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Abstract. It is proved that the general linear group GLn(Z) (its projective image PGLn(Z) respectively)
over the ring of integers Z is generated by three involutions, two of which commute, if and only if n > 5

(if n = 2 and n > 5 respectively).

Keywords: general linear group, ring of integers, generating triples of involutions.
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Introduction

We call groups, generated by three involutions, two of which commute, (2×2, 2)-generated.The
class of such groups is closed with respect to homomorphic images if, by definition, we consider
the identity group as such and we do not exclude the coincidence of two or all three involutions.
M.C. Tamburini and P. Zucca [5] have proved that some matrix groups of big enough degree
n, depending on the parameter d, over the d-generated commutative are (2 × 2, 2)-generated.
Particularly they established (2 × 2, 2)-generation of the special linear group SLn(Z) over the
ring of integers Z when n > 14. Ya.N.Nuzhin [2] has proved that the projective special linear
group PSLn(Z) over the ring of integers is (2 × 2, 2)-generated if and only if n > 5. Applying
methods of the paper [2], we obtain similar criteria for the general linear group GLn(Z) and its
projective image PGLn(Z).

Theorem 1. The general linear group GLn(Z) over the ring of integers Z is generated by three
involutions, two of which commute if and only if n > 5.

Theorem 2. The projective general linear group PGLn(Z) over the ring of integers Z is gener-
ated by three involutions, two of which commute if and only if n = 2 and n > 5.

1. Notations and preliminary results

Further, R is an arbitrary commutative ring with the identity 1, SLn(R) is a subgroup of
matrices with determinant 1 of the general linear group GLn(R) over the ring R.

∗mark.i.a@mail.ru
†nuzhin2008@rambler.ru

c⃝ Siberian Federal University. All rights reserved
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Elementary transvections

tij(k) = En + keij , i, j = 1, 2, . . . , n, i ̸= j, k ∈ R,

will be called simply transvections, where En is an identity matrix of degree n, and eij is a
(n× n)-matrix with 1 on the position (i, j) and zeros elsewhere. Also let

tij(R) = ⟨tij(k) | k ∈ R⟩, i, j = 1, 2, . . . , n, i ̸= j.

For any non-empty subset M of some group, by ⟨M⟩ we denote the subgroup generated by the
set M . The next lemma is well known (see, for example, [6, p. 107]).

Lemma 1. The group SLn(R) over the Euclidean ring R, in particular over any field, is gen-
erated by subgroups tij(R), i, j = 1, . . . , n.

The ring of integers Z is Euclidean and trs(Z) = ⟨trs(1)⟩, so the corollary of Lemma 1 is

Lemma 2. The group SLn(Z) is generated by transvections tij(1), i ̸= j, i, j = 1, 2, . . . , n.

Since the index of the subgroup SLn(Z) in the group GLn(Z) is equal to 2, Lemma 2 implies

Lemma 3. The group GLn(Z) is generated by transvections tij(1), i ̸= j, i, j = 1, 2, . . . , n,
and any matrix with determinant −1.

Set

µ =


0 0 · · · 0 0 1

1 0 · · · 0 0 0

0 1 · · · 0 0 0
...

...
. . .

...
...

...
0 0 · · · 0 1 0

 .

The matrix µ has group order n and the group ⟨µ⟩ acts by conjugations regularly on the set of
transvections

T = {t1n(1), ti+1i(1), i = 1, 2, . . . , n− 1} ,

and on the transposed set

T ′ = {tn1(1), tii+1(1), i = 1, 2, . . . , n− 1} .

By commuting transvections from the set T or from T ′, all the transvections tij(1) can be
obtained. Therefore, each of the sets T and T ′ generates the group SLn(Z). Moreover, by virtue
of Lemmas 2 and 3, the following lemma is valid

Lemma 4. The group SLn(Z)(GLn(Z) respectively) is generated by one of the transvections

t1n(1), ti+1i(1), tn1(1), tii+1(1), i = 1, 2, . . . , n− 1,

and by the matrix εµ for any (1,−1)-diagonal matrix ε under condition that εµ ∈ SLn(Z)
(det(εµ) = −1 respectively).

– 414 –
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Let I be an ideal of the ring R. Then the natural ring homomorphism ρI : R→ R/I defines
a surjective homomorphism

ψI : Mn(R) →Mn(R/I)

of the ring of n × n-matrices Mn(R) with the usual operations of addition and multiplication,
where for any matrix (aij) ∈Mn(R) by definition

ψI : (aij) → (ρI(aij)).

On the other hand, the homomorphism ρI induces a group homomorphism

φI : GLn(R) → GLn(R/I),

φI : SLn(R) → SLn(R/I),

where also by definition
φI : (aij) → (ρI(aij)).

D.A. Suprunenko calls φI a Minkowski homomorphism [7, p. 95]. However, the homomorphism
φI is no longer required to be surjective like the homomorphism ψI (see [1, Example 1]).

A linear group of type Xn over a finite field of q elements will be denoted by Xn(q)

Lemma 5. The group PSLn(2) is a homomorphic image of the groups GLn(Z) and PGLn(Z).

Proof. Evidently, GLn(2) = PGLn(2) = SLn(2) = PSLn(2). Since both groups GLn(2) and
SLn(Z) are generated by their transvections, and GLn(Z) = ⟨En−2enn⟩SLn(Z) and the quotient
ring Z/I by the ideal I generated by the element 2 is isomorphic to a field of two elements, then
the homomorphisms φI : GLn(Z) → GLn(2) and φI : PGLn(Z) → PGLn(2) are surjective.

The lemma is proved. 2

For brevity, the group generated by three involutions, two of which commute, will be called
(2×2, 2)-generated, and, by definition, we consider the identity group as such and do not exclude
the coincidence of two or all three involutions. With this definition, the following lemma is valid

Lemma 6. The class of (2 × 2, 2)-generated groups is closed under homomorphic images.

We use the following notations: ab = bab−1, [a, b] = aba−1b−1.

2. Proof of Theorem 1

The case of n = 2. The fact that the group GL2(Z) is not generated by three involutions, two
of which commute, was established in [3, Sentence 2.3].

Cases n = 3,4. For n = 3, 4 the group PSLn(2) is not (2 × 2, 2)-generated [4]. Therefore,
by virtue of Lemmas 5 and 6, the group GLn(Z) will also be such. Note that for n = 2 this
argument fails, since the group PSL2(2) is isomorphic to a dihedral group of order 6, which is
(2 × 2, 2)-generated by definition.

Case n = 5. Let us show that the group GL5(Z) is generated by the following three involutions

α =


−1 0 0 0 0

1 1 0 0 0

0 0 1 0 0

0 0 0 1 1

0 0 0 0 −1

 , β =


0 0 0 0 −1

0 0 0 −1 0

0 0 −1 0 0

0 −1 0 0 0

−1 0 0 0 0

 ,
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γ =


0 0 0 1 0

0 0 1 0 0

0 1 0 0 0

1 0 0 0 0

0 0 0 0 1

 ,

the first two of which commute. Suppose M = ⟨α, β, γ⟩. Let

η = βγ =


0 0 0 0 −1

−1 0 0 0 0

0 −1 0 0 0

0 0 −1 0 0

0 0 0 −1 0

 .

Then

αη =


−1 0 0 0 0

0 −1 0 0 0

0 1 1 0 0

0 0 0 1 0

1 0 0 0 1

 ,

[α, αη] = t31(−1)t41(1),

[α, αη]
η

= t42(−1)t52(1),

[α, [α, αη]
η
] = t42(1)t51(−1)t52(−2),

[α, [α, αη]
η
]
η−1

= t31(1)t41(−2)t45(−1),[
[α, αη]

η
, [α, [α, αη]

η
]
η−1
]

= t42(1),

(t42(1))η
3

= t25(1),

[t42(1), t25(1)] = t45(1).

Thus, M contains the transvection t45(1) and the monomial matrix η = −µ with determinant −1.
By Lemma 4 M = GL5(Z). What was required to show.

Case n = 6. Let us show that the group GL6(Z) is generated by the following three involutions

α =



−1 0 0 0 0 0

1 1 0 0 0 0

0 0 1 0 0 0

0 0 0 0 1 0

0 0 0 1 0 0

0 0 0 0 0 −1


,

β =



0 1 0 0 0 0

1 0 0 0 0 0

0 0 0 1 0 0

0 0 1 0 0 0

0 0 0 0 0 1

0 0 0 0 1 0


, γ =



0 0 0 0 0 1

0 0 0 0 1 0

0 0 0 1 0 0

0 0 1 0 0 0

0 1 0 0 0 0

1 0 0 0 0 0


.
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The involutions β and γ commute. Let us introduce the following notation for some diagonal
and monomial matrices by setting

di = En − 2eii,

dij = En − 2eii − 2ejj ,

n+ij = tij(1)tji(−1)tij(1),

n−ij = tij(−1)tji(1)tij(−1),

nij = din
+
ij .

Obvious relations are valid for the specified elements, which we will use below.

(di)
2 = (dij)

2 = (nij)
2 = n+ijn

−
ij = 1,

(n+ij)
2 = (n−ij)

2 = dij ,

n+ij = n−ji,

nij = nji.

Note also that nij is the permutation matrix corresponding to the transposition (ij). In these
notations

α = d16t21(1)n45,

β = n12n34n56,

γ = n34n25n16.

Matrix calculations show that
αβ = d25t12(1)n36,

αγ = d16t56(1)n23,

υ = (αγα)2 = t21(1)t31(1)t46(−1)t56(−1),

η = (ααβ)2 = t21(−1)n−21d34d56,

(αβ)η = d15t21(1)n36,

(α(αβ)η)2 = d34d56,

(d34d56)γ = d12d34,

αd12d34 = d16d45t21(1)n45,

ααd12d34 = d45,

(d45)γ = d23,

(d12d34)d45d23 = d15,

d15(αβ)η = t21(1)n36,

(t21(1)n36)β = t12(1)n45,

(d15)γ = d26,

d26α = d12t21(1)n45,

(d12xr1(1)n45η)2 = d12,
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d12d26 = d16,

d16α = t21(1)n45,

(t12(1)n45)γ = t65(1)n23,

(t21(1)n45t65(1)n23)2 = t21(1)t31(1)t64(1)t65(1),

υβ = t12(1)t35(−1)t42(1)t65(−1),

(υβ)η = t21(−1)t35(−1)t41(−1)t65(−1),

[(υβ)η, (t21(1)n45t65(1)n23)2] = t61(1),

(t61(1))γ = t16(1),

t16(1)t61(−1)t16(1) = n+61,

βγ = n15n26,

[α, t16(1)] = t26(−1),

(t26(−1))βγ = t62(−1),

t26(1)t62(−1)t26(1) = n+26,

(n+61)n
+
26 = n+21,

(n+21)γ = n−65,

(t16(1))n
+
26 = t12(1),

dβ16 = d25,

t12(−1)d25α
β = n36,

nβ36 = n45,

nγ45 = n23,

(n36)n45n
+
65 = n34.

Thus, we have obtained monomial elements n+21, n23, n34, n45, n
−
65, which generate a subgroup

N containing a representative of each coset of the whole monomial subgroup of GL6(Z) by
its diagonal subgroup. Such a subgroup N acts transitively by conjugations on the subgroups
trs(Z) = ⟨trs(1)⟩. We have already obtained several transvections trs(1), and there are also
matrices with determinant −1. Thus, by Lemma 3, the involutions α, β, γ generate GL6(Z).

The case of n > 7. In the paper [2] for n > 7 in the proof of the generation of the groups
PSLn(Z) for n = 4k + 2 and SLn(Z) for n ̸= 4k + 2 by three involutions α, β, γ, the first
two of which commute, all calculations, namely, the commutation of two transvections and their
conjugation by monomial matrices are carried out up to sign. Therefore, by changing only one
of the generating monomial involutions so that its determinant is equal to −1, one can obtain
the (2 × 2, 2)-generatedness of the group GLn(Z). The following changes are suitable for our
purposes. We replace:

1) β on β′ =
n∑
i=1

(−1)ei,n−i+1 for n = 4k+ 2 (in this case in [2] the preimage of the involution

β in the group SLn(Z) has order 4);
2) γ on γ′, where γ′ differs from γ only in the sign of the element at position (n, n) for

n ̸= 4k + 2.
The theorem is proved.

Note. There is a typo in [2] on page 70. For n = 2(2k+1)+1 (k=7, 11, . . . ) instead of η2 = En
there should be η2 = −En.
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3. Proof of Theorem 2

The case of n = 2. The fact that the group PGL2(Z) is generated by three involutions, two of
which commute, was established in [3, Proposition 2.1].

Cases n = 3,4. For n = 3, 4 the group PSLn(2) is not (2 × 2, 2)-generated [4]. Therefore, by
virtue of Lemmas 5 and 6, the group PGLn(Z) will also be such.

Case n > 5. The group PGLn(Z) is a homomorphic image of the group GLn(Z). Therefore, by
virtue of Lemma 6, it follows from Theorem 1 that in this case the group PGLn(Z) is (2× 2, 2)-
generated.

The theorem is proved.

This work is supported by the Krasnoyarsk Mathematical Center and financed by the Ministry
of Science and Higher Education of the Russian Federation (Agreement no. 075-02-2023-936).
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О порождаемости групп GLn(Z) и PGLn(Z)
тремя инволюциями, две из которых перестановочны

Ирина А. Марковская
Яков Н. Нужин

Сибирский федеральный университет
Красноярск, Российская Федерация

Аннотация. Доказано, что общая линейная группа GLn(Z) (соответственно, ее проективный образ
PGLn(Z)) над кольцом целых чисел Z тогда и только тогда порождается тремя инволюциями, две
из которых перестановочны, когда n > 5 (соответственно, когда n = 2 и n > 5 ).

Ключевые слова: общая линейная группа, кольцо целых чисел, порождающие тройки инволю-
ций.
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1. Introduction and preliminaries

The paper is devoted to the solutions of the Beltrami equation

D̄Af (z) :=
∂f (z)

∂z̄
−A (z)

∂f (z)

∂z
= 0 (1)

which is directly related to the theory of quasi-conformal mappings (see [1,13]). The functionA(z)

in general is assumed to be measurable with the condition |A (z)| 6 C < 1 almost everywhere
in the domain D ⊂ C. Solutions of equation (1) are often called A(z)-analytic functions. The
most interesting case is ∂A = 0, i.e. A(z) is an anti-analytic function in D and such that
|A (z)| 6 C < 1 ∀z ∈ D. Then according to (1) the class f ∈ OA (D) of A (z)-analytic functions
in D is characterized by the fact that D̄Af = 0. Since any anti-analytic function is smooth, it
follows that OA (D) ⊂ C∞ (D) (see [13]).

Here we study the analogs of the well-known Weierstrass and Blaschke theorems for A (z)-
analytic functions in convex domains, when A (z) is an anti-analytic function. The requirement
for the convexity of the domain is due to the fact that for non-convex domains the required
kernel of the integral formula, which is involved in the proof of the main results, may not exist.
For analytic functions, the Weierstrass and Blaschke factorizations are well studied (see [7, 8]).

Let us present some facts from the theory of A (z)- analytic functions that we will need below.
Consider the integral

ψ (z, ξ) = z − ξ +

∫
γ(ξ,z)

Ā (τ) dτ ∈ OA (D) ,

∗muhayyo.rn@gmail.com https://orcid.org/0000-0002-2884-6820
†shohruhmath@mail.ru

c⃝ Siberian Federal University. All rights reserved
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where γ (ξ, z) is a smooth curve connecting points ξ, z ∈ D. If the domain D simply connected,
then the integral

I (z) =

∫
γ(ξ,z)

Ā (τ) dτ

does not depend on the integration path; it coincides with the primitive, I ′ (z) = Ā (z) . The
function ψ (z, ξ) for convex domains has a single zero at the point z = ξ. In particular, the set

L (ξ, r) =

{
z ∈ D :

∣∣∣∣ψ (z, ξ)

∣∣∣∣ =

∣∣∣∣z − ξ +
∫

γ(ξ,z)

Ā (τ) dτ

∣∣∣∣ < r

}
is an open connected set in D.

For sufficiently small r > 0 it belongs compactly to D and contains the point ξ. This set is called
the A (z)-lemniscate centered at ξ and denoted as L (ξ, r). Put

K (z, ξ) =
1

2πi
.

1

z − ξ +
∫

γ(ξ,z)

Ā (τ) dτ
. (2)

Theorem 1.1 (analog of Cauchy’s formula, see [4, 9]). Let D ⊂ C be a convex domain and
G ⊂⊂ D be its subdomain with a piecewise smooth boundary ∂G. Then for any function f (z) ∈
OA (G)

∩
C
(
Ḡ
)

we have

f (z) =
1

2πi

∫
∂G

f (ξ)

z − ξ +
∫

γ(ξ,z)

A(τ)dτ

(
dξ +A (ξ) d ξ̄

)
, z ∈ G. (3)

2. Generalized Weierstrass theorem for A (z)-analytic
functions.

The main result of the section is following theorem.

Theorem 2.1. Let D ⊂ C be a convex domain and G ⊂⊂ D its compact subdomain. Then,
whatever sequence of points an ∈ G that has no limit points in G, there exists an A (z)-analytic
in G function f that has zeros at all points of an and only at these points.

