¢} € (—1,1)\{0}. The corresponding Lee—Yang polynomial is
f = (212223 + bezy 20 + abzazg + aczyz3) + (abzy + acza + bezs + 1).

We introduce the following
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Notation. Split the polynomial into two parts and denote
o f1 = 2z12023 + bezizo + abzazs + aczy 23,
o fo =abz; +aczy + bezz + 1.

Next, we fix an arbitrary (2Y, 29, 29) from the distinguished boundary

A={lz]=1,j=123}
of the polydisk D? C C? and consider the following sequence of functions:

p1:f1(2?7227z3)5 p2:f1(2'1728,23)a p3:f1(21’32,2§)7
a1 = f2(20,22,23), @2 = fo(z1,29,23), q3 = fa(z1,22,29).

Definition 1.1. We call the map (pl, b2 p?’) a three-dimensional analogue of the Blaschke

@ g g3
factor if the zeros of the polynomial fo = abzi + acze + beczs + 1 do not intersect the open unit

polydisk D> (in this case, q; will be called valid).
Recall an important definition.

Definition 1.2 (see [8]). A function g € H®(D") is called inner if its radial boundary values
g*(s) satisfy the condition |g*(w)| = 1 almost everywhere on T™.

In fact, the Blaschke product is an inner function. Our theorem below shows that the defini-
tion we introduced corresponds to this property.

Theorem 1.2. The functions p;/q; in Definition 1.1 of the Blaschke factors are inner functions
in the polydisk D3.

Proof. Since q1 = f2(2?, 22, 23), the zeros of the denominator ¢; on the unit distinguished bound-
ary are also zeros of the polynomial f5. It can be noted that for |ab|+|ac|4|bc| < 1, the polynomial
f2 has no zeros in the closure of the unit polydisk D3, but then the denominators ¢; have no
zeros in the same closure. For |ab| + |ac| + |bc| = 1, the polynomial f has a single zero on the
distinguished boundary (21, 22, 23) and has no zeros inside the polydisk. In this case, the denom-
inator ¢; has a single zero on the distinguished boundary if 2; = z?; otherwise, ¢; does not vanish
in the closure of a single polydisk. If the inequality |ab| + |ac| + |bc| > 1 is satisfied, then the
polynomial f> has zeros inside the polydisk, so the corresponding denominators ¢; are not valid.
Thus, the permissible denominators vanish at no more than one point from the distinguished
boundary. Therefore, almost everywhere on T we have:

0 0 0 0
p1 = f1(27, 22, 23) = 2712223 + bcz] 29 + abzozsz + aczizs =

0 bc ab ac 0 1 1 1
= 2172273 — + 0 + +1 22122Z3f2 0. v |>»
zZ3 Z1 V) 21 %2 23

0 0 0 0
p2 = f1(21, 23, 23) = 212523 + bez1 29 + abzgzs + acz123 =

0 bc ab ac 0 1 1 1
=aznzn|—+t—+t5tl]|=axnxsf(— 5 —),
z3 2 Z5 21 %9 Z3

p3 = fi(21, 22, 29) = 212025 + bez 2o + abzezy + acz 2y =
bc ab ac 1 1 1
:212222 <ZO+++1> :legzgfg ( 0) .
3

z1 29 21 29 28
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From these equalities we obtain the following chains of equalities for modules of functions
P1 P2 P3

—, ==, =, which are valid almost everywhere on the distinguished boundary:
q1 g2 (J3
1 212223f2( 20 z12’ 213) | 0 | f2(it1)azivi)
— | = = |Z122%3 =
a1 f2(21722,23) ! f2(2Y, 22, 23)
1 - _
f2( ?7227Z3) _ fg(z?,5272_3) _ fQ(Z(l),ZQ,Zg) -
| f2(20, 22, 23) J2(2), 22, 23) f2(29, 22, 23) ’
P2 ZlZQZBfQ( M) zlga z13) | 0 | f2( ! M) zlgv le)
== = |z12923] | —————| =
q2 fQ(Zl,ZS,Z:i) 2 fa (21722,33)
101 1 - _
fQ(Z’Q’X) | fa(#, 29, 23) _ f2(21,28, 23) 1
fa(z1,29, 23) fa(z1, 29, 23) fa(z1,29, 23) ’
P3 ZIZZngQ(;llai7é) (%ai7é)
== o = |z12223] o~ =
qs f2(zlaz27 3) f2(217Z2aZ3)
1 — _
f2(?1’5 EL f2(21, %, 29) fa(z1, 22, 29)
fQ(ZIaZQ)Z??) f?('zl?ZQaZ??) f2(zla227zg)

That is, moduli of the radial boundary values are almost everywhere on the distinguished bound-

ary equal to 1, so functions
pL P2 P3
a1 g2 g3
are inner by definition. U

To describe the valid denominators of ¢;, we need the following

Definition 1.3 (see [9], Sec. 14, p.125). Let C' be a nonempty convex set. Then the closed

convex set .
C={z|Va™ € C,(x,2") <1},

is called the polar of the set C.

If the set C itself is closed and contains the origin, then it coincides with the polar of its polar

set .
Cc=C.

For more information about convex sets and other properties of the polar, see [9].
Let us find the polar of the cube K = [—1,1]3. For this we need to find all points that satisfy
the equation

za* +yyt + 22" <1 Va* e [-1,1], y* € [-1,1], z* € [-1,1].

Since we compare everything with one in this equation, there is no point in checking the fulfillment
of this inequality for intermediate values. Because if the inequality holds for boundary values,
then it holds automatically for values inside the segment. Therefore, we have the system:

zr* +yy" + 22" <1 Vo' y* 2" e {-1,1},

which can be written as a single inequality |z| 4 |y| 4+ |z| < 1 in the conjugate space.
We need the constructed polar to describe the valid denominators, namely
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Theorem 1.3. The denominators q; are valid if and only if the pairwise products (ab,ac, bc) =
= (x,y, z) lie in the polar and satisfy the system of inequalities:

yz
r
1> 50
Y
Ty
z
Proof. If the denominators q; are valid, then the polynomial fo = abz; + acza + bezz + 1 has
no zeros inside the unit polydisk. And this is possible, as we have shown above, if and only if
|ab] + |ac| + |bc| < 1, that is, when the pairwise products of (ab,ac,bc) lie in the polar. The

system of inequalities arises from the following reasoning:

1> >0

1> >0

a € (—1,1)\{0} 0<a?<1 0 < bea® o
be (-1, )\{0} ~c0<b®<1l ~ 0<%<1 ~
ce (—=1,1)\{0} 0<ct<1 0< e <
0 < abac <9 0<Z <1
~Q0< el < ~q0<E L
0< ek <1 0<% <1

O

Let us visualize the resulting set. In Fig. 1, 2, we can see the points from the boundary of
the polar satisfying the resulting system of inequalities. In the first figure, the edges of the polar
set of the cube (of the regular octahedron) are highlighted in red, and the intersection is green.

Fig. 1. Visual representation of the intersection of solutions of the system of inequalities and the
boundary of the polar

Fig. 2. Computer representation of the intersection of solutions of the system of inequalities and
the boundary of the polar
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2. The second approach to constructing an analogue of the
Blaschke factors

In this section, when constructing a generalization of the Blaschke factors, we start from the

L of the

form of this factor in the one-dimensional case. As we noted earlier, each factor —
— Zk<
product (1) is a rational function of the form:

p(z)  q(1/z)

e T e

where ¢(z) = 1 — Z;z is a polynomial of the first degree that has no zeros inside the unit disk D.

In this case, when switching to the multidimensional case, we can take as such a polynomial the
following one
q(zlv"'azn) = 1+Clzl++CnZna

where (C1,...,Cn) € {(21,--+,2n) € D™ : |21| 4+ ... + |2n] < 1}. With such restrictions on the
coefficients of a given linear polynomial, it will not have zeros inside the unit polydisk D™. Note
that these constraints are consistent with the one-dimensional case. As a numerator p(z1,. .., z,)
we can take the following polynomial, which also agrees with the case of one complex variable:

(21, vzn) =21 o 2n - q(1)Z1, .., 1) Z,).
Now fix an arbitrary point (29,...,29) from the distinguished boundary
A:{|Zj| =1,j= 17”'7”}

of the polydisk D™ and consider the following set of functions:

p1 =00, 2m), ooy Dn=p(z1,...,29),
Ch:(I(Z?,---aZn)v ety qHZQ(zlvvzg)
Definition 2.1. The map <p1, ey pn) is called the multidimensional analogue of the Blaschke
q1 dn

factor.