Proof. Note that if the set {an} = {a1, a2, . . . , an} is finite, then the product
m∏
n=1

ψ(z, an) can be

taken as the function f (z). However, when the set {an} is countable this product may diverge.
In this case, the function f (z) is constructed in the form of an infinite product, also with the help
of ψ (z, ξ), which for convex domains has a single zero z = ξ. But the ψ(z, an) is multiplied by
some additional function, that do not vanish, so that the considered infinite product converges
uniformly.

For each point an, we find a point bn ∈ ∂G, which is closest to the point an. Then the value
of rn = ψ(bn, an) → 0 at n→ ∞. Since

ψ(z, bn) − ψ(an, bn) = z − bn +

∫
γ(bn,z)

Ā (τ) dτ − (an − bn) −
∫

γ(bn,an)

Ā (τ) dτ =

= z − an +

∫
γ(an,z)

Ā (τ) dτ = ψ(z, an),

we get
ψ(z, an)

ψ(z, bn)
=
ψ(z, bn) − ψ(an, bn)

ψ(z, bn)
= 1 − ψ(an, bn)

ψ(z, bn)
.
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We fix n ∈ N and consider the decomposition

ln
ψ(z, an)

ψ(z, bn)
= ln

(
1 − ψ(an, bn)

ψ(z, bn)

)
= −

∞∑
k=1

ψk(an, bn)

kψk(z, bn)
. (4)

The series converges uniformly on the compact set {z ∈ G : |ψ(z, bn)| > 2rn} . Therefore, we
can choose a natural number pn so that∣∣∣∣∣ln ψ(z, an)

ψ(z, bn)
+

pn∑
k=1

ψk(bn, an)

kψk(z, bn)

∣∣∣∣∣ < 1

2n
, |ψ(z, bn)| > 2rn, (n = 1, 2, . . . ). (5)

With this choice of pn, the infinite product

f(z) =

∞∏
n=1

ψ(z, an)

ψ(z, bn)
e

pn∑
k=1

ψk(bn,an)

kψk(z,bn) (6)

converges uniformly inside the domain G\ {an}.
Indeed, for any compact set K ⊂⊂ G, there is N such that an /∈ K, |ψ(z, bn)| > 2rn for all

n > N and all z ∈ K. Then the series of A (z)-analytic functions

∞∑
n=N

(
ln
ψ(z, an)

ψ(z, bn)
+

pn∑
k=1

ψk(bn, an)

kψk(z, bn)

)

and, therefore, the infinite product
∞∏
n=N

ψ(z, an)

ψ(z, bn)
e

pn∑
k=1

ψk(bn,an)

kψk(z,bn) due to (5) converges on K uni-

formly. Therefore, the product

f(z) =

∞∏
n=1

ψ(z, an)

ψ(z, bn)
e

pn∑
k=1

ψk(bn,an)

kψk(z,bn) =

N−1∏
n=1

ψ(z, an)

ψ(z, bn)
e

pn∑
k=1

ψk(bn,an)

kψk(z,bn) ×
∞∏
n=N

ψ(z, an)

ψ(z, bn)
e

pn∑
k=1

ψk(bn,an)

kψk(z,bn)

is an A (z)-analytic function in G that vanishes only at points an ∈ G.

Corollary 1. Let D ⊂ C be a convex domain and G ⊂⊂ D an arbitrary simply connected
compact subdomain. Then, any function f (z) ∈ OA (G) admits a factorization

f(z) = eg(z)
∏
n

ψ(z, an)

ψ(z, bn)
e

pn∑
k=1

ψk(bn,an)

kψk(z,bn) , (7)

where {an} is a set (finite or countable) of zeros of the function f (z) ∈ OA(G), pn, bn the values
defined in the proof of Theorem 2, and g (z) is some A (z)-analytic function in G. Note that if
{an} is finite, then representation (7) is very simple,

f(z) = eg(z)
∏
n

ψ(z, an) .

Proof. The corollary is easily obtained if we take into account that the ratio

f(z)/
∏
n

ψ(z, an)

ψ(z, bn)
e

pn∑
k=1

ψk(bn,an)

kψk(z,bn)
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is an A (z)-analytic and non-vanishing function in G. Since G ⊂⊂ D is simply connected, the
logarithm

g (z) = ln

{
f(z)/

∏
n

ψ(z, an)

ψ(z, bn)
e

pn∑
k=1

ψk(bn,an)

kψk(z,bn)

}
∈ OA (G)

and

f(z) = eg(z)
∏
n

ψ(z, an)

ψ(z, bn)
e

pn∑
k=1

ψk(bn,an)

kψk(z,bn) .

3. The Blaschke product for A (z)-analytic functions.

In this section, we study the zero densities of an A(z)-analytic function f(z) ∈ OA(L),

bounded in lemniscate L = L(a,R) = {|ψ (a, z)| < R} in a convex domain D ⊂ C. Let us start
with the formulation of the following Jensen formula

Theorem 3.1 (Jensen’s formula). Let f ∈ OA (L(a,R)). Denote by n (t) the number of zeros,
taking into account the multiplicities of the function f(z) in L̄(a, t), t < R. Assume that f(a) ̸= 0,
i.e. n(0) = 0. Then, the following formula holds

r∫
0

n (t) dt

t
=

1

2πr

∫
|ψ(z,a)|=r

ln |f (z)| |dz +A (z) d z̄| − ln |f (a)| . (8)

Proof. Suppose that a1, a2, a3, . . . are the zeros of the function f in L (a,R) , in the non-
decreasing order of rn = |ψ (a, an)|, and each a1, a2, a3, . . . zero in the sequence occurs as many
times as its multiplicity. First we show that under the condition rn < rn+1 for r ∈ (rn, rn+1) we
have

1

2πr

∫
|ψ(z,a)|=r

ln |f (z)| |dz +A (z) dz̄| = ln
rn |f (a)|

r1r2r3 . . . rn
= ln |f (a)| + n ln r − ln r1r2 . . . rn. (9)

To do this, consider the finite product

B (z) =

n∏
k=1

r · |ψ(ak, a)|
ψ(ak, a)

ψ(ak, a) − ψ(z, a)

r2 − ψ(ak, a)ψ(z, a)
.

It represents an A (z)-analytic function in the lemniscate L (a, rn+1) that vanishes only at the
points a1, a2, . . . , an. Therefore, the following representation is true

f (z) = eg(z)B (z) = eg(z)
n∏
k=1

r · |ψ(ak, a)|
ψ(ak, a)

ψ(ak, a) − ψ(z, a)

r2 − ψ(ak, a)ψ(z, a)
, g (z) ∈ O (L (a, rn+1)) .

From here

ln |f (z)| = Re g (z) +

n∑
k=1

ln

∣∣∣∣r ψ(ak, a) − ψ(z, a)

r2 − ψ(ak, a)ψ(z, a)

∣∣∣∣, ln |f (a)| = Re g (a) +

n∑
k=1

ln
rk
r
.

Since Re g (z) is A (z)-analytic function, we have (see [6])

1

2πr

∫
|ψ(z,a)|=r

Re g (z) |dz +A (z) dz̄| = Re g (a) .
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Since
∣∣∣∣r ψ(ak, a) − ψ(z, a)

r2 − ψ(ak, a)ψ(z, a)

∣∣∣∣ = 1 for |ψ (z, a)| = r, we get

1

2πr

∫
|ψ(z,a)|=r

ln

∣∣∣∣r ψ(ak, a) − ψ(z, a)

r2 − ψ(ak, a)ψ(z, a)

∣∣∣∣ |dz +A (z) dz̄| = 0.

Therefore,

1

2πr

∫
|ψ(z,a)|=r

ln |f (z)| |dz +A (z) dz̄| = Re g (a) = ln |f (a)| + n ln r − ln r1r2 . . . rn,

which proves the validity of formula (9).
It is clear that

ln |f (a)| + n ln r − ln r1r2 . . . rn = ln |f (a)| + n ln r −
n∑
k=1

ln rk = ln |f (a)|+

+

n−1∑
k=1

k (ln rk+1 − ln rk) +n (ln r − ln rn) = ln |f (a)| +

n−1∑
k=1

k

rk+1∫
rk

dt

t
+ n

r∫
rn

dt

t
= ln |f (a)|+

+

n−1∑
k=1

rk+1∫
rk

n (t) dt

t
+

r∫
rn

n (t)

t
dt =

rn∫
0

n (t)

t
dt+

r∫
rn

n (t)

t
dt+ ln |f (a)| =

r∫
0

n (t) dt

t
+ ln |f (a)| .

It follows that formula (9) can be written as

r∫
0

n (t) dt

t
=

1

2πr

∫
|ψ(z,a)|=r

ln |f (z)| |dz +A (z) d z̄| − ln |f (a)| . (10)

Note that we proved formula (10) under the condition rn < r < rn+1. If we show the
continuous increase of both parts of this formula with the continuous increase of r from rn+1− 0
to rn+1+0, then this will prove the validity of formula (10) for an arbitrary r < R. For the left side
of (10) this is obvious. For the right side, let rn < rn+1 = rn+2 = . . . . = rn+m < rn+m+1, m > 1.
Then in some ring L (a, r′′) \L̄ (a, r′) , rn < r′ < rn+1 < r′′ < rn+m+1, (see [7])

f (z) = g (z)

m∏
k=1

[ψ (an+k, a) − ψ (z, a)] = g (z)

m∏
k=1

ψ (an+k, a)

[
1 − ψ (z, a)

ψ (an+k, a)

]
for all z ∈ L (a, r′′) \L̄ (a, r′) . Therefore,

ln |f (z)| = ln |g (z)| +

m∑
k=1

ln

[
|ψ (an+k, a)| +

∣∣∣∣1 − ψ (z, a)

ψ (an+k, a)

∣∣∣∣ ] = ln |g (z)|+

+

m∑
k=1

ln rn+k +

m∑
k=1

ln

∣∣∣∣1 − r

rn+1
eit
∣∣∣∣ = ln |g (z)| +m ln rn+1 +m ln

∣∣∣∣1 − r

rn+1
eit
∣∣∣∣ , 0 6 t 6 2π.

From here,

ln |f (z)| = ln |g (z)| +m ln rn+1 +m ln

∣∣∣∣1 − r

rn+1
eit
∣∣∣∣ = η (z) +m ln

∣∣∣∣1 − r

rn+1
eit
∣∣∣∣ ,
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where
η (z) = ln |g (z)| +m ln rn+1

is continuous in a neighborhood of r′ < r < r′′. Now it is sufficient to prove that the integral

I (r) =

∫ 2π

0

ln

∣∣∣∣1 − r

rn
eit
∣∣∣∣ dt, I (rn) = 0,

is continuous at the point r = rn+1. For

r

rn+1
>
∣∣∣∣1 − r

rn+1
eit
∣∣∣∣2 = 1 − 2

r

rn+1
cos t+

r2

r2n+1

= sin2t+

(
cos t− r

rn+1

)2

> sin2t.

Hence, for fixed ε > 0, δ ∈ (0, π) we have

I (r) − I (rn+1) = I (r) =

∫ 2π

0

ln

∣∣∣∣1 − r

rn+1
eit
∣∣∣∣ dt =

=

∫ δ

−δ
ln

∣∣∣∣1 − r

rn+1
eit
∣∣∣∣ dt+

∫
[0,2π]\[−δ,+δ]

ln

∣∣∣∣1 − r

rn+1
eit
∣∣∣∣ dt.

∣∣∣∣∣
∫ δ

−δ
ln

∣∣∣∣1 − r

rn+1
eit
∣∣∣∣ dt
∣∣∣∣∣ <

∫ δ

−δ
(ln 3 + |ln |sin t||) dt <

∫ δ

−δ
(ln 3 + |ln |t||) dt <

< (2 + ln 9) δ + 2δ ln
1

δ
< (4 + ln 9) δ ln

1

δ
.

We fix δ so small that the right side is smaller than
ε

2
. The integral

∫
[0,2π]\[−δ,+δ]

ln

∣∣∣∣1 − r

rn+1
eit
∣∣∣∣ dt

is continuous at the point r = rn. Therefore, for r → rn+1 we have∫
[0,2π]\[−δ,+δ]

ln

∣∣∣∣1 − r

rn+1
eit
∣∣∣∣ dt→ ∫

[0,2π]\[−δ,+δ]

ln

∣∣∣∣1 − rn
rn+1

eit
∣∣∣∣ dt = 0

and we get that for sufficiently close r to rn+1 the integral∣∣∣∣∣∣∣
∫

[0,2π]\[−δ,+δ]

ln

∣∣∣∣1 − r

rn+1
eit
∣∣∣∣ dt
∣∣∣∣∣∣∣ <

ε

2
.

Hence, |I (r) − I (rn+1)| < ε i.e. I (r) → I (rn+1) for r → rn+1 and the integral∫ 2π

0

ln

∣∣∣∣1 − r

rn+1
eit
∣∣∣∣ dt

is continuous at the point r = rn+1.
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4. Properties of the Blaschke product for A (z)-analytic
functions

If 0 < |ψ (an, a)| < R , n = 1, 2, 3, . . . , and an infinite product

∞∏
n=1

R · |ψ(an, a)|
ψ(an, a)

ψ(an, a) − ψ(z, a)

R2 − ψ(an, a)ψ(z, a)
(11)

converges uniformly inside {|ψ(z, a)| < R} \ {an}, then it represents some A (z)-analytic in the
lemniscate L (a,R) function B (z) . It is called the Blaschke product. One can admit a finite
number of zeros in the lemniscate L (a,R) . In this case, the number of factors in (11) will be
finite.

Now we study the convergence of the Blaschke product (11).We have

R
|ψ(an, a)|
ψ(an, a)

ψ(an, a) − ψ(z, a)

R2 − ψ(an, a)ψ(z, a)
= R

[
|ψ(an, a)|

1 − ψ(z,a)
ψ(an,a)

R2 − ψ(an, a)ψ(z, a)

]
=

= R
1

R2

[
|ψ(an, a)| +

(
ψ(an, a) − R2

ψ(an,a)

)
|ψ(an, a)|ψ(z, a)

R2 − ψ(an, a)ψ(z, a)

]
=

=
1

R

[
|ψ(an, a)| +

|ψ(an, a)|2 −R2

R2 − ψ(an, a)ψ(z, a)

|ψ(an, a)|ψ(z, a)

ψ(an, a)

]
.

Here

R
|ψ(an, a)|
ψ(an, a)

ψ(an, a) − ψ(z, a)

R2 − ψ(an, a)ψ(z, a)
=

=
1

R

{
R+ (|ψ(an, a)| −R)

{
1 +

(|ψ(an, a)| +R) |ψ(an, a)|
ψ(an, a)

[
R2 − ψ(an, a)ψ(z, a)

]ψ(z, a)

}}
.

Therefore, the considered infinite product converges uniformly inside {|ψ(z, a)| < R} \ {an}
if and only if

∞∑
n=1

(R− |ψ(an, a)|) <∞ .

Note that∣∣∣∣R ψ(an, a) − ψ(z, a)

R2 − ψ(an, a)ψ(z, a)

∣∣∣∣2 =
|ψ(an, z)|2

|ψ(an, z)|2 + |R− ψ(an, a)|2 + |R− ψ(an, a)|2
6 1 ∀z ∈ L (a,R) .

Under the condition
∞∑
n=1

(R− |ψ(an, a)|) <∞ ,

the A (z)-analytic Blaschke product B (z) in L (a,R) does not exceed 1 in absolute value, i.e.,
|B (z)| 6 1.

Let
∞∑
n=1

(R− |ψ (an, a)|) <∞, so that

∞∏
n=1

R
|ψ(an, a)|
ψ(an, a)

ψ(an, a) − ψ(z, a)

R2 − ψ(an, a)ψ(z, a)
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converges in L (a,R) and represents the Blaschke product B (z) , which is A(z)-analytic in
L(a,R), |B(z)| < 1.

The following assertion implies that at almost all points of the boundary ∂L (a,R) the
Blaschke product has radial limits

Lemma 4.1. If a function f ∈ OA(L(a,R)) and is bounded in L(a,R), |f | 6 M, then it has
the radial limit lim

z→ξ∈∂L(a,R)
f(z) almost everywhere on ∂L (a,R).

Proof. We expand the function f (z) into a series: f (z) =
∞∑
n=0

cnψ
n (z, a) , z ∈ L (a,R) (see [9]).

First we show that
∞∑
n=1

|cn|2R2n <∞. Setting ψ (z, a) = reit, we have

|f (z)|2 = f (z) f (z) =

∞∑
n=0

cnr
neint

∞∑
n=0

cnr
ne−int =

∞∑
n=0

 n∑
j=0

cjcn−je
it(2j−n)

 rn, r < R.

The series
∞∑
n=0

 n∑
j=0

cjcn−je
it(2j−n)t

 rn

converges uniformly in [0, 2π] and integrating it, we get∫
|ψ(z,a)|=r

|f (z)|2 |dz +A (z) d z̄| =

∞∑
n=0

|cn|2r2n,

That is why
∞∑
j=0

|cn|2r2n 6M2.

Since this inequality is true for all r < R, we have
∞∑
n=0

|cn|2R2n 6M2.

According to the Riesz–Fischer theorem, it follows from the condition
∞∑
n=1

|Rncn|2 <∞ that

∞∑
n=−∞

cnR
neitn =φ(t) ∈L2[0; 2π] is a Fourier series. So that

∫
[0;2π]

∣∣∣ ∞∑
n=1

cnR
neitn − φ(t)

∣∣∣2dt = 0.

This means that the series is Cesaro summable and converges to φ (t) for almost all t ∈ [0; 2π].
But then it is Abel summable (see [8, 12]), i.e.

lim
z→ξ∈∂L(a,R)

f (z) = lim
r→R−0

∞∑
n=0

cnr
neint

for almost all t ∈ [0, 2π].

The Lemma just proven states that for almost all ξ ∈ ∂L (a,R) the limit function

lim
z→ξ∈∂L(a,R)

B (z) = B∗ (ξ)

exists.
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Theorem 4.2. |B∗ (z)| a.e
=

∂L(a,R)
1 holds almost everywhere on L (a,R).

Proof. Without loss of generality, we can assume that all points an ̸= a (otherwise we would

consider the function B∗ (z) =
B (z)

ψN (z, a)
, where N is the order of zero of the function B(z) at the

point a). Then ln |B (a)| =
∞∑
n=1

ln
|ψ (an, a)|

R
and the fact that

∞∑
n=1

(R− |ψ (an, a)|) <∞ implies

∞∑
n=1

ln
|ψ (an, a)|

R
> −∞.

Take r ∈ (0;R) not equal to any of the values |ψ(an, a)| . Then, according to the analogue of the
Jensen formula

1

2πr

∫
|ψ(z,a)=r|

ln |B (z)| |dz +A (z) dz̄| = ln |B (a)| −
∑

|ψ(an,a)|<r

ln
|ψ (an, a)|

r
.

Substituting

ln |B (a)| =

∞∑
n=1

ln
|ψ (an, a)|

R
,

we get

∞∑
n=1

ln
|ψ (an, a)|

R
=

∑
|ψ(an,a)|<r

ln
|ψ (an, a)|

r
+

1

2πr

∫
|ψ(z,a)=r|

ln |B (z)| |dz +A (z) dz̄|,

or
1

2πr

∫
|ψ(z,a)|=r

ln |B (z)| |dz +A (z) dz̄| =

∞∑
n=1

ln
|ψ (an, a)|

R
−

∑
|ψ(an,a)|<r

ln
|ψ (an, a)|

r
.

We fix some number n0 such that

∞∑
n=n0+1

ln
|ψ (an, a)|

R
< ε

and take r < R so large that for n ∈ {1, 2, . . . , n0} all points of zn lie in L (a, r). Then from the
previous relation we get

1

2πr

∫
|ψ(z,a)|=r

ln |B (z)| |dz +A (z) dz̄| >
n0∑
n=1

ln
|ψ (an, a)|

R
−

n0∑
n=1

ln
|ψ (an, a)|

r
− ε.

From here it follows that

1

2πr

∫
|ψ(z,a)|=r

ln |B (z)| |dz +A (z) dz̄| > −2ε,

if we take r < R close enough to R. Due to the arbitrariness of the number ε > 0, we obtain

lim
r→R−0

1

2πr

∫
|ψ(z,a)|=r

ln |B (z)| |dz +A (z) dz̄| > 0. (12)
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But from the conditions lim
z→ξ∈∂L(a,R)

B(z) = B∗ (ξ) almost everywhere and ln |B(z)| 6 0,

z ∈ L (a, r) according to (12) we get
1

2πR

∫
|ψ(z,a)|=R

ln |B (z)| |dz +A (z) dz̄| = 0. This means

that |B∗ (z)| a.e
=

∂L(a,R)
1.

Theorem 4.3 (An analogue of Blaschke’s theorem). Let the function f(z) ∈ OA(L(a,R)) and
a1, a2,a3, . . . be the zeros of the function f in L(a,R) , rn = |ψ(a, an)|. If

M = sup
0<r<R

1

2πr

∫
|ψ(z,a)|=r

ln |f(z)| |dz +Adz| <∞

then ∑
n

(R− |ψ(an, a)|) <∞

and the Blaschke product

B(z) =
∏
n

R · |ψ(a, an)|
ψ(a, an)

ψ(a, an) − ψ(z, a)

R2 − ψ(a, an)ψ(z, a)

is A (z)-analytic in {|ψ(z, a)| < R}, f(z) = B(z) ·G(z), where the function G(z) is A (z)-analytic
and has no zeros at {|ψ(z, a)| < R}.

Proof. Without loss of generality, we can assume that f(a) ̸= 0. Then by the Jensen formula

1

2πr

∫
|ψ(z,a)|=r

ln |f(z)| |dz +Adz| = ln
rnf(a)

r1r2 . . . rn
, r < R,

it follows, that ∑
|ψ(an,a)|<r

ln

∣∣∣∣ r

ψ(an, a)

∣∣∣∣ 6 − ln |f(a)| .

Letting r tend to R, we get that ∑
n

ln
R

|ψ(an, a)|
<∞.

Note that the convergence of this series is equivalent to the convergence of the series∑
n

(R− |ψ(an, a)|) <∞.

The existence of the Blaschke product B(z) now follows according to Theorem 3.

Finally, if we define a function G(z) in {|ψ(z, a)| < R} by the formula G(z) =
f(z)

B(z)
∈

OA(L(a,R)), then G(z) ̸= 0 and f(z) = B(z) ·G(z).
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Обобщенная теорема Вейерштрасса и произведение
Бляшке для A(z)-аналитических функций

Мухайе Нематиллаева
Шохрух Хурсанов

Национальный университет Узбекистана
Ташкент, Узбекистан

Аннотация. Мы рассматриваем A(z)-аналитические функции в случае, когда A(z) является ан-
тиголоморфной функцией. В статье для A(z)-аналитических функций доказаны аналог теоремы
Вейерштрасса и аналог теоремы Бляшке.

Ключевые слова: A (z)-аналитическая функция, интегральная теорема Коши, теорема Вейер-
штрасса, теорема Йенсена, теорема Бляшки.
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Abstract. The local asymptotic normality property of the likelihood ratio statistic in the competing
risk model that corresponds to inhomogeneous and randomly right-censored observations is proved in
the paper.

Keywords: local asymptotic normality, likelihood ratio statistic, competing risk model, random cen-
soring, asymptotic representation.
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1. Introduction and preliminaries

There are many works on the study of asymptotic properties of the likelihood ratio statistics
(LRS) for full samples. It was shown that local asymptotic normality (LAN) allows one to
develop an asymptotic theory of maximum likelihood estimates and Bayesian estimates, as well
as the contiguity of families of probability distributions [1–4]. The study of similar properties in
the case of incomplete — censored observations is of considerable interest. Effective estimates for
the unknown parameter were obtained from censored observations when the distribution of the
censoring random variable also depends on the unknown parameter [5]. The properties of local
asymptotic normality for LRS were established in some models of censoring observations in the
presence of competing risks [6–8]. The properties of local asymptotic normality of the likelihood
ratio statistic in the competing risks model under random censoring on the right are studied in
this paper.

Let us consider a inhomogeneous competing risks model (CRM). Let {Xm,m > 1} be
a sequence of random variables (r.v.) defined on a probability space (Ω, A, P ) with distribution
functions (d.f.) H(x; θ), θ ∈ Θ ⊆ R1 with values in a measurable space (Xm, Bm). The joint
properties of pairs

(
Xm, A

(i)
m

)
, i = 1, k; are of interest, where A(1)

m , . . . , A
(k)
m — pairwise disjoint

events P
(

k∪
i=1

A
(i)
m

)
= 1. Let δ(i)m = I

(
A

(i)
m

)
be an indicator of the event A(i)

m , i = 1, k; m > 1.

Suppose that set
(
Xm, A

(1)
m , . . . , A

(k)
m

)
is randomly censored from the right by an r.v. Y with

∗rasulova_nargiza@mail.ru https://orcid.org/0000-0002-4672-1722
c⃝ Siberian Federal University. All rights reserved

– 431 –



Nargiza Nurmukhamedova Local Asymptotic Normality of Statistical Experiments . . .

continuous d.f. K. Observation is an available set
(
Zm; B

(0)
m , B

(1)
m , . . . , B

(k)
m

)
, where Zm =

= min (Xm, Y ) , events B(0)
m = {ω : Y (ω) 6 Xm (ω)} and B

(i)
m = A

(i)
m ∩ {ω : Xm (ω) 6 Y } ,

i = 1, k; m > 1. Let
{
Xm, Ym; B

(0)
m , B

(1)
m , . . . , B

(k)
m

}∞

m=1
be a sequence of independent copies

of population
{
Xm, Y ; B

(0)
m , B

(1)
m , . . . , B

(k)
m

}∞

m=1
and there is a sample Z̃(n) =

(
Z̃1, . . . , Z̃n

)
in

the n-step of the experiment, where Ẑm =
{
Zm; ∆

(0)
m ,∆

(1)
m , . . . ,∆

(k)
m

}
, Zm = min (Xm, Ym),

∆
(i)
m = I

(
B

(i)
m

)
, i = 0, 1, . . . , k. Let us note that considering sample Ẑ(n) the pairs

(
Xm, A

(i)
m

)
are observable only in the case of ∆

(i)
m = 1, i = 1, k; m = 1, n. It is easy to see that r.v. have d.f.

where d.f. is interfering.
Let us introduce sub-distributions

M (i)
m (x; θ) = Pθ

(
Zm < x, M (i)

m

)
, i = 0, 1, . . . , k,

where
M (0)
m (x; θ) = Pθ (Ym 6 x ∧Xm) = Mθ [I (Yj 6 x, Xm > Ym)] =

= Mθ {Mθ [I (Xm > Ym/Ym)] · I (Ym < x)} = Mθ [I (Ym < x) (1 −Hm (Ym; θ))] =

=

∫ x

−∞
(1 −Hm (u; θ))dK(u),

and for i = 1, . . . , k

M (i) (x; θ) = Pθ

(
Xn < x ∧ Ym; A(i)

m

)
= Mθ

[
I
(
Xm < x; A(i)

m , Ym > Xm

)]
=

= Mθ

{
Mθ [I (Ym > Xm/Xm)] · I

(
Ym < x; A(i)

m

)}
= Mθ

[
I
(
Xm < x; A(i)

m

)
(1 −K (Xm))

]
=

=

∫ x

−∞
(1 −K(u))dHm (u; i) .

Then it is easy to see that integral intensity functions Λ
(i)
m can be represented as

Λ(i)
m (x; θ) =

∫ x

−∞

dM
(i)
m (u; θ)

1 −Nm (u; θ)
, m = 1, n, i = 1, k.

Let
(
Y (n), U (n), Q̃

(n)
θ

)
be a sequence of statistical experiments generated by observations Z̃(n).

Moreover, if the set of possible values of the r.v. Z is denoted by Z̃ then we have

Y (n) =
{
Z̃ ⊗ {0, 1}(k+1)

}(n)

=

{ n︷ ︸︸ ︷
Z̃ ⊗ {0, 1}(k+1) ⊗ · · · ⊗ Z̃ ⊗ {0, 1}(k+1)

}
,

where {0, 1}(k+1)
= {0, 1} ⊗ · · · ⊗ {0, 1}︸ ︷︷ ︸

k+1

, U (n) is σ-algebra of Borel sets in Y (n), Q
(n)
θ distribution

on
(
Y (n), U (n)

)
is the n-fold product of "one-dimensional" distributions

Q̃θm

(
x, y(0), y(1), . . . , y(k)

)
= Pθ

(
Zm < x, ∆(0)

m = y(0),∆(1)
m = y(1), . . . ,∆(k)

m = y(k)
)
,

x ∈ R
1
, y(i) ∈ {0, 1}, 1 = 1, k; m = 1;n, Θ is open set in R1.
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Let h(i)m (x; θ) = f
(i)
m (x; θ)

∏
j ̸=i

(
1 − F

(j)
m (x; θ)

)
, i = 1, k; m = 1, n. Let us introduce the likeli-

hood ratio statistics (LRS)

dQ̃
(n)
θ2

(
Z̃(n)

)
dQ̃

(n)
θ1

(
Z̃(n)

) =

n∏
m=1

{
k∏
i=1

[
h
(i)
m (Zm; θ2)

h
(i)
m (Zm; θ1)

]}y(i)m
·
{

1 −Hm (Zm; θ2)

1 −Hm (Zm; θ1)

}y(0)m
,

and its logarithm

Ln(u) = log

dQ̃
(n)
θ2

(
Z̃(n)

)
dQ̃

(n)
θ1

(
Z̃(n)

)
 =

n∑
m=1

k∑
i=1

∫ ∞

−∞
log

[
h
(i)
m (x; θ2)

h
(i)
m (x; θ1)

]
dI
(
Zm < x, ∆(i)

m = 1
)

+

+

n∑
m=1

∫ ∞

−∞
log ·

[
1 −Hm (x; θ2)

1 −Hm (x; θ1)

]
dI
(
Zm < x, ∆(0)

m = 1
)
.

2. LAN of a family of probability measures

Let us now formulate the regularity conditions. If these conditions are fulfilled then one can
establish the local asymptotic normality (LAN) of the family of distributions

{
Q̃

(n)
θ , θ ∈ Θ

}
.

For simplicity, consider the case of homogeneous distributions θ.

(C1) Supports N
h
(i)
m

=
{
x : h

(i)
m (x; θ) > 0

}
, i = 1, k; m = 1, n, are independent of parameter θ

and
n∩

m=1

k∩
n=1

N
h
(i)
m

is not empty.

(C2) For any two points θ1, θ2 ∈ Θ, θ1 ̸= θ2, h
(i)
m (x; θ1) ̸= h

(i)
m (x; θ2).

(C3) There exist derivatives

{
∂lh

(i)
m (x; θ)

∂θl
, l=1, 2; i=1, k; m=1, n

}
, and they are finite for all

x, while ∫ ∞

−∞

∣∣∣∣∣∂lh(i)m (x; θ)

∂θl

∣∣∣∣∣νm (dx) , l = 1, 2; i = 1, k; m = 1, n.

(C4) Fisher information J (θ) =
n∑

m=1
Jm (θ) is finite and positive, where

Jm (θ) =

k∑
i=1

∫ ∞

−∞

(
∂ log h

(i)
m (x; θ)

∂θ

)2

h(i)m (x; θ) νm (dx) +

+

∫ ∞

−∞

(
∂ log (1 −Hm (x; θ))

∂θ

)2

(1 −Hm (x; θ)) dx.

Let us note that according to (C3)∣∣∣∣∂2 (1 −Hm (x; θ))

∂θl

∣∣∣∣ 6 k∑
i=1

∫ ∞

−∞

∣∣∣∣∣∂lh(i)m (x; θ)

∂θl

∣∣∣∣∣νm (dx) <∞, l = 1, 2.

The lemma on the equality to zero of the mean of the contribution of the sample is valid.
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Lemma 2.1. Let regularity conditions (C1)–(C3) are fulfilled. Then

k∑
i=1

Mθ

[
∆(i)
m

∂h
(i)
m (Zm; θ)

∂θ

]
+Mθ

[
∆(0)
m

∂ log (1 −Hm (Zm; θ))

∂θ

]
= 0. (1)

Proof. At l = 1, 2 for all θ ∈ Θ

k∑
l=1

∫ ∞

−∞

(
∂lh

(i)
m (x; θ)

∂θl

)2

νm (dx) +

∫ ∞

−∞

∂l (1 −Hm (x; θ))

∂θl
νm (dx) = 0. (2)

This equality is a differentiated version of the identity

M (0)
m (+∞; θ) +

k∑
i=1

M (i)
m (+∞; θ) = Hm (+∞; θ) = 1.

Now (1) is a consequence of (2).

Let us introduce ψ2(n; θ) =
n∑

m=1
Im(θ), φ (n) = φ (n, t) = ψ−1(n, t), and formulate a theorem

on the LAN of a family of probability measures
{
Q̃

(n)
θ , θ ∈ Θ

}
.

Theorem 1. Let regularity conditions (C1)–(C3) are fulfilled for any T > 0

lim
n→∞

sup
|u|<T

1

ψ2(n; t)

n∑
m=1

(
∂

∂θ

√
h
(i)
m

(
x; t+

u

ψ (n; t)

)
− ∂

∂t

√
h
(i)
m (x; t)

)2

dx = 0, (3)

lim
n→∞

sup
|u|<T

1

ψ2 (n; t)

n∑
m=1

∫ (
∂

∂θ

√
1 −Hm

(
x; t+

u

ψ (n; t)

)
− ∂

∂t

√
1 −Hm (x; t)

)2

dx = 0 (4)

and the Lindberg condition holds

lim
n→∞

1

ψ2 (n; t)

n∑
m=1

k∑
i=1

Mθ

{∣∣∣∣ ∂∂t log h(i)m (Xm; t)

∣∣∣∣ · I (∣∣∣∣∂ log hm (Xm; t)

∂t

∣∣∣∣ > nψ (n; t)

)}
= 0, (5)

lim
n→∞

1

ψ2 (n; t)

n∑
m=1

Mθ

{ ∣∣∣∣ ∂∂t log (1 −Hm (Xm; t))

∣∣∣∣×
×I
(∣∣∣∣∂ log (1 −Hm (Xm; t))

∂t

∣∣∣∣ > nψ (n; t)

)}
= 0.