Theorem 2.1. The functions p;/q; in the definition of the analogue of the Blaschke factor are
inner rational functions in the polydisk D™.

Proof. Since 1 = q(2Y,...,2,), the zeros of the denominator ¢; on the unit distinguished bound-
ary are also zeros of the polynomial ¢. It can be noted that for |(1]|+...+[{,| < 1 the polynomial
¢ has no zeros in the closure of the unit polydisk D®, but then the denominators ¢; have no zeros
in the same closure. For |(1|+ ...+ |(,| = 1, the polynomial ¢ has a single zero on the distin-
guished boundary (21, 25, 23) and has no zeros inside the polydisk. In this case, the denominator
¢; has a single zero on the distinguished boundary if 2; = 2¥; otherwise, ¢; does not vanish in the
closure of a single polydisk. Thus, g; vanish at no more than one point from the distinguished
boundary. Therefore, almost everywhere on T we have

pr=p(2 2. )=z G G202 =
g g 1 1
z?m.uzn(C(l)Jr...JrCnJrl)z(l)~...~zn~(j(0,...,>.
23 Zn, zZ3 Zn,
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From this equality we obtain the following chain of equalities for the module of the function

&, which holds almost everywhere on the distinguished boundary:

q1
” z?znq(%,,%) 0 | 7%,...,%
== =|27... 2 =
Q1 q(2y,...,20) ! a9, 2)
1 1
_ (J(?w 757) _‘q(z?,. s Zn) 1
q(’z?a . ,Zn) Q(z?; . ,Zn)

That is, the module of the radial boundary values are almost everywhere on the distinguished
boundary equal to 1, so the function b is inner by definition. Having carried out similar

q1
reasoning for the remaining rational functions

P2 o

q2 dn
we obtain the statement of the theorem. O

The investigation was supported by the Russian Science Foundation, grant no. 20-11-20117.
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O mHOXKUTENAX Biidiike B mojmancke

Martseit E. /Ilypakos
Cubupckuit de1epalibHbIl YHUBEPCUTET
Kpacnosipck, Poccuiickas @eneparnus

Awnnoranusi. Iless nHacrosimeil paboTbl COCTOUT B HOCTPOEHWN MHOIOMEDHOI'O aHAJIOTa MHOYKHUTEJISI
Biamxke. Ha akTyaJabHOCTD IOCTPOEHUS JAHHOTO aHAJIOTa HAC HATOJIKHYJIA HEJIaBHSAS COBMECTHAS CTAThA
Aumas u Uxkepa, KoTopasi OCBAIIEHA MHOTOMEPHON WHTEPIIOJISAIIMOHHON Teopun jijisi (PYHKIIMOHATIBLHBIX
IIPOCTPAHCTB B CIIENMAJIbHBIX Iojndapax Beitsna. Ilox TakuMm MHOXKHUTEIEM MBI Oy/ieM IOHHMATh HAOOD
CITENUATBHBIX BHYTPEHHUX PAIMOHAJIBHBIX (DYHKIUI B €IMHUIHOM MOJHKpPyTe. llocTpoenmne BHYTpeH-
HUX PAIMOHATBHBIX MYHKIUN I CIydasi TPeX KOMIIJIEKCHBIX IIEPEMEHHBIX TPOU3BEEM, B GYaCTHOCTH, C
IoMoIIbI0 MHOro4seHa JIu-fIura u3 Teopun Ha3o0BbIX IIEPEXOIOB CTATUCTUYECKON MEXAHUKH.

KuaroueBsbie cioBa: npoussenenne bisiiike, maorowrten Jlu-ura.
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Abstract. The class of plurisubharmonic functions on a complex parabolic surface is considered in this
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1. Introduction and preliminaries

This paper is devoted to plurisubharmonic (psh) functions on a complex parabolic manifold
and surfaces embedded in the space CN. The concepts of Green’s function and pluripolar set
are introduced and a number of their potential properties are studied.

Parabolic manifolds presumably were considered for the first time by P. Griffiths, J. King [1]
and by W.Stoll [2,3]. They were used in the construction of the multidimensional Nevanlinna
theory for holomorphic map f: X — P, where X is a parabolic manifold dim X = n, and P is
a compact Hermitian manifold, dim P = m. Various types of parabolicity were classified by A.
Aytuna and A. Sadullaev [4-6].

Definition 1. A Stein manifold X C CV, dim X = n is called parabolic if it does not contain
different from a constant plurisubharmonic function bounded from above, i.e., if u(z) is plurisub-
harmonic on X and u(z) < C then u(z) = const.

It is called S-parabolic manifold if it contains a special exhaustion function p(z) that satisfies
the following conditions

a) p(z) € psh(X),{p <c} CC X VceR;

b) (dd°p)™ = 0 outside some compact K CC X, i.e., function p is maximal function on X\K.

X is called S*-parabolic if there is a continuous special exhaustion function p(z) on it.

It is clear that S*-parabolic manifold is S-parabolic and, in turn, it is easy to prove that
S-parabolic manifold is parabolic. It was noted [5,6] that for n = 1 all these 3 concepts coincide
(see [7]). However, for n > 1 the equivalence of these three definitions is still an open problem.

*sadullaev@mail.ru  https://orcid.org/0000-0003-4188-1732
fxkamolov@mail.ru  https://orcid.org/0000-0002-4314-7243
(© Siberian Federal University. All rights reserved
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The purpose of this paper is to study holomorphic and plurisubharmonic functions on an
analytic surface. Concepts of parabolic surfaces X C CV, plurisubharmonic functions and Green
function on them are introduced (Section 2). A series of properties of plurisubharmonic on X
functions are proved. Some of these properties are non-trivial due to the presence of singular
(critical) points of X. When proving properties in neighbourhoods of such points, the local
principle of analytic covering is used. In Section 3, the concepts of polynomials are defined,
the class of polynomials on parabolic surfaces is studied, and a number of examples of surfaces
of this type are given. Theorem 3.1 states that complement X = CV\A of an arbitrary pure
(n — 1)-dimensional algebraic set A = {p(z) =0} C C¥ is regular S*-parabolic surface.

2. Parabolic surfaces

In this section, parabolic surfaces, their classification and the Green’s functions on them are
we studied.

2.1. Plurisubharmonic functions on analytic surfaces.

Let us consider an analytic surface, i.e., an irreducible analytic set X, dim X = n embedded
in a complex space CV, X C CV such that for any ball B(0,r) C CV the intersection X N B(0,7)
lies compactly on X, X N B(0,r) CC X. To define plurisubharmonic functions on X we denote
the set of regular points of the set X by the X C X. Then the set of critical (singular) points
X\ XY is an analytic set of lower dimension dim X\ X% < n. Set X\ X does not split X, and set
X0 is a complex n dimensional submanifold in CV (see [8,9]).

Definition 2 ([10]). Function u(z) defined in a domain D C X is called plurisubharmonic (psh)
i D if it is locally bounded from above in this domain and plurisubharmonic on the manifold
DN X% u(z) € psh(D N XO).

The class of plurisubharmonic functions in D is denoted by psh(D). In practice, at critical
points z € X\ X function u*(2) = lim wu(w), z € D is usually considered, and in studies of
w—rz

weX0ND
plurisubharmonic functions u*(2) is studied. Function u*(z) is assumed to be upper semicontin-

wous in D, the set {z € D : u*(2) < C} is open for all C' € R and u*(z) = u(z), Vz € X°N D.
Let us consider several properties of plurisubharmonic functions on X that are needed below.

1) A linear combination of finite number of plurisubharmonic functions in D C X with positive
coefficients is a plurisubharmonic function, i.e., if uj(z) € psh(D), a; 20, j=1,2,...,s then

arui(2) + ...+ asui(z) € psh(D).

2) The uniform limit or the limit of a monotonically decreasing sequence {uj(2)} of plurisub-
harmonic functions is plurisubharmonic function, i.e., if u;‘(z) € psh(D), j = 1,2,...,
ui(z)=u*(2) or if uj(z) \yu*(2) then u*(2) € psh(D).

The following property is not trivial due to the presence of critical points on the surface X.

3)Maximum principle. For u*(z) € psh(D), D C X the mazimum principle holds, i.e., if
at some interior point 20 € D the value u*(2°) = supu*(2) then u* = const.