(6)

Then the family of probability measures

Q̃
(n)
θ (A) =

∫
...
A

∫ n∏
m=1

{
k∏
i=1

[
h(i)m (Zm; θ)

]}y(i)m
· [(1 −Hm (Zm; θ))]

y(0)m · νm (dZm)

satisfies the LAN property at the point θ = t.

Let us introduce

∆n,t = φ (n, t)

n∑
m=1

[
k∑
i=1

∆(i)
m · ∂ log h

(i)
m (Zm; t)

∂t
+ ∆(0)

m · ∂ log (1 −Hm (Zm; θ))

∂t

]
=
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= φ (n; t)

n∑
m=1

k∑
i=1

∆(i)
m · ∂ log h

(i)
m (Zm; t)

∂t
+ φ (n; t)

n∑
m=1

∆0
m

∂ log (1 −Hm (Zm; θ))

∂t
=

= ∆
(1)
n,t + ∆

(2)
n,t,

also ξ(i)n,m=

[
h
(i)
m (Zm; t+ φ (n)u)

h
(i)
m (Zm; t)

]1/2
−1 and ηn,m=

[
1 −Hm (Zm; t+ φ (n)u)

1 −H (Zm; t)

]1/2
−1. Further,

the following assertion is also necessary.

Lemma 2.2. Suppose that conditions of Theorem 1 are hold then for any u ∈ R1 we have

lim
n→∞

n∑
m=1

Mt

[
ξ(i)n,m

]2
6 u2

4
, (7)

lim
n→∞

n∑
m=1

Mt

[
η2n,m

]
6 u2

4
, (8)

lim
n→∞

n∑
m=1

Mt

∣∣∣∣∣ξ(i)n,m − 1

2
φ (n)u · ∂ log h

(i)
m (Zm; t)

∂t

∣∣∣∣∣
2

= 0, (9)

lim
n→∞

n∑
m=1

Mt

∣∣∣∣ηn,m − 1

2
φ (n)u · ∂ log (1 −Hm (Zm; t))

∂t

∣∣∣∣2 = 0. (10)

Proof of Lemma 2.2. We have

n∑
m=1

Mt

[
ξ(i)n,m

]2
=

n∑
m=1

∫
{
x:h

(i)
m (x;θ)̸=0

}
(√

h
(i)
m (x; t+ φ (n)u) −

√
h
(i)
m (x; t)

)2

· νm (dx) 6

6
n∑

m=1

∫ ( φ(n)u∫
0

∂
∂th

(i)
m (x; t+ v) dv

2

√
h
(i)
m (x; t+ φ (n)u)

)2

νm (dx) 6 uφ (n)

4

φ(n)u∫
0

n∑
m=1

I
(i)
m1 (t+ v) dv,

(11)

where

I
(i)
m1 (t) =

∫ ∞

−∞

(
∂ log h

(i)
m (x; t)

∂t

)2

h(i)m (x; t) νm (dx) .

Also
n∑

m=1

Mt

[
ηn,m

]2
=

n∑
m=1

∫
{x:Hm(x;t)=1}

(√
1−Hm (x; t+ φ (n)u) −

√
1−Hm (x; t)

)2
νm (dx) 6

6
n∑

m=1

∫ φ(n)u∫
0

(
∂
∂t (1 −Hm (x; t+ v) dv)

2
√

(1 −Hm (x; t+ v))

)2

νm (dx) 6 uφ (n)

4

φ(n)u∫
0

n∑
m=1

I
(i)
m2 (t+ v) dv,

(12)

where

I
(i)
m2 (t) =

∫ ∞

−∞

(
∂ log (1 −Hm (x; t))

∂t

)2

(1 −Hm (x; t)) νm (dx) . (13)

Next, using the inequality

|ab| < α · a
2

2
+

1

2α
b2,
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where am =
∂
∂θh

(i)
m (x; θ)√
h
(i)
m (x; θ)

and bm =
∂
∂th

(i)
m (x; t)√
h
(i)
m (x; t)

one can find

∣∣∣∣∣ 1

ψ2 (n; t)

n∑
m=1

I
(i)
m1 (θ) − 1

∣∣∣∣∣ 6 1

ψ2 (n; t)

∣∣∣∣∫ (am − bm) (am + bm) νm (dx)

∣∣∣∣ 6
6 1

ψ2 (n; t)

[
α

n∑
m=1

∫
(am − bm)

2 · νm (dx) +
1

α

n∑
m=1

(∫
a2mνm (dx) +

∫
b2m · νm (dx)

)]
.

Assuming α = 2 in this inequality and taking into account (3) and the equality∫
a2mνm (dx) = I

(i)
m1 (θ) ,

we make sure that fraction
1

ψ2 (n; t)

n∑
m=1

I
(i)
m1 (θ) is bounded under the condition |θ − t| <

φ (n) |u| . Using this inequality for large enough α, we verify that

lim
n→∞

sup
|θ−t|<φ(n)|u|

∣∣∣∣∣ 1

ψ2 (n; t)

n∑
m=1

I
(i)
m1(θ) − 1

∣∣∣∣∣ . (14)

Now (7) follows from (11) and (13).

Similarly, setting in inequality (13) am =
∂
∂θ (1 −Hm (x; θ))√

(1 −Hm (x; θ))
and bm =

∂
∂t (1 −Hm (x; t))√

(1 −Hm (x; t))
and repeating all the inequalities, one can obtain

lim
n→∞

sup
|θ−t|<φ(n)|u|

∣∣∣∣∣ 1

ψ2 (n; t)

n∑
m=2

I
(i)
m1 (θ) − 1

∣∣∣∣∣ = 0 (15)

which implies (8). It remains to prove (9) and (10). By virtue of (3) we have

n∑
m=1

Mt

(
ξ(i)n,m − 1

2
φ (n)u

∂
∂th

(i)
m (Zm; t)

h
(i)
m (Zm; t)

)2

6

6 1

4

n∑
m=1

∫ [ φ(n)u∫
0

∂
∂th

(i)
m (Zm; t+ v)√
h
(i)
m (Zm; t+ v)

−
∂
∂th

(i)
m (xm; t)√
h
(i)
m (xm; t)

dv

]2
νm (dx) 6

6 φ (n)u

4

φ(n)u∫
0

dv

n∑
m=1

∫  ∂
∂th

(i)
m (x; t+ v)√
h
(i)
m (x; t)

−
∂
∂th

(i)
m (x; t)√
h
(i)
m (x; t)

2

νm (dx) → 0, n→ ∞.

Similarly, due to (4) we have

n∑
m=1

Mt

(
ηn,m − 1

2
φ (n)u ·

∂
∂t (1 −Hm (Zm; t))

1 −Hm (Zm; t)

)2

6

6 1

4

n∑
m=1

∫ [ φ(n)u∫
0

∂
∂t (1 −Hm (x; t+ v))√

(1 −Hm (x; t+ v))
−

∂
∂t (1 −Hm (x; t))√

(1 −Hm (x; t))
dv

]2
νm (dx) 6
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6 φ (n)u

4

φ(n)u∫
0

dv

n∑
m=1

∫ ( ∂
∂t (1 −Hm (x; t+ v))√

(1 −Hm (x; t+ v))
−

∂
∂t (1 −Hm (x; t))√

(1 −Hm (x; t))

)2

νm (dx) → 0, n→ ∞

which proves Lemma 2.2. 2

Proof of Theorem 1. Under conditions

max
m=1,n

∣∣∣ξ(i)n,m∣∣∣ < ε and max
m=1,n

∣∣∣η(i)n,m∣∣∣ < ε

we obtain

n∑
m=1

log

[
h
(i)
m (Zm; t+ φ (n)u)

hm (Zm; t)

]
= 2 log

(
1 + ξ(i)n,m

)
= 2

n∑
m=1

ξ(i)n,m −
n∑

m=1

[
ξ(i)n,m

]2
+

n∑
m=1

γ(i)n,m

∣∣∣ξ(i)n,m∣∣∣3,
and

n∑
m=1

log

[
1 −Hm (Zm; t+ φ (n)u)

1 −Hm (Zm; t)

]
= 2 log (1 + ηn,m) =

= 2

n∑
m=1

ηn,m−
n∑

m=1

[ηn,m]
2
+

n∑
m=1

βn,m · |ηn,m|3,
(16)

where
∣∣∣γ(i)n,m∣∣∣ < 1 and |βn,m| < 1, m = 1, n; i = 1, k with probability 1. Let us prove the following

relations for terms of expansions (16)

lim
n→∞

Q̃
(n)
t

{
max

16m6n

∣∣∣ξ(i)n,m∣∣∣ > ε

}
= 0, (17)

lim
n→∞

Q̃
(n)
t

{
max

16m6n
|ηn,m| > ε

}
= 0, (18)

lim
n→∞

Q̃
(n)
t

{∣∣∣∣∣
n∑

m=1

[
ξ(i)n,m

]2
− u2

4

∣∣∣∣∣ > ε

}
= 0, (19)

lim
n→∞

Q̃
(n)
t

{∣∣∣∣∣
n∑

m=1

η2n,m − u2

4

∣∣∣∣∣ > ε

}
= 0, (20)

lim
n→∞

Q̃
(n)
t

{∣∣∣∣∣2
n∑

m=1

ξ(i)n,m − φ (n)u ·
n∑

m=1

∂
∂t log h

(i)
m (Zm; t)

h
(i)
m (Zm; t)

+
u2

4

∣∣∣∣∣ > ε

}
= 0, (21)

lim
n→∞

Q̃
(n)
t

{∣∣∣∣∣2
n∑

m=1

ηn,m − φ (n)u ·
n∑

m=1

∂
∂t log (1 −Hm (Zm; t))

(1 −Hm (Zm; t))
+
u2

4

∣∣∣∣∣ > ε

}
= 0 (22)

lim
n→∞

Q̃
(n)
t

{
n∑

m=1

∣∣∣ξ(i)n,m∣∣∣3 > ε

}
= 0 (23)

lim
n→∞

Q̃
(n)
t

{
n∑

m=1

|ηn,m|3 > ε

}
= 0. (24)
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Using above relations, one needs to establish (17), (19), (21) and (23). The rest relations are
proved quite similarly. Consider the inequality

Q̃
(n)
t

{
max

16m6n

∣∣∣ξ(i)n,m∣∣∣ > ε

}
6

n∑
m=1

Q̃
(n)
t

{∣∣∣ξ(i)n,m∣∣∣ > ε
}
6

6
n∑

m=1

Q̃
(n)
t

{∣∣∣∣∣ξ(i)n,m − φ (n)u

2

∂h
(i)
m (Zm; t)

∂t
hm(Zm;t)

∣∣∣∣∣ > ε/2

}
+

n∑
m=1

Q̃
(n)
t

{∣∣∣∣∣ ∂∂th
(i)
m (Zm; t)

hm (Zm; t)

∣∣∣∣∣ > ε

4φ (n) |u|

}
,

where the Chebyshev inequality is used for the first component, and (9) is used for the second
one. Now to prove (19) consider the following inequalities

Q̃
(n)
t


∣∣∣∣∣∣
n∑

m=1

[
ξ(i)n,m

]2
− 1

4
φ2 (n)u2

n∑
m=1

(
∂
∂th

(i)
m (Zm; t)

h
(i)
m (Zm; t)

)2
∣∣∣∣∣∣ > ε

 6

6 1

ε

n∑
m=1

Mt

∣∣∣∣∣∣
[
ξ(i)n,m

]2
− 1

4
φ2 (n)u2 ·

(
∂
∂thm (Zm; t)

hm (Zm; t)

)2
∣∣∣∣∣∣ 6

6 α

2ε

n∑
m=1

Mt

∣∣∣∣∣ξn,m − 1

2
φ (n)u ·

∂
∂th

(i)
m (Zm; t)

hm (Zm; t)

∣∣∣∣∣
2

+
1

2αε

(
1 +

n∑
m=1

Mtξ
(i)
n,m

)
.

In this case, using the law of large numbers for sums

n∑
m=1

(
∂
∂th

(i)
m (Zm; t)

h
(i)
m (Zm; t)

)2

with the corresponding normalization, we have

lim
n→∞

Q̃
(n)
t


∣∣∣∣∣∣φ2 (n)

n∑
m=1

(
∂
∂th

(i)
m (Zm; t)

h
(i)
m (Zm; t)

)2

− 1

∣∣∣∣∣∣ > ε

 = 0.

Equality (19) is proved. Equality (23) is a consequence of (17) and (19). It remains to establish

(21). It follows from (19) that
n∑

m=1

(
ξ
(i)
n,m

)2
converges in probability to

u2

4
. Using (7), we obtain

the equality

lim
n→∞

Mt

n∑
m=1

[
ξ(i)n,m

]2
=
u2

4
.

Using this equality and (11), the following relation is obtained

lim
n→∞

n∑
m=1

∫
{
x:h

(i)
m (x;t)=0

} h(i)m (x; t+ φ (n)u) νm (dx) = 0.

Considering these two equalities and passing to the mathematical expectations in the identity

n∑
m=1

[
ξ(i)n,m

]2
=

n∑
m=1

(
h
(i)
m (Zm; t+ φ (n)u)

hm (Zm; t)
− 1

)
− 2

n∑
m=1

ξ(i)n,m,
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we obtain

lim
n→∞

Mt

n∑
m=1

ξ(i)n,m = −u
2

8
.

Next, for n > n0 we find

Q̃
(n)
t

{∣∣∣∣∣2
n∑

m=1

ξ(i)n,m−φ (n)u

n∑
m=1

∂
∂th

(i)
m (Zm; t)

h
(i)
m (Zm; t)

+
u2

4

∣∣∣∣∣ > ε

}
6

6 Q̃
(n)
t

{∣∣∣∣∣2
n∑

m=1

(
ξ(i)n,m −Mtξ

(i)
n,m

)
− φ (n)u

n∑
m=1

∂
∂th

(i)
m (Zm; t)

h
(i)
m (Zm; t)

∣∣∣∣∣ > ε

2

}
6

6 16

ε2
Mt

[
n∑

m=1

(
ξ(i)n,m −Mtξ

(i)
n,m

)
− 1

2
φ (n)u

n∑
m=1

∂
∂th

(i)
m (Zm; t)

h
(i)
m (Zm; t)

]2
6

6 16

ε2

n∑
m=1

Mt

(
ξ(i)n,m − 1

2
φ (n)u

n∑
m=1

∂
∂th

(i)
m (Zm; t)

h
(i)
m (Zm; t)

)2

Now (21) follows from the last relation and (9). To prove the remaining relations (18), (20),
(22) and (24) one should proceed in a similar way. Theorem is completely proved. 2
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Локальная асимптотическая нормальность
статистических экспериментов в неоднородной
модели конкурирующих рисков при случайном
цензурировании справа

Наргиза Нурмухамедова
Национальный университет Узбекистана имени Мирзо Улугбека

Ташкент, Узбекистан

Аннотация. Статья посвящена доказательству свойства локальной асимптотической нормально-
сти статистики отношения правдоподобия в модели конкурирующих рисков, отвечающих неодно-
родным и случайно цензурированных справа наблюдениям.

Ключевые слова: локальная асимптотическая нормальность, статистика отношения правдоподо-
бия, модель конкурирующих рисков, случайное цензурирование, асимптотическое представление.
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Abstract. Problem of three-dimensional motion of a heat-conducting fluid in a channel with solid
parallel walls is considered. Given temperature distribution is maintained on solid walls. The liquid
temperature depends quadratically on the horizontal coordinates, and the velocity field has a special
form. The resulting initial-boundary value problem for the Oberbeck–Boussinesq model is inverse and
reduced to a system of five integro-differential equations. For small Reynolds numbers (creeping motion),
the resulting system becomes linear. A stationary solution has been found for this system, and a priori
estimates have been obtained. On the basis of these estimates, sufficient conditions for exponential
convergence of a smooth non-stationary solution to a stationary solution have been established. The
solution of the inverse problem has been found in the form of quadratures for the Laplace images under
weaker conditions for the temperature regime on the walls of the layer. Behaviour of the velocity field
for a specific liquid medium have been presented. The results were obtained with the use of numerical
inversion of the Laplace transform.

Keywords: Oberbec–Boussinesq model, three-dimensional motion, inverse problem, a priori estimates,
stability, Laplace transform.

Citation: A.A. Azanov, Creeping Three-dimensional Convective Motion in a Layer with
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Problem statement and derivation of basic equations

Two-dimensional flows of the Himentz type [1] are known as flows near the critical point
and they are characterized by the presence of zones with higher pressure and temperature than
in the surrounding region. Such flows can be observed both in macro-scales (for example, the
use of hydraulic fracturing technologies in the oil industry) and in micro-scales (for example,
liquid biochips in medicine). The study of characteristics of such flows is necessary to assess
the technological parameters, as well as to predict the dynamics and evolution of the liquid
layer. Exact solutions of the defining equations are the most effective way to study processes in a
liquid, as well as to obtain estimated characteristics. At present, solutions of problems describing
Himentz-type flows in various geometries are presented: axisymmetric [2] and three-dimensional
[3, 4] analogues of the Himentz solution, including flows in cylindrical geometry [5, 6]. A brief
overview of the exact solutions that are close to the Himentz solution is given in [7].

Three-dimensional motion of a viscous incompressible heat-conducting fluid with special ve-
locity field is studied in this paper. The velocity field is of the Himentz type: the horizontal

∗andreiazanov@mail.ru
© Siberian Federal University. All rights reserved
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components of the velocity field are linear in the corresponding coordinates, temperatures are
set on solid walls.