D

Now let us assume that u* has a maximum at an interior point z° € D (without loss of
generality one can assume 2° = 0) and u*(0) > u*(z) Vz € D. If 0 € D is regular point then it
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is obvious that u(z) = const in D\S, where S = X\ X°, because for plurisubharmonic functions
on a manifold the maximum principle is valid. Therefore, u*(z) = const in D. If 0 is a critical
point then there is a complex plane 0 € II € CV such that dimIl = N —n, X N1I is discrete.
Hence, there exists a ball B("0,r) C II, r > 0 such that

XnB("0,r)={0}, XNaB("0,r)=10. (1)

Letusset z = ('2,"2), 2 = (21,.. ., 2n), "2 = (Znt1,. .., 2n). Let Il = {"z = (21,...,2,) =0}.
Since X is closed then according to (1), there exists a neighbourhood 'U 50 : X NdB('z,r) = 0,
V'z € 'U. Therefore, 7 : X N['U x "U] — 'U is a k-sheeted analytic covering, 1 < k < cc.

Let J C'U be the set of critical points of this covering. It means that

7 AXN['U x"UN\ () = 'U\J
is a regular k-sheeted covering
7 ) N {X N['Ux"UN\r Y T) ={a1 (2),...,ax ('2)} V2 €'U\J. (2)

Moreover, for each point /2’ €/ U\ J locally, in some neighbourhood of W 3 ’2°, the inverse-image
7 (W) N X N['U x "U] is split into k pieces of disjoint complex manifolds My, Ms, ..., My
(see, for example, [8,11]). Function u*(z) = u(z) is plurisubharmonic function on every piece of

manifolds M;, j =1,2,... k.
k
It follows from (2) that w('z) = 3 u*(a;('2)) is plurisubharmonic function in ‘U\J locally
j=1
bounded in 'U. Since J C ‘U is an analytic set then w(’z) is plurisubharmonically extended to
'U. (Recall that if w('z) € psh(D\P) is locally bounded in D, P is closed pluripolar set then

w('z) is plurisubharmonically extended to D (see [12] and also [13,14]).

Thus, w('z) € psh(’U) and by assumption it reaches its maximum at the point 0 € U. This
is a contradiction. ]

2.2. Holomorphic functions

It is convenient for us to define holomorphic functions on an analytic surface X in the sense
of H. Cartan [9].

Definition 3. Function f(z) defined in a domain D C X is called holomorphic in D, if:

a) it is holomorphic on the manifold D N X°;

b) it is locally bounded in D, i.e., for each point z2° € D there exists a neighborhood W 3 2°,
W C D such that |f(2)| < const ¥z € W N XO°.

The class of holomorphic functions in D is denoted by O(D). Holomorphic functions in space
X have many properties of holomorphic functions of several complex variables. In particular, a
linear combination of holomorphic functions with constant coefficients is holomorphic function.
In other words, if fi,...,fm € O(D) then c1f1 + ... + ¢mfm € O(D); the product of two
holomorphic functions is also holomorphic function, i.e., if f,g € O(D) then f-g € O(D).
In addition, the theorem of uniqueness holds, i.e., if f € O(D) and f = 0 in some non-empty
neighbourhood of W C D then f = 0 in domain D C X. Since holomorphic functions are defined
only at regular points then f = 0 in some neighbourhood W C X means that f = 0Vz € WNXP.

The following theorem of H. Cartan is very useful in the study of holomorphic functions.
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Theorem 2.1 (H.Cartan [9]). Let function f(z) defined in a domain D C X is continuous on
DN XY and has the property that for each point 2°€ D there exist a neighbourhood W 2°, W C
D, and holomorphic in W functions gi,...,gm € OW) : f™(2)+g1(2)f" 1 2)+...+gm(z) =0
VzeWnNXC Then f(z) € O(D).

There is an intimate connection between holomorphic and plurisubharmonic functions.

Theorem 2.2. If f(z) € O(D) then function u(z) = In|f(z)| is plurisubharmonic in domain
D, u(z) € psh(D).

2.3. S-parabolic analytic surfaces

Let X C C¥ be an analytic surface embedded in CV, i.e., X is an irreducible analytic set
in CV for which the intersections B(0,7) N X CC X, ¥r > 0. The concept of parabolicity of
surface X is introduced similarly to the parabolicity of manifolds.

Definition 4. An analytic surface X is called parabolic if it does not contain a bounded plurisub-
harmonic function that is different from a constant.

Analytic surface X is called S-parabolic if it has a special exhaustion function p(z) satisfying
the following conditions

a) p(z) € psh(X),{p <c} CC XVceR;

b) function p* is a mazimal function on X\K for some compact set K CC X. This is
equivalent to (dd°p*)™ =0 on X°\K (see [15]).

Analytic surface X is called S*-parabolic if there exists a continuous special exhaustion func-
tion p(z) € C(XY).

It is clear that S*-parabolic analytic surface is S-parabolic. As we noted above, the converse
assumption remains open even for a complex manifold.
The main result of Section 2 is the following theorem.

Theorem 2.3. S-parabolic surface X is parabolic, i.e., on the S-parabolic surface X there is no
bounded from above plurisubharmonic function u*(z) different from a constant.

Proof. Let X be a S-parabolic analytic surface with special exhaustion function p(z) € psh(X),

and p is a maximal plurisubharmonic function on X\ K, where K CC X is some compact set.

Suppose that there exists function u(z) € psh(X), u(z) < M but u(z) # const. Consider a ball

B, ={z€ X : p(z) <lnr} cC X. Let us put p, = maxp(z), u, = maxu®(z), u, < M. Let us
B B

fix the numbers r < 7’ < R < 0o, B, D K. Then for P-measure (see [15]) we have

W (2. By, B) = ML= PR, 3)
PR — Pr

Let us note that u*(z) < u,, 2 € B, and u*(2) < ug, z € Br. Therefore, by the theorem on
two constants [15] we have

u*(2) <ug- (1 +w*(z, By, BR)) — u, - w*(2, B, Br).
Substituting (3) into the last inequality, we obtain for z € B,
Pr — ,OR> Pr’ — PR
UR —
PR — Pr PR — Pr
Since function u(z) is bounded on X then ugp < M, and when R — oo we have u,» < u,. Hence,

according to the maximum principle, u*(z) = const in the ball B,.. Since r < co is an arbitrary
fixed number then u*(z) = const on X. Theorem 2.3 is proved. O

Upr < (1+ Up.
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2.4. Green’s function on parabolic surfaces

In this subsection the Green’s function on S-parabolic analytic surfaces is introduced.
Let (X, p) be a S-parabolic surface. Let us denote the class of plurisubharmonic functions
u € psh(X) satisfying the condition

u(z) < ey +p"(2), 2 € X,

by the 2,(X). Here ¢, is some constant that depends on function u and p*(z) = max {0, p(2)}.
Class 2,(X) is called the Lelong class of plurisubharmonic functions on X. For a fixed compact
set K CC X, we define

Vo(z, K) = sup{u(z) : u e A, (X), ulxg <0}

Then the regularization V,(z, K) = Evp(w,K) is called p-Green’s function of the compact
K ccX.

Similarly, in the classical case there are

1. Either V, € A,(X) or V, = +o0. Vp(z, K) =400 if and only if K is pluripolar set on X,
i.e., there exists a function u* € psh(X): u* # —o0, u*(z) = —0oVz € K.

2. Let K CC X be a non-pluripolar compact set. Then the Green’s function V,(z, K) is
mazimal in X\K. In particular, [dd°V,(z, K)]™ = 0 on the complex manifold X°\K.

The proofs of these important properties of the p— Green’s function are identical to the proofs
of the corresponding properties of the Green’s function in space C™, and they are omitted.

Definition 5. A compact set K C X is called regular at a point 2° € X if Vy (2%, K)=0. If
all points of K C X are reqular then compact K C X is called regular.

Note that if compact set K C X is regular then the open set G. = {z € X : V(z,K)<e}
contains K, G, D K.

2.5. Regular parabolic surfaces

2.5.1. Polynomials on parabolic analytic surfaces
Let X C CV be a S-parabolic surface and p(z) is a special exhaustion function.

Definition 6. If function f € O(X) satisfies the inequality
In|f(2)] < dp*(2) + s ¥z € X, (1)

where ¢y and d are positive real numbers (constant) then f is called the p-polynomial. The
smallest value d that satisfies condition (4) is called the degree of polynomial f.

Let us denote the set of all p-polynomials of degree less than or equal to d by Pg(X ) and the
union P,(X) = UPg(X) by P,(X). Then it is easy to prove (see [6,16]) that P4(X) is a linear
d>1
space of finite dimension dim P4(X) < C (d+1)".
However, a parabolic manifold was constructed [6] where there are no non-trivial polynomials,
i.e., any polynomial P(z) on X is equal to a constant, P, ~ C.