The system of Oberbeck–Boussinesq equations of three-dimensional motion has the form

ut + (u∇) · u +
1

ρ
∇p = ν∆u + g(1 − βT ), divu = 0, (1)

Tt + u · ∇T = χ∆T, (2)

where u(x, y, z, t) = (u(x, y, z, t), v(x, y, z, t), w(x, y, z, t)) is the velocity vector, u, v, w are com-
ponents of the velocity vector in the Cartesian coordinate system; g = (0, 0,−g); t is time;
T (x, y, z, t) is temperature; positive constants ρ, ν, χ, β, g are density, kinematic viscosity,
thermal conductivity coefficient, coefficient of thermal expansion and acceleration of gravity,
respectively. The solution of problem (1), (2) is taken in the following form

u(x, y, z, t) = (f(z, t) + h(z, t))x, v(x, y, z, t) = (f(z, t) − h(z, t))y,

w(x, y, z, t) = −2

∫ z

0

f(ξ, t)dξ, p(x, y, z, t) = p̄(x, y, z, t) − ρgz,

T (x, y, z, t) = a(z, t)x2 + b(z, t)xy + c(z, t)y2 + θ(z, t).

(3)

Relations (3) are interpreted as fluid motion between two flat parallel fixed plates z = 0 and
z = l (see Fig. 1). Then adhesion conditions are set on fixed plates: u(x, y, 0, t) = v(x, y, 0, t) =

= w(x, y, 0, t) = 0, u(x, y, l, t) = v(x, y, l, t) = w(x, y, l, t) = 0. Temperature is given in the form
T (x, y, 0, t) = a1(t)x2 + b1(t)xy + c1(t)y2, T (x, y, l, t) = a2(t)x2 + b2(t)xy + c2(t)y2. Considering
(3), using conditions of adhesion and setting the temperature, boundary conditions for functions
a(z, t), b(z, t), c(z, t) θ(z, t) f(z, t) h(z, t) are derived

f(0, t) = f(l, t) = h(0, t) = h(l, t) = 0,

∫ l

0

f(ξ, t)dξ = 0,

a(0, t) = a1(t), b(0, t) = b1(t), c(0, t) = c1(t), θ(0, t) = 0,

a(l, t) = a2(t), b(l, t) = b2(t), c(l, t) = c2(t), θ(l, t) = 0,

(4)

where functions aj(t), cj(t), j = 1, 2 are set at some interval [0, t0]. In addition, initial conditions
are set

a(z, 0) = a0(z), c(z, 0) = c0(z), b(z, 0) = b0(z), θ(z, 0) = 0,

f(z, 0) = f0(z), h(z, 0) = h0(z).
(5)

Remark 1. Since rotu = ((hz − fz)y, (hz + fz)x, 0) ̸= 0, then the motion is vortex.

Remark 2. Suppose, without the loss of generality, that aj(t) ̸= 0, j = 1, 2 and b(z, t) = 0.
Then when aj(t) < 0, cj(t) < 0 functions Tj(x, y, t) have a maximum at the point x = 0, y = 0,
and when aj(t) > 0, cj(t) >0 functions Tj(x, y, t) have a minimum. If aj(t) and cj(t) have the
same signs then Tj(x, y, t) is an elliptical paraboloid. If aj(t) and cj(t) have different signs then
Tj(x, y, t) is a hyperbolic paraboloid. In other words, the above solution describes the convection
of a liquid near the points of temperature extremes on solid walls. There may be other cases, for
example, the temperature has a maximum on the lower wall and a minimum on the upper wall
or vice versa.

The first step is to derive a system of equations for f , h, a, b, c, θ.
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Fig. 1. Flow area diagram

Taking into account equations (2) and (3), the following relations are obtained

at + 2a(f + h) − 2az

∫ z

0

f(ξ, t)dξ = χazz, b(z, t) = 0,

ct + 2c(f − h) − 2cz

∫ z

0

f(ξ, t)dξ = χczz,

θt − 2θz

∫ z

0

f(ξ, t)dξ = 2χ(a+ c) + χθzz.

(6)

The mass conservation equation is satisfied identically, and momentum equation (1) is equiv-
alent to the following equation

ft + f2 + h2 − 2fz

∫ z

0

f(ξ, t)dξ = νfzz − βg

∫ z

0

[a(ξ, t) + c(ξ, t)]dξ + n1(t),

ht + 2fh− 2hz

∫ z

0

f(ξ, t)dξ = νhzz − βg

∫ z

0

[a(ξ, t) − c(ξ, t)]dξ + n2(t),

(7)

where n1(t), n2(t) are arbitrary functions of time that represent incremental pressure gradients.
The modified pressure p̄(x, y, z, t) is found in the form of quadratures

1

ρ
p̄(x, y, z, t) = x2(gβ

∫ z

0

a(ξ, t)dξ − 1

2
(n1(t) + n2(t)))+

+y2(gβ

∫ z

0

c(ξ, t)dξ − 1

2
(n1(t) − n2(t))) − 2νf(z, t) − gz+

+gβ

∫ z

0

θ(ξ, t)dξ + 2

∫ z

0

(z − ξ)ft(ξ, t)dξ − 2(

∫ z

0

f(ξ, t)dξ)2 + α0(t),

where α0(t) is an arbitrary function of time.
Thus, the Oberbeck–Boussinesq system is reduced to five non-linear integro-differential equa-

tions.
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The following notations are introduced

ξ =
z

l
; τ =

χ

l2
t; a∗ = max(| aj(t) |, | cj(t) |), j = 1, 2, u∗ = βa∗lχ;

a(z, t) = a∗A(ξ, τ); c(z, t) = a∗C(ξ, τ); θ(z, t) = a∗Θ(ξ, τ); f(z, t) =
χ

l2
ReF (ξ, τ);

h(z, t) =
χ

l2
ReH(ξ, τ); nj(t) =

χ2

l4
Nj(τ), j = 1, 2.

(8)

Here u∗ is the characteristic rate of thermal expansion of the fluid, since a∗l2 is the characteristic
temperature of the walls, ϵ = βa∗l2 is the Boussinesq parameter [11], Re = u∗l/ν is the Reynolds
number, Re = ϵP , where P = ν/χ is the Prandtl number.

After substituting (8) into system (6), (7), the initial boundary value problem in dimensionless
form is obtained

Aτ + 2ReA(F +H) − 2ReAξ

∫ ξ

0

F (ξ, τ)dξ = Aξξ,

Cτ + 2ReC(F −H) − 2ReAξ

∫ ξ

0

F (ξ, τ)dξ = Cξξ,

Θτ − 2ReΘξ

∫ ξ

0

F (ξ, τ)dξ = 2(A+ C) + Θξξ,

Fτ +ReF 2 +ReH2 − 2ReFξ

∫ ξ

0

F (ξ, τ)dξ = PFξξ − ηP

∫ ξ

0

[A(ξ, τ) + C(ξ, τ)]dξ +N1(τ),

Hτ + 2ReFH − 2ReHξ

∫ ξ

0

F (ξ, τ)dξ = PHξξ − ηP

∫ ξ

0

[A(ξ, τ) − C(ξ, τ)]dξ +N2(τ).

(9)

Parameter η = gl3(νχ)−1 plays an important role in the theory of micro convection [11].
In system (9) τ ∈ [0, τ0 = χt0l

−2], ξ ∈ [0, 1]. To fully define unknowns A, C, Θ, F , H, N1,
N2 it is necessary to consider initial and boundary conditions

A(ξ, 0) = A0(ξ), C(ξ, 0) = C0(ξ), Θ(ξ, 0) = 0,

F (ξ, 0) = F0(ξ), H(ξ, 0) = H0(ξ).
(10)

A(0, τ) = A1(τ), C(0, τ) = C1(τ), Θ(0, τ) = F (0, τ) = H(0, τ) = 0,

A(1, τ) = A2(τ), C(1, τ) = C2(τ), Θ(1, τ) = F (1, τ) = H(1, τ) = 0.
(11)

∫ 1

0

F (ξ, τ)dξ = 0,

∫ 1

0

H(ξ, τ)dξ = 0. (12)

Let us note that problem (9)–(12) is the inverse problem, since functions Nj(t) are unknown.

Remark 3. Conditions (12) actually mean that motion is considered in some cell bounded by x
and y.

Conditions for matching the input data are satisfied for a smooth solution

A0(0) = A1(0), C0(0) = C1(0), A0(1) = A2(0), C0(1) = C2(0), (13)∫ 1

0

F0(ξ)dξ = 0,

∫ 1

0

H0(ξ)dξ = 0. (14)

Remark 4. Taking into account (8), it is assumed that aj(t) = a∗Aj(τ), cj(t) = a∗Cj(τ).
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For most liquid media, the Boussinesq number is ϵ≪ 1. Therefore, one can look for a solution
of the inverse initial-boundary value problem in the form of a series with respect to the Reynolds
number Re. The main terms of the decomposition satisfy the linear system of equations (the
designations of the desired functions are left the same)

Aτ = Aξξ, Cτ = Cξξ, Θτ = 2(A+ C) + Θξξ,

Fτ = PFξξ − ηP

∫ ξ

0

[A(ξ, τ) + C(ξ, τ)]dξ +N1(τ),

Hτ = PHξξ − ηP

∫ ξ

0

[A(ξ, τ) − C(ξ, τ)]dξ +N2(τ).

(15)

The initial and boundary conditions remain unchanged (see (4), (5)). The problem describes
the so-called "crawling" movements and it is the subject of study of this work.

Stationary creeping motion

In this case, all functions do not depend on the dimensionless time τ and initial data (5) is
not taken into account. Let us assume that As(ξ), Cs(ξ), Θs(ξ), F s(ξ), Hs(ξ), Ns

1 (ξ), Ns
2 is the

required solution, Asj , Csj are the given constants. Without the loss of of generality, it is assumed
that As1 ̸= 0. Simple mathematical treatment shows that there are relations

As(ξ) = As1(1 + α1ξ), Cs(ξ) = As1(α2 + α3ξ),

α1 =
As2 −As1
As1

, α2 =
Cs1
As1

, α3 =
Cs2 − Cs1
As1

;

Θs(ξ) = As1

[
(1 + α2)(ξ − ξ2) +

α1 + α2

3
(ξ − ξ3)

]
;

F s(ξ) =
ηAs1P

12

[
(1 + α2)(2ξ3 − 3ξ2 + ξ) +

α1 + α3

10
(5ξ4 − 9ξ2 + 4ξ)

]
,

Hs(ξ) =
ηAs1P

12

[
(1 − α2)(2ξ3 − 3ξ2 + ξ) +

α1 − α3

10
(5ξ4 − 9ξ2 + 4ξ)

]
;

Ns
1 =

1

2
ηAs1P

2

[
1 + α2 +

3

10
(α1 + α3)

]
,

Ns
2 =

1

2
ηAs1P

2

[
1 − α2 +

3

10
(α1 − α3)

]
.

(16)

When As1 = Cs1 there is radial heating of the fluid on the wall. If As1, Cs1 < 0 then heating is
maximal at the point x = 0, y = 0. If As1, Cs1 > 0 then heating is minimal. If Asj = −Csj then
heating of the fluid on the wall has the form of a hyperbola.

The characteristic vertical velocity profile W s(ξ) = ws(ξ)/W 0 is shown in Fig. 2
(W 0 = −ηAs1χ)

Physical constants were taken for water at a temperature of 20 ℃: P ∼ 7, Re ∼ 25.5 · 10−4,
values Asj , Csj , j = 1, 2 are shown in Fig. 2.

The solid line shows the case of radial heating of the fluid on the walls with a minimum of
its value at the point x = 0, y = 0 while the fluid in the layer moves upwards.

The dashed line shows the vertical velocity profile when distribution of the fluid temperature
has the form of a hyperbola on the lower wall and weak elliptical heating on the upper wall.
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Fig. 2. Vertical velocity W s as a function of dimensionless coordinate ξ.

In other cases, heating on both walls has the form of a hyperbola. The dotted line corresponds
to such a temperature distribution that fluid in the lower part of the layer moves down, and in
the upper part it moves up.

A priori estimates

The purpose of this paragraph is to establish sufficient conditions for the input data Aj(t),
Cj(t), under which the solution of non-stationary problem converges to stationary solution (16)
when dimensionless time increases. Functions A(ξ, t), C(ξ, t), Θ(ξ, t) are solutions of the first
initial boundary value problem. They can be found in the form of trigonometric Fourier series.
Using methods proposed in [12], it is possible to obtain a priori estimates of solutions. However,
here it is easier to use results presented in [13] (pp. 201, 209). In fact, if Aj(τ), Cj(τ) are
continuous for any τ > 0 and

lim
τ→∞

Aj(τ) = Asj , lim
τ→∞

Cj(τ) = Csj , (17)

then
lim
τ→∞

Aj(ξ, τ) = As(ξ), lim
τ→∞

Cj(ξ, τ) = Cs(ξ),

uniformly for any ξ ∈ [0, 1], where As(ξ), Cs(ξ) is stationary solution (16). If

|Aj(τ) −Asj |6 d(1 + τ)−µ, |Cj(τ) − Csj |6 d(1 + τ)−µ, (18)

with positive coefficients d, µ then

|As(ξ, τ) −As(ξ) |6 d1(1 + τ)−µ, |Cs(ξ, τ) − Cs(ξ) |6 d1(1 + τ)−µ, (19)

d1 > 0 is a constant, ξ ∈ [0, 1]. Considering inequalities

|Aj(τ) −Asj |6 d2e
−µτ , |Cj(τ) − Csj |6 d2e

−µτ , (20)

estimates
|As(ξ, τ) −As(ξ) |6 d3e

−µ1τ , |Cs(ξ, τ) − Cs(ξ) |6 d3e
−µ1τ , (21)

are obtained with constants d3 > 0, 0 < µ1 6 µ.
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These estimates can be interpreted as the stability conditions of stationary solution As(ξ),
Cs(ξ) under conditions (17), (18), (20).

Initial-boundary inverse problems for functions F (ξ, τ), N1(τ) and H(ξ, τ), N2(τ) are non
classical (A(ξ, τ), C(ξ, τ) are known). Therefore, a priori estimates of their solutions have to be
obtained.

Multiplying the last equation of system (15) by H(ξ, τ) and integrating with respect to ξ

from zero to one, the following identity is obtained

1

2

d

dτ

∫ 1

0

H2(ξ, τ)dξ + P

∫ 1

0

H2
ξ (ξ, τ)dξ = −ηP

∫ 1

0

H(ξ, τ)

∫ ξ

0

(A(ϵ, τ) − C(ϵ, τ))dξdϵ. (22)

Here, boundary conditions (11) and redefinition condition (12) are taken into account. Since
Steklov’s inequality takes place∫ 1

0

H2(ξ, τ)dξ 6 1

π2

∫ 1

0

H2
ξ (ξ, τ)dξ

then the left part of (22) is greater than or equal to

1

2

d

dτ

∫ 1

0

H2(ξ, τ)dξ + π2P

∫ 1

0

H2(ξ, τ)dξ.

The right part of (22) does not exceed

ηP

(∫ 1

0

H2(ξ, τ)

) 1
2
[ ∫ 1

0

∫ ξ

0

(A(ϵ, τ) − C(ϵ, τ))2dξdϵ

] 1
2

.

Now for E(τ) =
( 1∫

0

H2(ξ, τ)
) 1

2

the following inequality is obtained

dE

dτ
+ π2PE 6 ηP

[ ∫ 1

0

∫ ξ

0

(A(ϵ, τ) − C(ϵ, τ))2dξdϵ

] 1
2

.

Therefore,∫ 1

0

H2(ξ, τ)dξ 6
{(∫ 1

0

H2
0 (ξ)dξ

) 1
2

+ ηP

∫ τ

0

eπ
2P 2τ

[ ∫ 1

0

∫ ξ

0

(A(ϵ, τ)−

−C(ϵ, τ))2dξdϵ

] 1
2

dτ

}2

e−2π2Pτ ≡ G1(τ)e−π
2Pτ

(23)

for any τ ∈ [0, τ0]. Now recall that functions A(ξ, τ), C(ξ, τ) satisfy estimates (19) or (21), where
As(ξ) = 0, Cs(ξ) = 0.

Function H(ξ, τ) also satisfies the following identity∫ 1

0

H2(ξ, τ)dξ +
P

2

d

dτ

∫ 1

0

H2
ξ (ξ, τ)dξ = −ηP

∫ 1

0

Hτ (ξ, τ)dξ

∫ ξ

0

(A(ϵ, τ) − C(ϵ, τ))dξdϵ.

Using the elementary inequality ab 6 ϵ1a
2/2 + b2/(2ϵ1) when ϵ1 = (2ηP )−1, one can obtain

from the previous identity that∫ 1

0

H2
ξ (ξ, τ)dξ 6 2η2P 2

∫ τ

0

∫ 1

0

[ ∫ ξ

0

(A(ϵ, τ) − C(ϵ, τ))dϵ

]2
dξdτ+

+

∫ 1

0

H2
0ξ(ξ)dξ ≡ G2(τ)

(24)
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Since H(0, τ) = 0 then

H2(ξ, τ) = 2

∫ ξ

0

H(ξ, τ)Hξ(ξ, τ)dξ 6

6 2

(∫ 1

0

H2(ξ, τ)dξ

) 1
2
(∫ 1

0

H2
ξ (ξ, τ)dξ

) 1
2

6 2
√
G1(τ)G2(τ)e−π

2Pτ

due to inequalities (23), (24) and

| H(ξ, τ) |6
√

2(G1(τ)G2(τ))
1
4 e−

π2P
2 τ (25)

for any ξ ∈ [0, 1], τ ∈ [0, τ0].
Similar estimate holds for F (ξ, τ) if A(ξ, τ) − C(ξ, τ) is replaced with A(ξ, τ) + C(ξ, τ) in

expressions G1(τ), G2(τ), and they are denoted by G3(τ) and G4(τ). Therefore

| F (ξ, τ) |6
√

2(G3(τ)G4(τ))
1
4 e−

π2P
2 τ . (26)

Let us start first with the evaluation of N2(τ). Multiplying the equation for H(ξ, τ) by ξ−ξ2,
integrating over the interval [0, 1] and using the boundary conditions, one can obtain

N2(τ) = 6

∫ 1

0

(ξ − ξ2)Hτ (ξ, τ)dξ + 6

∫ 1

0

(ξ − ξ2)

∫ ξ

0

(A(ε, τ) − C(ε, τ))dεdξ, (27)

since
1∫
0

(ξ − ξ2)Hξξ(ξ, τ)dξ = 0. To evaluate N2(τ) it is necessary to obtain an estimate of

| Hτ (ξ, τ) | at ξ ∈ [0, 1], τ ∈ [0, τ0]. If

| Aj(τ) |6 d2e
−µτ , | Cj(τ) |6 d2e

−µτ ,

| Ajτ (τ) |6 d4e
−µτ , | Cjτ (τ) |6 d4e

−µτ ,
(28)

d4 > 0 then
| A(ξ, τ) |6 d3e

−µ1τ , | C(ξ, τ) |6 d3e
−µ1τ ,

| Aτ (ξ, τ) |6 d5e
−µ1τ , | Cτ (ξ, τ) |6 d5e

−µ1τ
(29)

for any ξ ∈ [0, 1], τ ∈ [0, τ0]. The first two equations of system (15) provide estimates of
derivatives

| Aξξ(ξ, τ) |6 d5e
−µ1τ , | Cξξ(ξ, τ) |6 d5e

−µ1τ . (30)

To obtain estimates of derivatives (29), (30) it is enough to differentiate with respect to
τ the corresponding initial boundary value problems, and use the results presented in [13].
Similarly, differentiating with respect to τ the last equation of system (15), a problem on Hτ (ξ, τ)

is obtained. It is similar to the problem on H(ξ, τ) when A(ξ, τ) − C(ξ, τ) is replaced with
Aτ (ξ, τ)−Cτ (ξ, τ) and N2(τ) is replaced with N2τ (τ). Therefore, there is an estimate (see (25))

| Hτ (ξ, τ) |6
√

2(G3(τ)G4(τ))
1
4 e−

π2P
2 τ , (31)

ξ ∈ [0, 1], τ ∈ [0, τ0], where H0(ξ) is replaced with Hτ (ξ, 0) in relation for G3(τ) (see (23)). Then

Hτ (ξ, 0) =
1

P
H0ξξ(ξ) − ηP

∫ ξ

0

(A0(ξ) − C0(ξ))dξ +N2(0). (32)
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The value of N2(0) can be found from another representation of N2(τ):

N2(τ) =
1

P
(Hξ(0, τ) −Hξ(1, τ)) + ηP

∫ 1

0

∫ ϵ

0

(A(ξ, τ) − C(ξ, τ))dξdϵ.

Thus

N2(0) =
1

P
(H0ξ(0) −H0ξ(1)) + ηP

∫ 1

0

∫ ϵ

0

(A0(ξ) − C0(ξ))dξdϵ.

Considering (27) and using inequalities (31), (29), the following estimate is obtained

| N2(τ) |6 3√
2

[(G3(τ)G4(τ))
1
4 e−

π2P
2 τ + 4d3e

−µ1τ ], τ ∈ [0, τ0]. (33)

A similar assessment takes place for Hτ (ξ, τ), N1(τ)

| Fτ (ξ, τ) |6
√

2(G5(τ)G6(τ))
1
4 e−

π2P
2 τ ,

| N1(τ) |6 3√
2

[(G5(τ)G6(τ))
1
4 e−

π2P
2 τ + 4d3e

−µ1τ ], τ ∈ [0, τ0].
(34)

where G5(τ) and G6(τ) follow from G3(τ) and G4(τ) when the term A(ξ, τ) +C(ξ, τ) is replaced
with Aτ (ξ, τ) + Cτ (ξ, τ), and F0(ξ) is replaced with Fτ (ξ, 0). Moreover (see (32))

Fτ (ξ, 0) =
1

P
F0ξξ(ξ) − ηP

∫ ξ

0

(A0(ξ) + C0(ξ))dξ +N1(0),

N1(0) =
1

P
(F0ξ(0) − F0ξ(1)) + ηP

∫ 1

0

∫ ϵ

0

(A0(ξ) + C0(ξ))dξdϵ.

Thus, if Aj(τ), Cj(τ) ∈ C1[0, τ0] and inequalities (28) are satisfied then solution of inverse
initial boundary value problem (15), (10) and (14) satisfies a priori estimates (25), (26), (30)–
(34). In addition, similarly to estimates (30), Fξξ(ξ, τ), Hξξ(ξ, τ) are bounded for any ξ ∈ [0, 1],
τ ∈ [0, τ0].

Remark 5. If Aj(τ), Cj(τ) ∈ C1[0, τ0], A0(ξ), C0(ξ) ∈ C2[0, 1] then it follows from the
maximum principle for parabolic equations that

| A(ξ, τ) |6 max
[

max
ξ∈[0,1]

| A0(ξ) |, max
τ∈[0,τ0]

| Aj(τ) |
]
,

| C(ξ, τ) |6 max
[

max
ξ∈[0,1]

| C0(ξ) |, max
τ∈[0,τ0]

| Cj(τ) |
]
,

| Aτ (ξ, τ) |6 max
[

max
ξ∈[0,1]

| A0ξξ(ξ) |, max
τ∈[0,τ0]

| Ajτ (τ) |
]
,

| Cτ (ξ, τ) |6 max
[

max
ξ∈[0,1]

| C0ξξ(ξ) |, max
τ∈[0,τ0]

| Cjτ (τ) |
]
.

Therefore, the boundedness of | F (ξ, τ) |, | H(ξ, τ) |, | Fτ (ξ, τ) |, | Hτ (ξ, τ) |, | Fξξ(ξ, τ) |,
|Hξξ(ξ, τ) |, |N1(τ) |, |N2(τ) |, with ξ ∈ [0, 1], τ ∈ [0, τ0] takes place for weaker conditions on
functions Aj(τ), Cj(τ).

Relations for G1(τ), G3(τ), G5(τ) contain integrals of exponent eπ
2Pτ . Therefore, the use of

a priori estimates for the behaviour of the solution at τ ≫ 1 requires the fulfilment of conditions
(28), so that there are estimates (29) with some constant µ > 0. Let us assume that Aj(τ),
Cj(τ), Ajτ (τ), Ajτ (τ) are defined and continuously differentiable for all τ > 0. If µ1 = Pπ2 + γ,
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γ > 0 then the specified integrals in relations for G1(τ), G3(τ), G5(τ) and in the right-hand sides
of inequalities (25), (26), (30)–(34) converge exponentially to zero.

Let us assume that inequalities (28) and estimates for derivatives (29) are satisfied. Consider-
ing the differences F (ξ, τ)−F s(ξ), H(ξ, τ)−Hs(ξ), Nj(τ)−Ns

j , j = 1, 2, let us ensure that they
satisfy the same initial boundary value problems as F (ξ, τ), H(ξ, τ), Nj(τ). The difference is
only in the initial conditions. They are replaced with F0(ξ)−F s(ξ), H0(ξ)−Hs(ξ), Nj(0)−Ns

j ,
respectively. Therefore, the estimates follow from given above inequalities (µ1 = π2 + γ)

(|F (ξ, τ) − F s(ξ) |, |H(ξ, τ) −Hs(ξ) |, |Fτ (ξ, τ) |, |Hτ (ξ, τ) |,

| Nj(τ) −Ns
j |) 6 De−

π2

2 τ

with some constant D > 0.
Therefore, stationary solution (15) is exponentially stable under the given above conditions.

Solution of non-stationary problem by the Laplace method

Non-stationary solution of problem (10)–(12), (15) is found using the integral Laplace trans-
form [14]. In our case, the method reduces the solution of non-stationary partial differential
problem to the solution of a system of ordinary differential equations (ODEs).

Applying the Laplace transform to the initial boundary value problem

Aτ = Aξξ,

A(ξ, 0) = A0(ξ),

A(0, τ) = A1(τ), A(1, τ) = A2(τ),

the following system of ODEs for the Laplace images is obtained

Âξξ − sÂ = −A0(ξ),

Â(0, s) = Â1(s), Â(1, s) = Â2(s).
(35)

Taking into account (35), one can find Â(ξ, s)

Â(ξ, s) =
sh(

√
sξ)

sh(
√
s)
Â2(s) +

sh(
√
s(1 − ξ))

sh(
√
s)

Â1(s)+

+
1√
s

[
sh(

√
sξ)

sh(
√
s)

∫ 1

0

A0(ξ) sh(
√
s(1 − ξ))dξ −

∫ ξ

0

A0(ε) sh(
√
s(ξ − ε))dε

]
.

(36)

Similarly, function Ĉ(z, s) is defined as

Ĉ(ξ, s) =
sh(

√
sξ)

sh(
√
s)
Ĉ2(s) +

sh(
√
s(1 − ξ))

sh(
√
s)

Ĉ1(s)+

+
1√
s

[
sh(

√
sξ)

sh(
√
s)

∫ 1

0

C0(ξ) sh(
√
s(1 − ξ))dξ −

∫ ξ

0

C0(ε) sh(
√
s(ξ − ε))dε

]
.

(37)

Therefore, Â(ξ, s) and Ĉ(ξ, s) are known functions. Similarly, function Θ̂(ξ, s) is

Θ̂(ξ, s) =
2√
s

(
sh(

√
sξ)

sh(
√
s)

∫ 1

0

(Â(ξ, s) + Ĉ(ξ, s)) sh(
√
s(1 − ξ))dξ−

−
∫ ξ

0

(Â(ε, s) + Ĉ(ε, s)) sh(
√
s(ξ − ε))dε

)
.

(38)
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Equation for function F (ξ, τ) in Laplace images has the form

F̂ξξ −
s

P
F̂ = η

∫ ξ

0

(Â(ε, s) + Ĉ(ε, s))dε− 1

P
N̂1(s) − F0(ξ),

F̂ (0, s) = F̂ (1, s) = 0.

(39)

Then solution of problem (39) is

F̂ (ξ, s) =

√
Pη√
s

sh(
√
s/Pξ)

sh(
√
s/P )

∫ 1

0

∫ ε

0

(Â(ζ, s) + Ĉ(ζ, s))×

× sh(
√
s/P (ξ − ε))dζdε+

Pη

s

∫ ξ

0

∫ ε

0

(Â(ζ, s) + Ĉ(ζ, s))×

× sh(
√
s/P (ξ − ε))dζdε−

ch(
√
s/Pξ) − 1

s
(N̂1(s) − PF0(ξ)) + P

sh(
√
s/Pξ)√
s

∫ ξ

0

F0(ξ)dξ+

+
sh(
√
s/Pξ)

sh(
√
s/P

ch(
√
s/P ) − 1

s
(N̂1(s) − PF0(ξ)) − P

sh(
√
s/Pξ)

sh(
√
s/P

sh(
√
s/P )√
s

∫ ξ

0

F0(ξ)dξ.

(40)
Let us find N̂1(s) from (12). Introducing

r = (sh
√
s/P/

√
s/P − 1)/P

√
P −

(
(ch
√
s/P − 1)/

√
s/P

)2
/
√
sP sh

√
s/P ,

one can obtain

N̂1(s) =
η
√
P

r
√
s

[ ∫ 1

0

∫ ξ

0

∫ ε

0

(Â(ζ, s) + Ĉ(ζ, s)) sh(
√
s/P (1 − ε))dζdεdξ−

−η
√
P

r
√
s

ch(
√
s/P ) − 1

sh(
√
s/P )

∫ 1

0

∫ ξ

0

(Â(ϵ, s) + Ĉ(ϵ, s)) sh(
√
s/P (1 − ξ))dϵdξ−

−PF0(ξ) + P
sh(
√
s/Pξ)√
s

∫ ξ

0

F0(ξ)dξ

]
.

(41)

Similarly, find function Ĥ(ξ, s)

Ĥ(ξ, s) =

√
Pη√
s

sh(
√
s/Pξ)

sh(
√
s/P )

∫ 1

0

∫ ε

0

(Â(ζ, s) − Ĉ(ζ, s))×

× sh(
√
s/P (ξ − ε))dζdε+

Pη

s

∫ ξ

0

∫ ε

0

(Â(ζ, s) − Ĉ(ζ, s))×

× sh(
√
s/P (ξ − ε))dζdε−

ch(
√
s/Pξ) − 1

s
(N̂1(s) − PH0(ξ)) + P

sh(
√
s/Pξ)√
s

∫ ξ

0

H0(ξ)dξ+

+
sh(
√
s/Pξ)

sh(
√
s/P )

ch(
√
s/P ) − 1

s
(N̂2(s) − PH0(ξ)) − P

sh(
√
s/Pξ)

sh(
√
s/P )

sh(
√
s/P )√
s

∫ ξ

0

H0(ξ)dξ.

(42)
Function N̂2(s) is defined from (12) as follows

N̂2(s) =
η
√
P

r
√
s

[ ∫ 1

0

∫ ξ

0

∫ ε

0

(Â(ζ, s) − Ĉ(ζ, s)) sh(
√
s/P (1 − ε))dζdεdξ−

−η
√
P

r
√
s

ch(
√
s/P ) − 1

sh(
√
s/P )

∫ 1

0

∫ ξ

0

(Â(ϵ, s) − Ĉ(ϵ, s)) sh(
√
s/P (1 − ξ))dϵdξ−

−PH0(ξ) + P
sh(
√
s/Pξ)√
s

∫ ξ

0

H0(ξ)dξ

]
.

(43)
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Conditions for tendency of non-stationary solution
to a given stationary solution

Suppose there are limits

lim
τ→∞

Aj(τ) = A0
j , lim

τ→∞
Cj(τ) = C0

j , j = 1, 2, (44)

and derivatives A
′

j(τ), C
′

j(τ) have Laplace images. Then [14]

lim
s→0

sÂj(s) = lim
τ→∞

Aj(τ) = C0
j , lim

s→0
sĈj(s) = lim

τ→∞
Cj(τ) = C0

j . (45)

Next, asymptotic expressions when t → 0 for functions sh(t) and ch(t) are used: sh(t) ∼
t+ t3/6, ch(t) ∼ 1 + t2/2.

The proof is given for function Θ̂(ξ, s). The following relation is obtained for s→ 0

sΘ̂(ξ, s) ∼ 2√
s

(
ξ

∫ 1

0

(sÂ(ξ, s) + sĈ(ξ, s))

[
(
√
s(1 − ξ)) +

(
√
s(1 − ξ))3

6

]
dξ−

−
∫ ξ

0

(sÂ(ε, s) + sĈ(ε, s))

[
(
√
s(ξ − ε)) +

(
√
s(ξ − ε))3

6

]
dε

)
∼

∼
(

1

3
[A0

2 + C0
2 − (A0

1 + C0
1 )] +A0

1 + C0
1

)
ξ−

−
(

1

3
[A0

2 + C0
2 − (A0

1 + C0
1 )]ξ3 + [A0

1 + C0
1 ]ξ2

)
= Θs(ξ).

Lemma 1. Under conditions (44), (45) the non-stationary solution of problem (10),(11), (12),
(15) approaches stationary solution (16) when dimensionless time τ increases.

Finding the originals of required functions

Functions (36), (37) are Laplace images. The inverse Laplace transform is used to determine
the originals.

It is assumed that Aj(τ), Cj(τ) have the form

Aj(τ) = A0
j + ϵj1 exp [−γj1τ ] sin(ω1τ), Cj(τ) = C0

j + ϵj2 exp [−γj2τ ] sin(ω2τ).

Then, their images are easily found from the Laplace transform table [15]

Âj(s) =
A0
j

s
+

ϵj1ω1

(s+ γj1)2 + ω2
1

, Ĉj(s) =
C0
j

s
+

ϵj2ω2

(s+ γj2)2 + ω2
2

, (46)

where γj1 > 0, γj2 > 0, i.e., the boundary mode is stabilized with time according to Lemma 1.
If one of the values of γj1, γj2 is negative then there is no stabilization effect of the solution.

At this point, for simplicity, it is assumed that motion arises from the state of rest
and A0(ξ) = C0(ξ) = 0. In this case, compatibility conditions (13) are violated since
A1(0) ̸= A0(0) = 0, C1(0) ̸= C0(0) = 0, that is, there are discontinuities of the 1st kind. This
is acceptable since the integral Laplace transform is applicable for functions that have a finite
number of discontinuities of the 1st kind [15].