Definition 7. If space of all p-polynomials P,(X) = UPg(X) is dense in space O(X) then

d=1
S-parabolic surface X is called regular.
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2.6. Examples

Example 1. Let A C CN be irreducible, n dimensional, dimA = n, n < N algebraic set.
According to the well-known criterion of W. Rudin [17] (see also [18]) and after corresponding
linear transformation, algebraic set A can be included in a special cone

Ac{w=(w"w)=(w1,...,Wn, Wp11,...,wn): [["w]| <C A+ |w|)},

where C' is constant.

Let us consider projection w('w,”w) = 'w : A — C". If ('w®,"w’) is a regular point

of A, ie., ('w® "w’) € A° then in some neighbourhood U > (‘w?, "w®), U Cc A° projection
m : U — C" is biholomorphic. Consequently, restriction p|, of the plurisubharmonic in cN
function p(w) = In|/w|| is plurisubharmonic function in a neighbourhood of U > (‘w°,”w").
Since point ("w?,”w®) € A° is arbitrary restriction of p|, is a plurisubharmonic function in A°.
In addition, it is locally bounded from above on A and, therefore, p|, € psh(A).

It is clear that p|, is special exhaustion function on A and restriction on A of polynomials
p('w,”w) from CV are polynomials on A. This implies that set of polynomials P,(A) is dense
in O(A), i.e., affine-algebraic surface is regular parabolic surface.

Example 2. Let A= {®(z) =0} C C" be a pure (n—1) dimensional analytic surface such that
Ac{z="(2,2,) €C": |z, < p('2) },

where 'z = (z1,...,2n-1), ©('2) is a locally bounded positive function. Then A is S*-parabolic
surface.

Let us consider projection 7('z,2,) = 'z : A — C"!. For each fixed point '2* € C"~!
intersection {'z = 29} N A = 7= 1{'2°} consists of a finite number of points {'z = '2°} N A =
(a1 ("2Y),...,am(’2Y)) as a compact analytic set in plane C.,0. Function ®('z, z,) # 0 on the
boundary of circle {|z,| = ¢('z)}. According to the argument principle, the number of zeros
(taking into account multiplicities)

1 D ('z, 2
N(z)=— / Mdzn, 'zeU,

271 D('z, zp)
[zn]|=0('2%)
as a continuous integer function is constant, N('z) = m and 77 1('2) = (a1('2),...,an('2)),
'z € C*~1. Moreover, function
m
("2, 2n) H —a('2) = 2"+ [ ((2)2™ L+ fo('2)

is an entire function, where fi('z) € O(C" 1), k=0,1,...,m — 1.

If A is not an algebraic set then function F(’z, z,) is not a polynomial, i.e., not all functions
fe('z) € O(C" 1), k = 0,1,...,m — 1 are polynomials. As in Example 1, contraction p|, of
plurisubharmonic function p(z) = In|/’z| from C¥ is special exhaustion function on A, i.e.,
surface A is parabolic. However, here restrictions of polynomials P(z) in C™ on A are not, in
general, p|, polynomials.

It was proved ([5], see also [19]) that X = C"\A complement of zeros of the Weierstrass
polynomial A = {z™ + f1('z)zmt + ... + f('z) = 0}, where fi('2),..., fm('2) are entire
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functions, is S*-parabolic manifold with special exhaustion function
1 1
()= 2hn <|’z|2 + P+ 55

2
) )

where F('2,2,) = 2™ + fm_1(2)2m "1 + ... + fo(’2). However, X = C™\A is not always regular
(see [19]). The main result of this section is

Theorem 2.4. The complement X = C"\ A of an arbitrary pure (n — 1) dimensional algebraic
set A= {p(z) =0} C C" is regular S*-parabolic manifold. If p (0) # O then function

p(z) = Infp (2)] + 2In ] ()

7degp

is special exhaustion function on X.

The theorem is proved in several steps.
Step 1. Let us show that p(z) from (5) is special exhaustion function. In fact, function

~ e In |p (z)| is pluriharmonic in X and function 21n||z|| is maximal in X\ {0}. Therefore,
egp
function p (z) is the maximal function in X\ {0}. In addition, since p(0) # 0 then {z € X :

p(z) < C}cc X VC >0.
Step 2. Using the criterion of W.Rudin [17] and after the corresponding linear transforma-
tion of space C", A is reduced into special form (see Example 1)

Ac{z=(2z2,) €C": |zy| <C (1 +]|'2)}, C — const. (6)
Then A has the form
A= {p(z) =2 dei(2)2" L den(2) = O} ,

where m = degp > 1, e1('2),...,emn('z) are polynomials and p(0) # 0.

Step 3. The expansion of holomorphic functions in X = C™\ A into Jacobi-Hartogs series is
used. First, let us consider some insights on the theory of Jacobi series ([20], see also [21]). Let
p(z) =2"+e1zm 1+, . +em, m>1landey,..., e, are constants. Let us denote the lemniscate
ring {z € C:r < |p(2)| < R} by G, r. If function f(z) is holomorphic in some neighbourhood
ém gr then function of two variables

8Gr,R

is holomorphic in domain G, r x {r < |w| < R}. According to the Cauchy integral formula,
the equality F'(z,p(%)) = f(2) (¢ € G, gr) takes place. The expansion of function F(z,w) into
Hartogs—Laurent series (see [11]) with respect to the variable w is

F(z,w) = Z ck(z)wk, (7)
k=—o00
where ) © )
_ _P&)=pP&)
=g [ e © (8)

[P(&)=r1
(’l" <ri <R, z€ G’I",R, kZO,:El,:EQ,...).
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Series (7) converges uniformly inside domain G, g x {r < |w| < R}. If we put w = p(z) then we

obtain the series
o0

F&) = 3 al@pt), =€ G,

k=—o0

which is called the Jacobi-Hartogs series of function f(z). It converges uniformly inside domain
Gr.r. One can be see from (8) that coefficients ¢ (z) are polynomials of degree deg ¢ (z) < m—1.
It follows that if function f(z) is holomorphic in G « then it is expanded into the series

o0

f)= Y al=p'(2),

k=—o00

which converges uniformly inside Go . Here ¢i(2) are polynomials of degree deg ci(z) < m —1,

/ f(¢ k+1 )(6())d§ (0<r<oo, z€Gooo),
|P(€)|_7‘

and the Cauchy inequality holds:
max {|f ()| : [p()=r} / ‘p(i) —p(2)
E—=z

2nrk+1

ler(2)] <

d¢|, k=0,£1,42...  (9)
Ip(&)|=r
Step 4. Let us apply the Jacobi-Hartogs series to the holomorphic function f(zz,) € O(X)

outside the algebraic set A = {p(2) = 20"+ €1 (z) 20"+ ...+ en ('z) =0}. We fix 'z € C"!
and expand function f ('z, z,,) in the J acobifHartogstaurent series:

f(/z,zn)z Z ck(’z,zn)-pk(’z,zn) (10)
k=—o0
where coefficients
1 n) )y N
o =gy [ f0ng): kgf(ga)ﬁn)(f(nz—zzj) -
Ip("z,€n)|=r

are polynomials in variable z, with holomorphic C*~! coefficients
("2 2n) = apm-1 (2) 20+ ot ano (2), an; ((2) € O(C* 1), j=0,1,...,m—1.
Series (10) converges uniformly inside domain
X ={(z2,)€C": 0<|p(z2,)| < o0}.
q(2)
p*(2)’

in C*, k > 0 are integer functions, and only they are p-polynomials in X, where p(z) = =

Step 5. Let us show that rational functions of the form where ¢ (z) is a polynomial

1
~degp In|p(z)| + 21n||z||. In fact, since
a(2) | _
In 7 (2) = —kIn|p(2)| +Inlq ()| < max{k,degq} p™ (2) + const
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q(2)

is p (z)-polynomial in X = C™\ A.
) p (2)-poly \

then function
On the contrary, if P(z) is a p(z)-polynomial in X = C™\ A, then according to (4)
In|P(2)| <dp™(2) +¢ Vz € X, d,c— const.