– 452 –



Andrei A. Azanov Creeping Three-dimensional Convective Motion . . .

Expressions for Â(ξ, s), Ĉ(ξ, s), F̂ (ξ, s), N̂1(s) are simplified as

Â(ξ, s) =

(
A0

2

s
+

ϵ12ω1

(s+ γ12)2 + ω2
1

)
sh(

√
sξ)

sh(
√
s)

+

(
A0

1

s
+

ϵ11ω1

(s+ γ11)2 + ω2
1

)
sh(

√
s(1 − ξ))

sh(
√
s)

,

Ĉ(ξ, s) =

(
C0

2

s
+

ϵ22ω2

(s+ γ22)2 + ω2
2

)
sh(

√
sξ)

sh(
√
s)

+

(
C0

1

s
+

ϵ21ω2

(s+ γ21)2 + ω2
2

)
sh(

√
s(1 − ξ))

sh(
√
s)

,

F̂ (ξ, s) =
η√
sP

[ ∫ ξ

0

∫ ε

0

(Â(ζ, s) + Ĉ(ζ, s)) sh(
√
s/P (ξ − ε))dζdε−

−
sh(
√
s/Pξ)

sh(
√
s/P )

∫ 1

0

∫ ε

0

(Â(ζ, s) + Ĉ(ζ, s)) sh(
√
s/P (ξ − ε))dζdε

]
−

−
ch(
√
s/Pξ) − 1

s
N̂1(s) +

sh(
√
s/Pξ)

sh(
√
s/P )

ch(
√
s/P ) − 1

s
N̂1(s),

N̂1(s) =
η

r
√
sP

[ ∫ 1

0

∫ ξ

0

∫ ε

0

(Â(ζ, s) + Ĉ(ζ, s)) sh(
√
s/P (1 − ε))dζdεdξ−

−
ch(
√
s/P ) − 1

sh(
√
s/P )

∫ 1

0

∫ ξ

0

(Â(ϵ, s) + Ĉ(ϵ, s)) sh(
√
s/P (1 − ξ))dϵdξ

]
.

Expressions for Ĥ(ξ, s), N̂2(s) have the same form only terms Â(ζ, s) + Ĉ(ζ, s) are replaced
by Â(ζ, s) − Ĉ(ζ, s).

Function Θ̂(ξ, s) has the following form

Θ̂(ξ, s) =
2√
s

(
sh(

√
sξ)

sh(
√
s)

∫ 1

0

(Â(η, s) + Ĉ(η, s)) sh(
√
s(1 − η))dη−

−
∫ ξ

0

(Â(η, s) + Ĉ(η, s)) sh(
√
s(ξ − η))dη

)
.

After numerical inversion of the Laplace transform functions Nj(τ) are obtain (see Fig. 3),
where A0

2 = 1.3, A0
1 = 1, C0

2 = 2.7, C0
1 = 2, ϵ12 = 1.2, ϵ11 = 1, ϵ22 = 1.6, ϵ21 = 1.8, ω1 = 0.1,

ω2 = 0.2, γ12 = 0.04, γ11 = 0.03, γ22 = 0.07, γ21 = 0.06, χ= 0.00143 m2/sec, ν = 0.01006 m2/sec,
β = 1.82 · 10−4 1/deg, l = 10−4 m, g = 9, 81 m/sec2.

Fig. 3. Functions Nj(τ) versus dimensionless time
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Dimensionless velocities

timeū(ξ, τ) =
l

χRe
u = (F +H)x̄, v̄(ξ, τ) =

l

χRe
u = (F −H)ȳ,

are shown in Fig. 4, 5 (x̄ = ȳ = 1).

Fig. 4. Velocity ū(ξ, τ) as a function of dimensionless coordinate

Fig. 5. Velocity v̄(ξ, τ) as a function of dimensionless coordinate

Fig. 3 clearly shows that functions Nj(τ) approach constant values with increasing time.
Figs. 4 and 5 show velocities along the x and y axes. One can see that distribution of velocities
practically coincides with stationary distribution of velocities for large τ .
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Ползучее трехмерное конвективное движение в слое
с полем скоростей специального вида

Андрей А. Азанов
Институт вычислительного моделирования СО РАН

Красноярск, Российская Федерация

Аннотация. Исследована задача о трехмерном движении теплопроводной жидкости в канале твер-
дыми параллельными стенками, на которых поддерживается заданное распределение температу-
ры. Температура в жидкостях квадратично зависит от горизонтальных координат, а поле скоростей
имеет специальный вид. Возникающая начально-краевая задача для модели Обербека–Буссинеска
является обратной и редуцирована к системе пяти интегродифференциальных уравнений. При
малых числах Рейнольдса (ползущие движения) полученная система становится линейной. Для
этой системы найдено стационарное решение, получены априорные оценки. На их основе уста-
новлены достаточные условия экспоненциальной сходимости гладкого нестационарного решения
к стационарному режиму. В изображениях по Лапласу решение обратной задачи построено в ви-
де квадратур, при более слабых условиях на температурный режим на стенках слоя. Приведены
результаты расчетов, на основе численного обращения преобразования Лапласа, поведения поля
скоростей для конкретной жидкой среды.

Ключевые слова: модель Обербека–Буссинеска, трехмерное движение, обратная задача, апри-
орные оценки, устойчивость, преобразование Лапласа.
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Abstract. The present paper is devoted to almost inner derivations of thin and solvable Leibniz algebras.
Namely, we consider a thin Lie algebra, solvable Lie algebra with nilradical natural graded filifform Lie
algebra, natural graded thin Leibniz algebra, thin non-Lie Leibniz algebra and solvable Leibniz algebra
with nilradical nul-filiform algebra. We prove that any almost inner derivations of all these algebras are
inner derivations.
Keywords: Lie algebra, Leibniz algebra, solvable algebra, nilradical, thin Lie algebra, thin Leibniz
algebra, derivation, inner derivation, almost inner derivation
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Introduction
Almost inner derivations of Lie algebras were introduced by C.S.Gordon and E.N.Wilson [13]

in the study of isospectral deformations of compact manifolds. Gordon and Wilson wanted to
construct not only finite families of isospectral nonisometric manifolds, but rather continuous
families. They constructed isospectral but nonisometric compact Riemannian manifolds of the
form G/Γ, with a simply connected exponential solvable Lie group G, and a discrete cocompact
subgroup Γ of G. For this construction, almost inner automorphisms and almost inner derivations
were crucial.

Gordon and Wilson considered not only almost inner derivations, but they studied almost
inner automorphisms of Lie groups. The concepts of "almost inner" automorphisms and deriva-
tions, almost homomorphisms or almost conjugate subgroups arise in many contexts in algebra,
number theory and geometry. There are several other studies of related concepts, for example,
local derivations, which are a generalization of almost inner derivations and automorphisms [3,4].

In [7] authors study almost inner derivations of some nilpotent Lie algebras. The authors
of this work proved the basic properties of almost inner derivations, calculated all almost inner
derivations of Lie algebras for small dimensions.They also introduced the concept of fixed basis
vectors for nilpotent Lie algebras defined by graphs and studied free nilpotent Lie algebras of
the nilindex 2 and 3. In [8], almost inner derivations of Lie algebras over a field of characteristic
zero has been studied and these derivations has been determined for free nilpotent Lie algebras,
almost abelian Lie algebras, Lie algebras whose solvable radical is abelian and for several classes
of filiform nilpotent Lie algebras. A family of n-dimensional characteristically nilpotent filiform
Lie algebras fn has been found for all n > 13, all derivations of which are almost inner. The
almost inner derivations of Lie algebras considered over two different fields K ⊇ k for a finite-
dimensional field extension were compared.

∗tuuelbay@mail.ru
c⃝ Siberian Federal University. All rights reserved
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Motivated by the work [7], we studied almost inner derivations of some nilpotent Leibniz
algebras [2] and in this work the almost inner derivations for Leibniz algebras were introduced
and it was proved that on a filiform non-Lie Leibniz algebra there exists an almost inner derivation
that is not an inner derivation.

In work [1] it is proved that any derivation complex maximal solvable extension of Lie algebras
is inner [Theorem 4.1]. Moreover, it is proved that any non-maximal solvable extension of a
nilpotent Lie algebra admits an outer derivation [Proposition 4.3]. Therefore, in this paper
almost inner derivations of solvable Lie algebras with the nilradical naturally graded filiform
Lie algebra and almost inner derivations of thin Lie algebras will be considered. In addition,
almost inner derivations of natural graded thin Leibniz algebras, non-Lie thin Leibniz algebras
and solvable Leibniz algebras with nilradical nul-filiform algebra will be studied.

1. Preliminaries
Definition 1.1. An algebra g over field F is called a Lie algebra if its multiplication satisfies:

1) [x, x] = 0,
2) [x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0,

for all x, y, z ∈ g.

The product [x, y] is called the bracket of x and y. Identity 2) is called the Jacobi identity.
Let g be a finite-dimensional Lie algebra. For Lie algebra g we consider the following central

and derived series:
g1 = g, gi = [gi−1, g], i > 1,

g[1] = g, g[k] = [g[k−1], g[k−1]], k > 1.

A Lie algebra g is nilpotent (solvable) if there exists m > 1 such that gm = 0 (g[m] = 0 ).

Definition 1.2. A derivation of Lie algebra g is a linear map D : g → g which satisfies the
Leibniz law, that is,

D([x, y]) = [D(x), y] + [x,D(y)]

for all x, y ∈ g.

The set of all derivations of g with respect to the commutation operation is a Lie algebra and
it is denoted by Der(g). For all a ∈ g, the map ada on g defined as ada(x) = [a, x], x ∈ g is a
derivation and derivations of this form are called inner derivation. The set of all inner derivations
of g, denoted InDer(g).

Definition 1.3. A derivation D ∈ Der(g) of a Lie algebra g is said to be almost inner, if
D(x) ∈ [g, x] for all x ∈ g. The space of all almost inner derivations of g is denoted by AID(g).

We now give the definition and necessary facts of the Leibniz algebra.

Definition 1.4. An algebra L over a field F is called a Leibniz algebra if for any x, y, z ∈ L, the
Leibniz identity

[x, [y, z]] = [[x, y], z] − [[x, z], y]

is satisfied, where [−,−] is the multiplication in L.

The definitions of nilpotency, solvability and derivation for Leibniz algebras are introduced
in a similar way as the definition of nilpotency, solvability and derivation of Lie algebras.

Let L be a Leibniz algebras. For each a ∈ L, the operator Rx : L → L which is called the
right multiplication, such that Rx(y) = [y, x], y ∈ L, is a derivation. This derivation is called an
inner derivation of L, and we denote the space of all inner derivations by InDer(L).

Now let us give the definitions of the almost inner derivations for the Leibniz algebras.
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Definition 1.5 ( [2]). The derivation D ∈ Der(L) of the Leibniz algebra L is called almost inner
derivation, if D(x) ∈ [x,L] holds for all x ∈ L; in other words, there exists ax ∈ L such that
D(x) = [x, ax]. The space of all almost inner derivations of L is denoted by AID(L).

2. Almost inner derivations of thin Lie algebras

In this section, we will consider almost inner derivations of thin Lie algebras. Let’s consider
the following so-called thin Lie algebra g with a basis {ei : i ∈ N}, which is defined by the
following table of multiplications of the basic elements:

M1 : [e1, ei] = ei+1, i > 2, (1)

M2 :

{
[e1, ej ] = ej+1, j > 2,

[e2, ei] = ei+2, i > 3,
(2)

and other products of the basic elements being zero [12].
Note that the algebras M1 and M2 are an infinite-dimensional analog of the filiform Lie

algebras Ln and Qn which are given in [10]. In papers [7] and [8] it was proved that every almost
inner derivation of the algebras Ln and Qn is inner.

The derivations of thin Lie algebras M1 has the following form [6]:

D(e1) =

n∑
i=1

αiei, D(e2) =

n∑
i=1

βiei, D(ej) = ((j − 2)α1 + β2)ej +

n∑
i=1

βi+2ei+j , j > 3,

where αi, βi ∈ C, i = 1, . . . , n, and n ∈ N.
The following theorem is one of the main results in this section.

Theorem 2.1. Let g be the thin Lie algebra. Then any almost inner derivation on thin Lie
algebras is inner.

Proof. First, consider the thin Lie algebra g = M1 with multiplication table (1) and inner

derivation of this algebra. Let x =
n∑
i=1

xiei ∈ g, n ∈ N. For basis ei define adx(ei):

adx(e1) = [x, e1] =

[ n∑
i=1

xiei, e1

]
= −

n∑
i=2

xiei+1;

adx(ej) = [x, ej ] =

[ n∑
i=1

xiei, ej

]
= x1ej+1, j > 2.

In the next step, we study an almost inner derivation of a thin Lie algebra g. LetD ∈ AID(g).
For basis ei ∈ g exists aei ∈ g such that D(ei) = [aei , ei], for all i > 1. Then

D(e1) = [ae1 , e1] =

[ n∑
i=1

a1,iei, e1

]
= −

n∑
i=2

a1,iei+1,

D(ej) = [aej , ej ] =
[ n∑
i=1

aj,iei, ej

]
= aj,1ej+1, j > 2.

Now we check the conditions of derivation:

D(e3) = D([e1, e2]) = [D(e1), e2] + [e1, D(e2)] = [e1, a2,1e3] = a2,1e4.
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On the other hand D(e3) = a3,1e4. From, here we get a2,1 = a3,1.
For i > 3 consider

D(ei) = D([e1, ei−1]) = [e1, D(ei−1)] = [e1, ai−1,1ei] = ai−1,1ei+1.

On the other hand D(ei) = ai,1ei+1, i > 3. From here we have

ai,1 = ai−1,1, i > 3.

Hence

D(e1) = −
n∑
i=2

a1,iei+1, D(ej) = a2,1ej+1, j > 2.

For arbitrary element x ∈ g we take element a = a2,1e1 −
n∑
k=2

a1,kek+1 ∈ g such that D(x) =

= ada(x), and this means that almost inner derivations D is inner.
Now, we investigate the case g = M2.

Let x =
n∑
i=1

xiei ∈ g, n ∈ N. For basis ei define adx(ei):

adx(e1) = [x, e1] =

[ n∑
i=1

xiei, e1

]
= −

n∑
i=2

xiei+1;

adx(e2) = [x, e2] =

[ n∑
i=1

xiei, e2

]
= x1e3 −

n∑
k=3

xkek+2, n ∈ N;

adx(ej) = [x, ej ] =

[ n∑
i=1

xiei, ej

]
= x1ej+1 + x2ej+2, j > 3.

Let D ∈ AID(g). For basis ei exists aei such that D(ei) = [aei , ei], for all i > 1. Then

D(e1) = [ae1 , e1] =

[ n∑
i=1

a1,iei, e1

]
= −

n∑
i=2

a1,iei+1,

D(e2) = [ae2 , e2] =

[ n∑
i=1

a2,iei, e2

]
= a2,1e3 −

n∑
k=3

a2,kek+2, n ∈ N,

D(ei) = [aei , ei] =

[
n∑
k=1

ai,kek, ei

]
= ai,1ei+1 + ai,2ei+2, i > 3.

According to the definition of derivation

D(e3) = D([e1, e2]) = [D(e1), e2] + [e1, D(e2)] =

=

[
−

n∑
i=2

a1,iei+1, e2

]
+

[
e1, a2,1e3 −

n∑
k=3

a2,kek+2

]
=

= a2,1e4 + a1,2e5 +

n∑
k=3

(a1,k − a2,k)ek+3.

On the other hand D(e3) = a3,1e4 + a3,2e5. Comparing the coefficients at the basis elements, we
obtain  a2,1 = a3,1,

a1,2 = a3,2,
a1,k = a2,k, 3 6 k 6 n.

(3)

Hence

D(e2) = a2,1e3 −
n∑
k=3

a1,kek+2, n ∈ N,
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D(e3) = a2,1e4 + a1,2e5.

For i > 4 consider the following:

D(ei) = D([e1, ei−1]) = [e1, D(ei−1)] = ai−1,1ei+1 + ai−1,2ei+2.

On the other hand D(ei) = ai,1ei+1 + ai,2ei+2. Hence for i > 4 it follows that{
ai−1,1 = ai,1,
ai−1,2 = ai,2.

(4)

Combining (3) and (4) we get

D(e1) = −
n∑
k=2

a1,kek+1, n ∈ N,

D(e2) = a2,1e3 −
n∑
k=3

a1,kek+2, n ∈ N,

D(ei) = a2,1ei+1 + a1,2ei+2, i > 3.

For every element x ∈ g we take element a = a2,1e1 + a1,2e3 +
n∑
k=3

a1,kek ∈ g such that

D(x) = ada(x), and this means that almost inner derivations D is inner.

3. Almost inner derivation of naturally graded complex thin
Leibniz algebras

In this section, we will consider almost inner derivation of naturally graded complex thin
Leibniz algebras. In [14], the following theorem is given, which classifies the naturally graded
complex thin Leibniz algebras.

Theorem 3.1 ( [14]). Up to isomorphism, there are three naturally graded complex thin Leibniz
algebras, namely,

L1 : [e1, e1] = e3, [ei, e1] = ei+1, i > 2,

L2 : [e1, e1] = e3, [ei, e1] = ei+1, i > 3,

L3 : [ei, e1] = ei+1, [e1, ei] = −ei+1, i > 2,

where {e1, e2, e3, . . . } are bases of the algebras L1, L2, L3 and other products vanish.