Let us expand P(z) into the Jacobi-Hartogs—Laurent series (10)

oo

f(/z,zn) = Z ck(/z,zn) 'pk(lzazn)v

k=—o0

with coefficients

! 1 / ' agn —p(’ 5 ”Rn
Ck( “ Z”) - % / P( Zagn) . piif(lza)gn)fgnz_zzj)dfn
Ip('z,6n)|=r

According to (9), we have the following estimate

max {|P ('z,&)|: [p('z,&)| =1} p('z,6) —p(z2)
lex ("2, 2n)] < Sy, " |d¢,| <
[p("z,&n)|=r
o max{exple+dp” (2,&)]: |p('26)| = r} p('2.&n) —p ("2 20) dé, |
= 2mrk+l En — 2Zn e
[p('z,6n)|=r
Substituting p(z) = ~Joap In|p (2)| + 21In||z||, we obtain
+
/ max {exp [c—i— d (—% In|p('z,&)|+21n H('z,fn)H) } s p (2,6 = r}
‘Ck ( 2, Zn)| < 2mrk+1 X
/ (!
&n — 2n
[p("2,&n) =" ( )
11
However,
1 +
d-———1 21 S (26 =1 <
max §exp e+ (~ o malp )|+ 2mlal) [+ (6l =r
Inr , 2 *
SO et d <m +Inj( 275")||p('z,sn>|—") 1 S (12)

d
1 + 2 / 2 f -
< exp c—l—d(—:n—kln (7‘2—1-01 (1+|’z||2>)> 1 <Oy (r + [zl ) if r—o00

|72) 2 =i 0

Here the estimate

2 2 2 2 2
02 i < 1A U] Il 407 4+ (1 21,
is used which is easy to obtain by applying relation (6). The integral in (11) is estimated as

(see [19] Lemma 4.1)

p('z,6) —p(z )
&n — Zn

|d&,| < Csr, |p (2, 20)| < 7, C3 — const. (13)

[p('2z,6n)|=r
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Thus, substituting (12), (13) into (11), we obtain the final estimate

2 / Qd .
Cy r+ |zl if r— o0

, k=0,£1,4+2,..., C4 — const. (14)
O

lex ("2, 2n)] <
if r—20

For indices k > 0 the upper inequality (14)is used:
C d
lex ("2, 20)| < —: (7‘2 + ||'ZH2> — 0, for r - oo and k > 2d. For indices k¥ < 0 the lower
r
inequality (14) is taken:
C 2 _d/m
i (2 20)] < 2 |12
all |k| > 2d and

d
— 0, with » — 0 and k¥ < ——. Consequently, ¢ ('z,z,) = 0 for
m

+2d

f(z2n) = Z cu('z,2) - (2, 2n).

k=—2d
However, according to (14), each function ¢ ('z, z,,), |k| < 2d, is a polynomial, i.e.,

+2d

Form 35 ey gt o = Aoi)

k=—2d Pz )

Step 6. It remains to show that space of polynomials P,(X) is dense in space O(X),
i.e., an arbitrary holomorphic function f(z) is uniformly approximated by p-polynomials inside
X = C™\A. This follows from the fact that, as we noted above (step 4), the Jacobi-Hartogs—

[ee]
Laurent series f('z,2,) = Y. cr('z,2n) - p"('2, 2,) of an arbitrary function f('z,z,) € O(X)

k=—o00
converges uniformly inside X = C™\ A. Here coefficients are

cx('z2n) = apm1('2)2  + ot ago('2), ar (') € OC™ 1Y), j=0,1,...,m— 1.

M
Consequently, the partial sums of Sy('z,2,) = 3. cx(’2,2,) - p¥('2, 2,) converge uniformly
k=—M
inside X = C"™\A. Approximating coefficients ax ;('z) € O(C" '),k = 0,%1,...,+M,
j=1,2,...,m—1 by polynomials, we thereby obtain approximation of function f('z,z,) €
O(X) by polynomials, i.e., P,(X) = O(X). Theorem is proved. O
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Oynakiusa ['pmHa Ha mapadoamvecKoil aHAJIUTUIECKON
IIOBEPXHOCTH

Azumbait C. CagysitaeB
Harnyonasnbuenit yausepcurer Y36ekucrana
Tarmmkent, ¥Y36ekucran

Xypcanabek K.Kamosos
Y PpreHucKuil rocyJapCTBEHHBIM YHUBEPCUTET
Vpreunu, Y30eKucTan

Awnnoramusi. B nanHoit paboTe pacCMaTpUBaeTCs KJIACC ILIIOPUCYOrapMOHUYECKUX (DYHKIUNA Ha KOM-
TJIEKCHOHM TapaboInIecKoil TOBEPXHOCTH, BBOAATCS NOHATUS (pyHKIUK ['prHA U IUTIOPUIIOISIPHBIX MHO-
JKECTB, U3y4aeTCd pdAJ, UX NOTEHINAJbHBIX CBOUCTB.

KirouesBsie cioBa: napabosmaeckoe MHOroobpasne, napaboJimiecKue IIOBEPXHOCTH, PEryJisipHbIe I1apa-

OoIMIecKye TOBEPXHOCTH, (DYHKINU [ prHa, IIFOPUIOISPHBIE MHOYKECTBA.
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1. Introduction and preliminaries

The purpose of the paper is to study the boundedness of maximal operators defined by

Mf(y) = sup | Af(y) |, (1)
where
Af(y) = / fly — ta)d(x)dS(x) @)
S

is so called averaging operator, S C R™*! is a hyper-surface, ) > 0 is a fixed smooth function
with compact support, i.e., ¥ € C§°(R"*!) and f € C§°(R™T1).

Maximal operator (1) is bounded in LP := LP(R"*!) if there exists a number C' > 0 such
that for any function f € C§°(R™*!) the L? inequality | M f||z» < C ||f||» holds.

For a hyper-surface S and for a fixed function 0 < ¢ € C§°(R"*1) a critical exponent of
maximal operator (1) is defined by

p(S) := inf{p : operator (1) is bounded in L*}.

Firstly, it was showed that when S is the unit (n —1)-dimensional sphere centred at the origin

then maximal operator (1) is bounded in LP(R™) for p > r 7" > 3 and it is not bounded
n—

in LP(R™) whenever p < Ll [1]. The two dimensional case of this result was proved by
n—

J. Bourgain [2].

*usmanov-salim@mail.ru
(© Siberian Federal University. All rights reserved
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It was proved that maximal operator (1) is bounded in LP(R"*!) forn > 2 and p > (n+1)/n
when hyper-surface has everywhere non-vanishing Gaussian curvature [3]. Moreover, it was
showed that if hyper-surface has at least k(k > 2) non-vanishing principal curvatures then the
maximal operator is bounded in LP(R"*!) (n > 2) for all p > (k + 1)/k. A similar result for
more difficult case k = 1 was obtained by C.D. Sogge [4].

Also, maximal operators (1) were considered in [5-11]. Maximal operators associated with
smooth hyper-surfaces in R"*! were studied and critical exponent of these operators in LP(R"*1)
was defined [12]. The boundedness of the maximal operators related to singular surfaces in 3-
dimensional Euclidean space was investigated [13] and [14].

2. Problem statement

Let us consider a family of singular surfaces in R? defined by the following parametric equa-
tions b
z1(u1,uz) =11 +uitug’gr(ur, uz), @2(ur, u2) = ro +uytuy’ ga(ur, uz), 3
3
w3(u1,u2) = 13 +uitug’ gs(ur, uz),
where ri,79,73 are any real numbers, a1,as,b1,bo,c1,co are non-negative rational numbers,
uy = 0, ug > 0 and {gx(ug, ’LLQ)}%:I are fractional power series. For the definition of the fractional
power series see [13] and [15].
Let us introduce the following designations

ap by by ¢ ar ¢

B = , B3 =

) B2:’

az by by ¢ as C2

Remark 1. If at least one of the numbers By, Ba, Bs is nonzero then the points of surface (3)
that lie in a sufficiently small neighborhood of the singular point (r1,r2,73) outside the coordinate
planes of a coordinate system which has its origin at the point (r1,r2,73) are non-singular. Points
of surface (3) that lie on the coordinate planes of this coordinate system are singular points (see

definition 2 in [13]).
Let us define the averaging operator in (2) associated with surfaces (3) in the form

Af fy) = /f(y1 —t(r1 + ul uggr (u, us)), yo — t(re + ul ub? go(ur, us)),
R% (4)

ys — t(rs + uf'us?gs(ui, U2)))¢1(u17 up)uf ug? p(ur, us)duydus,
where p(uq,uz) is fractional power series such that ¢(0,0) # 0,
Uy (ur,u2) = ¥ (r1 +uf ug?gr (ur, ug), r2 + u§ ul go(ur, ug), 3 + uf ug? gs(ur, ug2))

is non-negative fractional power series with a sufficiently small support, d;,ds are real numbers
and f € C§°(R3). The purpose is to prove L inequality for the maximal operator defined by

M f(y) = sup AL f(y)], y€R®.

Here this maximal operator is investigated in a small neighbourhood of singular point
(r1,72,73) of surfaces (3) in the case when p > 2.
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3. The boundedness of the maximal operator MY f

Let us denote the critical exponent of maximal operator M? f by p’(S) and

a1 a2 b1 by C1 C2 }

/S: {
PIS) =max G I T G U r 1 dy 1

The extension of Theorem 1 in [13] and the main result of this paper is

Theorem 3.1. Let o(u1,us), {gr(u1,u2)}3_, be fractional power series which defined in a small
neighbourhood of the origin of coordinate system of R? and it satisfy the following conditions:
©(0,0) # 0, gx(0,0) # 0. Suppose di > —1, da > —1 and at least one of the following conditions
is hold:

1. T3 7& O,Bl 7é 0 and either Bng 7é 0, or B2(B2 + Bl) # 0, or Bg(Bg - Bl) 75 0;

2. r9 #0,Bs # 0 and either BoBy # 0, or Bo(Bs — Bs) #0, or B1(B; — B3) # 0;

3. T1 7& O,Bg 7é 0 and either BlBg # 0, or Bg(Bg - BQ) # 0, or Bl(Bl + BQ) 75 0.

Then there exists a small neighbourhood U of the singular point (r1,r2,73) such that for any
function vy € C§°(U) the mazimal operator M? f is bounded in LP(R3) for p > max{p’(S),2}.
Moreover, if 1¥1(0,0) = ¥(r1,r2,73) > 0 and p’(S) > 2, then the mazimal operator M? f is not
bounded in LP(R3) whenever 2 < p < p'(S).

Proof. Suppose that condition 1 is satisfied and at least one of the numbers 71,75 is not equal
to zero. Let us consider the boundedness of the maximal operator M¥ f at non-singular points
of surface (3) (see Remark 1).

&)

Let us consider the partition of the unity > xx(s) = 1 on the interval 0 < s < 1,
k=0

where xi(s) == x(2Fs), x € C5°(R) supported on the interval [0.5; 2] and X, j,(u1,u2) =

Xji (u1)x;j, (u2), j1,j2 € N. Then averaging operator Af f is decomposed as follows

APV f(y) = /f(y1 —t(r1 + u ug g (ur, us)), yo — t(ra + ul ub?go(ur, uz)),
]R2
2

y3 — t(rs + ui us? gs(uq, Uz)))ﬂil(ub U)Xy jo (U1, w2 )uf ug? o (uy , ug)duy dus.
Next, by applying the change of variables u; = 2771wy, uy = 27720y, one can obtain
ATV f(y) = 27 (1 +i2)=Urditiada) /f(zn — t(ry 4 27 UraatI2a2) 014 02
R%
X g1 (277101, 279209) ), yp — t(rg + 27 U0 TRP) 01002 gy (2701 27020, ),
Y3 — t(Ts 4 2*(j1c1+j2c2)vil ,U§293(2*j1v1, 2*j2v2)))w1(2*j1v1, 27]‘21}2))((,”1))((”2) %
xv‘lil vgzap@_jlul, 2_]‘21)2)dv1ah}27

where 0.5 < vy <2, 0.5 < vy <2, j1,42 = Jo, Jo is a large number such that implies from the
smallness of the support of .
Let us change the variables as follows

w a . .
wy = v7' 052 g1 (27, 27720,)

b b iy iy
wy = v a2 g2 (27 vy, 2720),
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and assume that g;(0,0) = g2(0,0) = 1. Then in the first quadrant R? the system

wy = vyt vgy?
bi,bo
Wy = V7' Vy°

yields
vl =Wyt wy
ETR (6)
B; B
Vo =Wy ' W,y
In particular, relations (6) are valid in the set {(wj,ws) € RZ : 27(mFa2) < 4y <

2@14-!127 9—(b1+b2) <wy < 2b1+b2}_
Consequently, the change of variables

V1 =w; Wy T g .
e (7)

1 By 4

Vo = w1 ’U.)2 gz

is introduced, where g1, o are new variables and it is supposed that §; ~ 1, go ~ 1. As a result
system (5) implies

by —ag oz a1
(91)*(g2)*2 1 (2_J1w131 wy b g1, 272w, wy 92) =1,
bo —ag —by aj (8)

(91)7(92)*2 92 <27j1w1BilwgBl g1, 272w w?f]z) =1.

According to the implicit function theorem, system (8) has a unique smooth solutions with
respect to g1, g2 in a sufficiently small neighbourhood of the point (0,0,1,1)

gl (27j1 ) 27j27w17 w2) =1+ 27j1}~11(27j1327j27w13 w2) + 27j2 B2(27j1727j23 wry, U}Z)a

Go(2771,2792 wy wg) = 14279151 (2791 2792wy we) + 2772 5o (2771, 2792 Ly, wy).

Here hi, ha, p1, po are smooth functions. It is assumed that §; (0,0,1,1) =1, g2(0,0,1,1) = 1.
Then taking into account (7), one can obtain

by —ap ) .
v = wlB1 wQBl g1(2791,2792 wq, wy)
—by ay ° (9)

= R
Vo =Wy t Wyt Ga(2771,2772 wy, we)

Applying relations (5) and (9) to the last integral, we obtain

Af’jl’jzf(y) — 9= (1+72)—(rdi+jad2) /f(yl _ t(?"l + 2—(]‘1111‘?]‘2&2)“)1)7
2
Ya — t(?“g + 2*(j1b1+j2b2)w2), Y3 — t(?”g + 2*(3‘1C1+j202)a(wl7 w2)))5(w1, wz)dwlde,

—By Bz
where a(wy, ws) = w; " wyt g(wy, wa),

g(w17 U)Q) = (gl (2_j1 ) 2_j2 , Wi, w2)>01 (92(2_j1 ’ 2_j27 wy, U}Q))CZ X

- 268 —



Salim E. Usmanov On Maximal Operators Associated with a Family of Singular Surfaces

by —ap —b1 oy
—j1. By, Bl o~ fo—j1 o—j iy Br . Br = (o—j1 6—j
XgS(Q le]_ 1w2 ! gl(2 J172 ]2,w1,w2),2 J2w1 ! Wy 192(2 ]172 ‘72,/11}1,11)2)>7

Bwy,wa) = 1 (w1, wa) X1 (w1, wa)Xa (wr, wa) (@1 (wr, wa)) ™ (

P2 (w1, w2)) P @(w, wa)J (w1, wo),

by —ag = o

¢1(w1,w2):1/)1(2_j1w171w231 G1(279,2792 wy, we), 2_j2w11?1w2371§2(2_j172_j27w17w2)),

. b2 —ag ) .

X1 (w1, w2) = X(TﬁwlBl w,! §1(27“,2772,w1,’w2)>7
oo -

)22(’1,01, ’LUQ) = X(2_j2w131 wQBl 92(2_‘71 ) 2_j27w17 ’U)Q)),

by —ag —b ajy

o1(wy, we) = wlBilwf1 §1(2*j1,2*j2,w1,w2), o (wy,we) = wlB1 w?§2(2*j1,2*j2,w1,w2),

by —ag —bh o
- —i. B By ~ i i _ i B} By ~ —j —j
(,0(101,’(112) = @(2 jlwl 1w2 ! 91(2 J172 J27w1aw2)a 2 ]2’LU1 ! Woy 192(2 j172 j2aw17w2))

are fractional power series, J(wi,ws) is the Jacobian of the change of variables (9).
The dilation operators

TI 5 f(y) 1= 2

Jj1ai1+igas+i1bitiabatiicitisca ; ; ; ; ; ;
1a1+j20a2 1b1+7j2b2 1c1tj2¢2
P f<2j P2y, 2Ty, 2Ty

are isometric in L?(R?) and they transform the averaging operators A¥7*72 f into new ones

APII I () = o= (1+i2) = (rdi+jady) P20 0N 0 1202t 1 422
X / f(2j1a1+j2a2 (yl —try —t- 2*(j1a1+]‘2a2)w1)’2j1b1+j2b2 (y2 —try —t- 2*(j1bl+j2b2)wQ)7
&

2Nt (ys —trg — ¢ 2~ Unertizea) g (g, wg))>5(w1, wa)dwidws.

Also, the dilation operators

T f(y) = 2

jraitisas+iibytisbatiicitioco . . . . . .
- —jia1—jza2 —j1b1—ja2b2 —jic1—jace
D f(2 Jiai—j Y1, 2 J1617J Y2, 277 J y3)

are isometric in space L?(RR?) and they turn operators AY7"7>T97> f into new operators
T{jl,*jzA;P,jhthlezf(y) — 9= (1+72)=(rdi+j2d2) / %
B
Xf(yl —t(s1+w1), y2 — t(s2 +wa),ys — t(ss + a(wl,w2))>ﬂ(w1, wo)dwydws,

where 51 = 2j1al+7’2‘12r17 Sg = 2j1bl+j2bz?a27 Sg = 2j161+j262r3.

Suppose that max{|s1|, |sz2|, |s3|} = |s3| and define the following rotation operator

0 .f
R° f(y) := f(er1x1 + e12x2 + €133, €211 + €22T2 + €233, €31&1 + €322 + €33T3)

which is isometric in space LP(R?). Rotation orthogonal matrix (e;;)?,_, is
cos 61 cos 0y — sinfy sinfy cosfl3  — cos B sinfy — sin 0y cos Oy cos 3  sin G sin O3
sin #1 cos 0y + cos By sinfy cos 3 — sin B4 sin s + cos 01 cos Oy cos 3 — cos B sin O3 ,
sin 65 sin 03 — sin 63 cos 05 cos 03
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where 01, 65,03 are Euler angles, 03 is the angle between vectors (0,0,d) and (s1, $2,83), d =

/8% + s34 53 (see [16], pp. 288-289).
The rotation operator R’ f and its inverse R=Yf turn operators Ty, 7' ~72 AF7172 172 f into
the following new operators

R79T2*j1-,*]'2A;P7j1’j2T1jl7]'2Ref(y) _ 2*(j1+j2)*(j1d1+j2d2) %

X /f(y1 — ton (w1, w2), Y2 — tag(wi,wa), ys — t(d + Oés(whwz)))ﬁ(whwz)dmdwz, (10)

2
RL

where
aq (w1, w2) = er1wr + erawa + erza(wr, wa),
ag (w1, ws) = ea1wr + exowy + eaza(wi, wa),

az(wi, ws) = egrwy + ezaws + ezzo(wy, wa).

It is well-known that the second fundamental form of the surface given by parametric equations

T(wy, we) = 7(041(101,102), ao(wr, wa), Oés(w17w2)) (11)
has the following form

L= Llldw% + 2L12dw1dw2 + LQdeg,

where
Ly = (T11,1), Lo = (T12,7), Log = (T22,7), (12)
_ o*r 0*r _ o*r
7’11:671[}%7 7’12:m, TQQZTU)%,

n = N -|N|~! is the unit normal vector. A normal vector N in any point of surface (11) defined
by
i j k
8051 8042 8043

barN = (97101 3711)1 3711)1
% Odag  Oas

8’[02 8w2 (9’LU2
Coefficients Ly, Lag, L1 in (12) are

P*a -p2-2 3 dg(wy,ws) 2 2829(w1,w2)
Lll:[“)iw% = C’wl 1 Wy 1 (Bg(Bg—FBl)g(wl,wg)—BgBlw1T+Blw1 87’10%>’
& -22 B39 Ag(wy, w 9?g(wy,w
LQQ:—aw% = Cw, " wy? (B3(B3—Bl)g(w1,w2)+B3B1w27g( ;2 2) +Biwj g(auj% 2)>’
9%a _B2 1 Bz 4 8g(w1 ’LUz)
Lis= - _Cw, P wh (BB — ByByuy Z2A012)
12 Sw,0w, wq W,y 2 B3g(wy, w2) 3biwy owr +
0 0?
+ ByByws g(w1, ws) — B2wjws g(w17w2))
Ows Owywa
N|-1
where C' = | B%

It follows from condition 1 of the Theorem that at least one of the numbers By(Bs + B1),
B3(Bs — Bi), B2Bs is not equal to zero. Therefore, at least one of the coefficients Ly, L12, Lo
is not equal to zero for sufficiently large jo.
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Hence, surface (11) satisfies the assumptions of Proposition 4.5 in [9]. Applying this propo-
sition to integral (10) for p > 2, we obtain

1
_ e . L d P p(i1di+izda)+p(i1+ia)
I sup RO 7 AP T RO 1 D(II) S Sl B2 S

where max{|s1|, |s2|, |ss|} = |s3|. Taking into account this inequality and isometry of operators
TR f Ty 7072 f 0 RO fR™Pf and considering condition max{|sy], |s2|,|s3|} = |s3], we obtain

Jicitisca—p(i1di+iada)—p(i1+i2)
P

If e -

I sup |77 f || 1o < Dp2
t>0

Consequently, we have

s Jicitizco—p(i1di+isda)—p(i1+i2)
S IMAEE <D, > 2 v I F Il -

J1,J22Jo J1,922Jo

The series on the right side of the last inequality converges for all p satisfying the condition

p>max{ o s 2
di+1 dy+1

}. Therefore, for such p the following inequalities

IMPF < D I METRL 10 Cy || f 2o

J1,32230

hold true, where C), is some positive number.

Analogously, one can show that if max{|s1|,|sz2],|s3|} = |s1] or max{|s1],|s2|,|s3]|} = |s2]
then the maximal operator M¥ f is bounded in LP(R3) for p > max{ ! , a2 or for
di+1"ds+1
> { b bz } tivel
max respectively.
p di+1 dy+1 P Y

Thus, the proof of the positive result of Theorem is completed.

c c
Let us prove now the negative result. For this reason suppose that max { 71, 72} > 2
di+1dy+1

Then following [1] consider the function

(1, 35) = M
AR

where 71,12 are smooth functions satisfying the following condition

K

1, |z -

(o1, wa)m(as) = 4 TS
0, |z| > k.

VoA

Here k > 0 is some sufficiently small number. Taking into account relations (2) and (3) the
averaging operator corresponding to function f(x1,x2,x3) is represented as follows

m(y1 — twy (v, u2), y2 — tra(ur, uz) )2 (ys — tos(uy, usg)
AL T () :/ ( n ) - )
B2 |ys — tas(ur, ug)| 7 | In |ys — tas(ur, ug)l|”
2

x b1 (uq, ug)uihugzgo(ul, ug)duy dus.
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Let us assume that 1(0,0) > 0, ¢t = %3 5 0. Since & is sufficiently small number consider
T3
(y1,y2) that lies in a small neighbourhood of the point (%, r2y3). Then one can obtain
T3 T3

! a7 o
S » >
3§E‘Atf(y)|/c\$|% / | | %0t ug? gs (u u)||%du1du2’

gy a2 DR

where C' is some positive number. The last integral diverges for all p satisfying 2 < p <

max { o , €2 } Hence, the maximal operator M?¥ f is not bounded in LP(R?) for these p.
di+1 ds+1
Analogously, one can show that if max{|si1|, |sz2|, s3]} = |s1] or max{|s1], |s2|, |s3|} = |s2| then
the maximal operator M? f is not bounded in LP(R3) whenever 2 < p < max{ a“ , 2 }
di+1dy+1
2<p< { by ba } tivel
or max ——— ¢, respectively.
Px di+1 dy+1J p y
Thus, making similar arguments under conditions 2 or 3, the proof of Theorem 3.1 is com-
pleted. O

Consider now a number of corollaries in connection with Theorem 3.1.

Corollary 1. Let o(u1,uz), {gr(u1,u2)}s_, be fractional power series defined in a small neigh-
bourhood of the origin of coordinate system of R? such that ¢(0,0) # 0, gx(0,0) # 0 and
dy > —1, dy > —1. Then the following assertions hold true

1. If T = 0,7"2 = 0,7"3 7é O,Bl 7é 0 and CZ'thGT’BQBg 7& 0 OTBQ(BQ+B1) 7é 0 O'/‘Bg(Bg*Bl) 7é 0
then p'(S) = rnax{ a

Co }
d1+17d2+1 ’
2. If T1 :0,’)"3 :0,7"2 #O,Bg 7é0 and eitherBQBl #0 0’/‘B2(B2—B3) 750 O’V'Bl(Bl—Bg) 750

then p'(S) :max{dlb—li—l’d;j—l}'

3. If To = 0,’)”3 = 0,7"1 7& O,BQ 7é 0 and eitherBlBg # 0 OTBg(Bg—BQ) # 0 O’V'Bl(Bl-l-Bg) 75 0
thenp’(S):max{ @

az
T g
Corollary 2. Let us assume that p(u1,us), {gr(u1,u2)}3_, are real analytic functions defined
in a small neighbourhood of the origin of coordinate system of R? and they satisfy the following

conditions: ©(0,0) # 0, gx(0,0) # 0. Then under the assumptions of Theorem 3.1 its assertions
are true.

Corollary 3. If conditions 1-3 of Theorem 3.1 are replaced with the relations
rs #0, Bi#£0, A;'e# (1,0), A7'e# (0,1), A7'e# (0,0);
n#0, By #£0, Ayta# (1,0), Ay'a #(0,1), Ay'a+# (0,0);
ro #0, By #0, A7'b# (1,0), Az'b# (0,1), A3'b # (0,0),

respectively, and other conditions are satisfied then assertions of Theorem hold true. Here
Ay, Ay, A3 are matrices By, By, Bs, respectively, and @ = (ay,az), b= (b1,bs), €= (c1,cz).
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O makcuMaJIbHBIX OllepaTopax, aCCOIMUPOBAHHBIX
C CEMENCTBOM CHUHIYJIAPHBIX IIOBEPXHOCTEN

Canum 3. YcmaHOB
Camapxranacknit rocygapcrBenublii yuusepcurer umenn 11, Pamunosa
Camapkans, Y3bekucran

AmnnHoranusi. B 9T0if cTaThe paccMaTpUBAETCS MAKCHMAJBHBIA OIEpaTOp, aCCOIMUPOBAHHBINA C CHHIY-
JIIPHBIMU ITOBEPXHOCTAMHU. J[OKa3bIBaeM OTPaHUYEHHOCTH TOT'O OIEPATOpa B IIPOCTPAHCTBE CYMMUDYe-
MBIX (PYHKITUI, KOT[a CUHTYJISIPHBIE IOBEPXHOCTH 33/IaI0TCsI TAPAMETPUIECKUMU ypaBHEHUsIMUA. A TaKxKe
HaliJIeH TTOKa3aTe/Ib OTPAHMYEHHOCTH MAKCHMAJIBHOTO OIEPaTOPa I TAKUX MPOCTPAHCTB.

KuroueBrie ciioBa: MakCcuMaJjIbHBIA OIEPATOD, OIIEPATOP YCPEIHEHUs, NTPOOHO-CTENEHHOMN Psifl, CHHIY-
JISTpHAas MOBEPXHOCTH, ITOKA3aTeIb OrPAHUYEHHOCTH.
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Abstract. Let a,b and ¢ be positive integers such that a? +b> = ¢ with ged (a,b,¢) =1, a even. Terai’s
conjecture claims that the Diophantine equation z2 + bY = ¢* has only the positive integer solution
(z,y,2) = (a,2,2). In this short note, we prove that the equation of the title, has only the positive
integer solution (u,v,w) = (2,2,47 + 1), where ¢ is a positive integer.

Keywords: Terai’s conjecture, Pythagorean triple.
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1. Introduction and preliminaries
In 1956, Sierpinski [2] studied the equation
3% 4 4% =5v

and proved that it only possesses (u,v,w) = (2,2,2) as a solution in integers. In turn,
Jésmanowicz [1] showed that the only positive solution in integers of any of the following equa-
tions

5U 4120 = 13%, 7Y 424Y = 25%, O 440Y = 41", 11% + 60" = 61*

is (u,v,w) = (2,2,2), and posed the following Conjecture 1.1 ( see [3]).

Recall that when positive integers a,b,c satisfy a® + b%> = c?

we say that (a,b,c¢) is a

Pythagorean triple, and if in addition ged (a, b, ¢) = 1 it is said a primitive Pythagorean triple.
Historically, Euclid of Alexandria (323-300 BC) was the first mathematician who proved that

(a,b,c) is a primitive Pythagorean triple with a odd, if and only if, there exists a pair of numbers

(o, B) € N*2 with a > 3, @ and 3 are coprime and of different parity, such that

a=ao®>—-p3% b=2af and c=ao?+ B>

*dhimane@usthb.dz
fr_boumehdi@esi.dz
(© Siberian Federal University. All rights reserved
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Conjecture 1.1. If (a,b,c) is Pythagorean triple, then the equation
au + b’U — Cw
has the only solution (u,v,w) = (2,2,2).

In 2013, Z. Xinwen and Z. Wenpeng [6] showed that, for any positive integers n and m the
exponential Diophantine equation

(@ = Dn)" + (27'n)" = ((2*" + D)n)*

has only the positive integer solution (z,y,z) = (2,2,2).

Recently, Hai Yang and Ruiqin Fu [7] by combining Baker’s method with an elementary
approach, have proven that if a8 = 2 (mod 4) and « > 17.83, then the Conjecture 1.1 is true,
this is for (a,b,c) = (2a8,a? — 32, a% + 32).

Thirty years before, Terai had conjectured [4]

Conjecture 1.2. Let «, be positive integers such that o > B, ged(a, ) = 1 and o #
(mod 2), then the equation

2 2 2\m __ 2 2\n

"+ (o = 7)™ = (a” + f57)

has the only positive solution in integers (x,m,n) = (2a0,2,2).

In 2020, M. Le and G. Soydan [5] studied Conjecture 1.2 in the case a = 2"s and 8 = 1, where
r, s are positive integers satisfying 21 s,7 > 2 and s < 2" L.

First Terai conjecture is "Let a, b, ¢ be relatively prime positive integers such that a? +b? = ¢"
for fixed integers p, ¢, > 2. Terai conjectured that The equation a® 4 bY = ¢* in positive integers
has only the solution (z,y, z) = (p,q,r) except for some specific cases".

There are many results and studies related to this conjecture we can cite among them:
Nobuhiro Terai [12,13] and Takafumi Miyazaki [8-11].

In this short note we prove

Theorem 1.3. Let q be a positive integer. Then the Diophantine equation
(49— 1) + (2971)" = w?

has only the positive integer solution (u,v,w) = (2,2,47 + 1).

2.  Proof of the main result
Proof. Suppose that there are positive integers u, v and w such that
(49— 1)" + (277)" = w? (1)

then w is odd and
w?=1 (mod 4).

Reducing equation (1) modulo 4, we get

(47—-1)"=1 (mod 4),
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or equivalently
(-1)*=1 (mod 4).

This implies v = 2t for some positive integer ¢.

Thus,
2000 — (2041)" — ? — (a9 1)t)2 = (w+ (=1 (w- @1 -1)")
Hence,
w+ (47— 1) = 2°
and

w— (47 - 1) =27,
with s > 7 and s + 7 = (¢ + 1) v. Solving for w and (49 — 1)*, we get
w=2""1(2""4+1) and (47-1)"'=2""1 (27" 1),

Since the left side of both previous equalities is odd, » must be equal to 1. Let x = s — r. Then
the equation

(49 -1)' =271 (2577 —1)

becomes
(47 — 1) =27 — 1,

The reduction modulo 3 gives
0=(-1)"—1 (mod 3),

and so z is even, say x = 2k for some positive integer k. Thus,
(49— 1)t = (2%)° -1

by the Mihailescu’s Theorem ¢t = 0 or ¢t = 1. Consequently, ¢t = 1, and so x = 2¢q. This gives us
the unique solution (u, v, w) = (2,2,49 + 1). O

If we maintain the same conditions as before we believe in the validity of the following:
Conjecture 2.1. If a® + b? = ¢? with (a,b,c) = 1, then the Diophantine equation
a4 b = w?.

has only the positive integer solutions (u,v,w) = (2,2, c).
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3ameTka o quodaHTOBOM ypaBHeHum (47 — 1)" + (2‘J+1)U = w?

xxamenb XumaHe

@aKyﬂBTeT MaTeMaTUuKN

VYuusepcurer YCTXB

Axup, Amxup

Pammun Bymaxan

HaLU/IOHaJIbHa,ﬂ CpeHdAd TIKOJIa MaTeMaTUKN

Aunkup, Amxup

Ansotamus. Ilyers a, b u ¢ — HarypasbHble dncia takue, 9to a’+b% = ¢? ¢ ged (a,b,¢) =1, a yeTHDBIM.
I'umoresa Tepan yTBepskmaer, 910 IuOMAHTOBO ypaBHEHHE T2 + bY = ¢ UMEET TOIBKO HATYPAILHOE
pemenne (z,y,z) = (a,2,2). B 3Toll KOPOTKOI 3aMETKE MBI JOKA3BIBAEM, ITO YPABHEHHE 3arOJIOBKA
UMeeT TOJIBKO II0JIOXKUTENBHOE [eounciienHoe pemterne (u, v, w) = (2,2,47 + 1), rjue g nooKuTesbsHoe

[IeJI0€ YKCJIO.

Kuarouessie cioBa: runoresa Tepan, Tpoiika [Tudaropa.
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