The following lemma holds.

Lemma 3.1. The derivations of naturally graded complex thin Leibniz algebras have the following
forms:

L1 : D(e1) =

n∑
k=1

αkek, D(ei) = ((i− 1)α1 + α2)ei +

n∑
k=3

αkek+i−2, i > 2, n ∈ N;

L2 : D(e1) =

n∑
k=1

αkek, D(e2) =

n∑
k=2

βkek,

D(ei) = (i− 1)α1ei + α3ei+1 +

n∑
k=4

αkek+i−2, i > 3, n ∈ N;

L3 : D(e1) =

n∑
k=1

αkek, D(e2) =

n∑
k=1

βkek,

D(ei) = ((i− 2))α1 + β2)ei +

n∑
k=3

βkek+i−2, i > 3, n ∈ N,
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where αi, βi ∈ C, 1 6 i 6 n, n ∈ N.

Proof. Let D(e1) =
n∑
k=1

αkek, D(e2) =
n∑
k=1

βkek, n ∈ N.

Using the definition of derivation of algebra L1 from Theorem 3.1 we obtain the following:

D(e3) = D([e1, e1]) = [D(e1), e1] + [e1, D(e1)] =

n∑
k=1

αk[ek,e1] +

n∑
k=2

αk[e2, ek] =

= (2α1 + α2)e3 +

n∑
k=3

αkek+2.

On the other hand

D(e3) = D([e2, e1]) = [D(e2), e1] + [e2, D(e1)] =
n∑
k=1

βk[ek, e1] +
n∑
k=1

αk[e2,ek] =

= (β1 + β2 + α1)e3 +

n∑
k=3

βkek+1.

Comparing coefficients from basis elements we have{
α1 + α2 = β1 + β2,
αk = βk, k > 3.

(5)

Consider the following:

0 = D([e1, e2]) = [D(e1), e2] + [e1, D(e2)] =

n∑
k=1

αk[ek, e2] +

n∑
k=1

βk[e1, ek] =β2e3.

From this, we get β1 = 0. Then from equality (5) we obtain β2 = α1 + α2. Hence,

D(e2) = (α1 + α2)e2 +

n∑
k=3

αkek, D(e3) = (2α1 + α2)e3 +

n∑
k=3

αkek+1.

Consider the following:

D(e4) = D([e3, e1]) = [D(e3), e1] + [e3, D(e1)] = (3α1 + α2)e4 +

n∑
k=3

αkek+2.

Continuing this process we have

D(ei) = D([ei−1, e1]) = [D(ei−1), e1] + [ei−1, D(e1)] = ((i− 1)α1 + α2)ei +

n∑
k=3

αkek+i−2.

Thus, derivations of algebra L1 has the following form:

D(e1) =

n∑
k=1

αkek, D(ei) = ((i− 1)α1 + α2)ei +

n∑
k=3

αkek+i−2, i > 2, n ∈ N;

Derivations of algebras L2 and L3 are obtained in the same way.

Note that in Theorem 3.1 the algebra L3 is a thin Lie algebra, i.e., algebra with multiplication
(3.1). Therefore, we will study almost inner derivations of thin Leibniz algebras L1 and L2.

The following theorem is one of the main results in this paper.
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Theorem 3.2. Let L be the naturally graded complex thin Leibniz algebra. Then any almost
inner derivation on naturally graded complex thin Leibniz algebras is inner.

Proof. Let L = L1 and D ∈ AID(L). Then by definition of almost inner derivation, for basis
e1 there exists element ae1 ∈ L such that D(e1) = Rae1 . Let D′ = D − Rae1 , then we have
D′(e1) = 0. Since D′(e1) = 0, then we obtain the following:

D′(e3) = D′([e1, e1]) = [D′(e1), e1] + [e1, D
′(e1)] = 0,

D′(ei) = D′([ei−1, e1]) = [D′(ei−1), e1] = 0, i > 4.

By definition of almost inner derivation for basis e2 exists ae2 ∈ L such that

D′(e2) = [e2, ae2 ] = [e2, a2,1e1] = a2,1e3.

Then
0 = D′(e3) = D′([e2, e1]) = [D′(e2), e1] = a2,1e4.

From this we get D′(e2) = 0.

The next step consider the almost inner derivations of naturally graded thin Leibniz algebras
L = L2. Let D ∈ AID(L). Then by definition of almost inner derivation, for basis e1 there exists
element ae1 ∈ L such that D(e1) = Rae1 . Let D′ = D − Rae1 , then we have D′(e1) = 0. Since
D′(e1) = 0, then we obtain the following:

D′(e3) = D′([e1, e1]) = [D′(e1), e1] + [e1, D
′(e1)] = 0,

D′(ei) = D′([ei−1, e1]) = [D′(ei−1), e1] = 0, i > 4.

By definition of almost inner derivation for basis e2 exists ae2 ∈ L such that

D′(e2) = [e2, ae2 ] = 0.

4. Almost inner derivation of complex non-Lie thin Leibniz
algebras

In this section, we will consider almost inner derivation of complex non-Lie thin Leibniz
algebras. We present the following theorem.

Theorem 4.1 ( [14]). Every complex non-Lie thin Leibniz algebra is isomorphic to one of the
following two nonisomorphic non-Lie thin Leibniz algebras:

F∞
1 : [e1, e1] = e3, [ei, e1] = ei+1, i > 2,

[e1, e2] =

n∑
k=1

αpkepk ,

[ei, e2] =

n∑
k=1

αpkepk+i−2, i > 2, n ∈ N,

F∞
2 : [e1, e1] = e3, [ei, e1] = ei+1, i > 3,

[e1, e2] =

m∑
s=1

βtsets ,

[ei, e2] =

m∑
s=1

βtsets+i−2, i > 3, m ∈ N,

where 4 6 p1 < p2 < · · · < pn and 4 6 t1 < t2 < · · · < tm, and the other products vanish.
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The following theorem is one of main the results of this section.

Theorem 4.2. Let L be the complex non-Lie thin Leibniz algebra. Then any almost inner
derivation on complex non-Lie thin Leibniz algebras is inner.

Proof. Let L = F∞
1 is a complex non-Lie thin Leibniz algebra and D ∈ AID(L). Then by defini-

tion of almost inner derivation, for basis e1 there exists element ae1 ∈ L such that D(e1) = Rae1 .
LetD′ ∈ AID(L) andD′ = D−Rae1 , then we get D′(e1) = (D−Rae1 )(e1) = 0. SinceD′(e1) = 0,
then we obtain the following:

D′(e3) = D′([e1, e1]) = [D′(e1), e1] + [e1, D
′(e1)] = 0,

D′(ei) = D′([ei−1, e1]) = [D′(ei−1), e1] = 0, i > 4.

Let D′(e2) =
n∑
k=1

bkek, n ∈ N. By derivation conditions we have the following:

0 = D′(e3) = D′([e2, e1]) = [D′(e2), e1] =

[ n∑
k=1

bkek, e1

]
= (b1 + b2)e3 +

n∑
k=4

bkek+1.

It follows from the latter that

b1 = −b2, bi = 0, 3 6 i 6 n.

Then D′(e2) = b1e1 − b1e2.
Since 4 6 p1 < p2 < · · · < pn, then

0 = D′([e1, e2]) = [e1, D
′(e2)] = [e1, b1e1 − b1e2] = b1e3 − b1

n∑
k=1

αpkepk .

From this we get b1 = 0. Hence, D′(e2) = 0.
Let L = F∞

2 . Then by definition AID for e1 there exists ae1 ∈ L such that D(e1) = Rae1 .
Let D′ ∈ AID(L) and D′ = D −Rae1 , then we get D′(e1) = (D −Rae1 )(e1) = 0. Then

D′(e3) = D′([e1, e1]) = [D′(e1), e1] + [e1, D
′(e1)] = 0;

D′(ei) = D′([ei−1, e1]) = [D′(ei−1), e1] = 0, i > 4.

Let D′(e2) =
n∑
j=1

bjej , n ∈ N. Consider

0 = D′([e2, e1]) = [D′(e2), e1] =

[ n∑
j=1

bjej , e1

]
= b1e3 +

n∑
j=3

bjej+1, n ∈ N.

From the last equality we have b1 = 0, bj = 0, 3 6 j 6 n. Hence D′(e2) = b2e2. Since
D′(ei) = 0, i > 3, then considering equality

0 = D′([e1, e2]) = [e1, D
′(e2)] = b2

m∑
s=1

βtsets ,

we obtain
b2 · βts = 0, 1 6 s 6 m. (6)

In algebra F∞
2 at least one of the parameters βts(1 6 s 6 m) is nonzero, otherwise if all are

βts = 0(1 6 s 6 m), then algebra coincides with algebra of naturally graded thin Leibniz algebras
L2. So there will always be βts0 ̸= 0, then we have b2 = 0, as a consequence D′(e2) = 0.
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5. Almost inner derivations of solvable Lie algebra whose
nilradical is natural graded filifform Lie algebra

In this section we consider almost inner derivations of solvable Lie algebra whose nilradical
is natural graded filifform Lie algebra. The multiplication table of natural graded filifform Lie
algebra has the next form:

nn,1, (n > 4) : [ei, e1] = −[e1, ei] = ei+1, 2 6 i 6 n− 1.

Theorem 5.1 ( [15]). There are three of solvable Lie algebras of dimension (n + 1) whose
nilradical is isomorphic to nn,1 (n > 4). The isomorphism classes in the basis {e1, e2, . . . , en, x}
are represented by the following algebras:

Sn+1(α, β) =


[ei, e1] = −[e1, ei] = ei+1, 2 6 i 6 n− 1,

[ei, x] = −[x, ei] = ((i− 2)α+ β)ei, 2 6 i 6 n,

[e1, x] = −[x, e1] = αe1.

The mutually non-isomorphic algebras:
1) Sn+1,n(β) := Sn+1(1, β) depending on the value of β, in this case there are three different

classes: a) Sn+1(1, 0), b) Sn+1(1, n− 2), c) Sn+1(1, β), β /∈ {0, n− 2};
2) Sn+1,2 := Sn+1(0, 1);

3) Sn+1,3 :


[ei, e1] = −[e1, ei] = ei+1, 2 6 i 6 n− 1,

[ei, x] = −[x, ei] = (i− 1)ei, 2 6 i 6 n,

[e1, x] = −[x, e1] = e1 + e2.

4) Sn+1,4(α3, α4, . . . , αn−1) :


[ei, e1] = −[e1, ei] = ei+1, 2 6 i 6 n− 1,

[ei, x] = −[x, ei] = ei +
n∑

l=i+2

αl+1−iel, 2 6 i 6 n,
where at

least one αi ̸= 0 and the first non-vanishing parameter {α3, α4, . . . , αn−1} can be assumed to be
equal to 1.

The following theorem is the main result in this section.

Theorem 5.2. Let g is solvable Lie algebra with nilradical nn,1. Then any almost inner deriva-
tion solvable Lie algebra with nilradical nn,1 is inner.

Proof. Consider the following cases:

Case 1. Let g = Sn+1(1, 0) be the solvable Lie algebra and let a =
n∑
i=1

aiei + axx ∈ g. For basis

ei, x (i = 1, . . . , n) define ada(ei), ada(x):

ada(e1) = [a, e1] =

[ n∑
k=1

akek + axx, e1

]
= −axe1 +

n−1∑
k=2

akek+1,

ada(e2) = [a, e2] =

[ n∑
k=1

akek + axx, e2

]
= −a1e3,

ada(ei) = [a, ei] =

[ n∑
k=1

akek + axx, ei

]
= −(i− 2)axei − a1ei+1, 3 6 i 6 n,

ada(x) = [a, x] =

[ n∑
k=1

akek + axx, x

]
= a1e1 +

n∑
k=3

(k − 2)akek.
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Let D ∈ AID(g). For basis ei and x exists bei and bx respectively such that D(ei) = [bei , ei]
(1 6 i > n) and D(x) = [bx, x]. Then

D(e1) = [be1 , e1] =

[ n∑
k=1

b1,kek + δ1x, e1

]
= −δ1e1 +

n−1∑
k=2

b1,kek+1,

D(e2) = [be2 , e2] =

[ n∑
k=1

b2,kek + δ2x, e2

]
= −b2,1e3.

By multiplication of algebra Sn+1(1, 0) for all 3 6 i 6 n we obtain:

D(ei) = D([ei−1, e1]) = [D(ei−1), e1] + [ei−1, D(e1)] = −(i− 2)δ1ei − b2,1ei+1.

Let D(x) =
n∑
k=1

bx,k + δxx.

Consider the following:

D([e1, x]) = [D(e1), x] + [e1, D(x)] = (δx − δ1)e1 +

n−1∑
k=2

((k − 1)b1,k − bx,k)ek+1.

On the other hand D([e1, x]) = D(e1) = −δ1e1 +
n−1∑
k=2

b1,kek+1. Comparing coefficients we have: δx = 0,
bx,2 = 0,
bx,j = (j − 2)b1,j , 3 6 j 6 n− 1.

Hence D(x) = bx,1e1 +
n−1∑
k=3

(k − 2)b1,kek + bx,nen.

Now consider

0 = D([e2, x]) = [D(e2), x] + [e2, D(ex)] = (−b2,1 + bx,1)e3.

From this we get bx,1 = b2,1. Then

D(e1) = −δ1e1 +

n−1∑
k=2

b1,kek+1,

D(e2) = −b2,1e3,

D(ei) = −(i− 2)δ1ei − b2,1ei+1,

D(x) = b2,1e1 +

n−1∑
k=3

(k − 2)b1,kek + bx,nen.

For every element y =
n∑
i=1

yiei+yn+1x ∈ g we take element b =(b2,1+δ1)e1+
n−1∑
k=2

b1,kek+bx,nen∈ g

such that D(y) = adb(y), and this means that almost inner derivations D is inner.

Case 2. Let g = Sn+1(1, n− 2). Analogously as Case 1 we have

ada(e1) = [a, e1] =

[ n∑
i=1

aiei + axx, e1

]
= −axe1 +

n−1∑
i=2

aiei+1,

ada(ej) = [a, ej ] =

[ n∑
i=1

aiei + axx, ej

]
= −(n+ i− 4)axej − a1ej+1, 2 6 j 6 n,

ada(x) = [a, x] =

[ n∑
i=1

aiei + axx, x

]
= a1e1 +

n∑
k=2

(n+ k − 4)akek
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and

D(e1) = [be1 , e1] =

[ n∑
k=1

b1,kek + γ1x, e1

]
= −γ1e1 +

n−1∑
k=2

b1,kek+1,

D(e2) = [be2 , e2] =

[ n∑
k=1

b2,kek + γ2x, e2

]
= −(n− 2)γ2e2 − b2,1e3,

D(ei) = D([ei−1, e1]) = −((i− 2)γ1 + (n− 2)γ2)ei − b2,1ei+1, 3 6 i 6 n.

Let D(x) =
n∑
k=1

bx,k + δxx. Consider the following

D([e1, x]) = [D(e1), x] + [e1, D(x)] = (γx − γ1)e1 +

n−1∑
k=2

((n+ k − 3)b1,k − bx,k)ek+1.

On the other hand D([e1, x]) = D(e1) = −γ1e1 +
n−1∑
k=2

b1,kek+1. From this we have{
γx = 0,
bx,k = (n+ k − 4)b1,k, 2 6 k 6 n− 1.

Hence D(x) = bx,1e1 +
n−1∑
k=2

(n+ k − 4)b1,kek + bx,nen.

Consider the next equality

(n− 2)(−(n− 2)γ2e2 − b21e3) = D([e2, x]) = [D(e2, x)] + [e2, D(x)] =

= −(n− 2)2γ22e2 + (bx,1 − (n− 1)b21)e3.

From this we get {
(n− 2)2γ2 = (n− 2)2γ2
bx,1 − (n− 1)b2,1 = −(n− 2)b2,1

⇒
{
γ2 = 0, n ̸= 2
bx,1 = b2,1

.

Hence D(x) = b2,1e1 +
n−1∑
k=2

(n+ k − 4)b1,kek + bx,nen.

For every element y =
n∑
i=1

yiei + yn+1x ∈ g we take element b = b2,1e1 +
n−1∑
k=2

b1,kek + bx,nen +

(γ1 +γ2)x ∈ g such that D(y) = adb(y), and this means that almost inner derivations D is inner.

Case 3. Let g = Sn+1(1, β). Similar as Case 1 we get

ada(e1) = [a, e1] =

[ n∑
i=1

aiei + axx, e1

]
= −axe1 +

n−1∑
i=2

aiei+1,

ada(ej) = [a, ej ] =

[ n∑
i=1

aiei + axx, ej

]
= −(j − 2 + β)axej − a1ej+1, 2 6 j 6 n,

ada(x) = [a, x] =

[ n∑
i=1

aiei + axx, x

]
= a1e1 +

n∑
k=2

(k − 2 + β)akek

and

D(e1) = [be1 , e1] =

[ n∑
k=1

b1,kek + γ1x, e1

]
= −γ1e1 +

n−1∑
k=2

b1,kek+1.

D(e2) = [be2 , e2] =

[ n∑
k=1

b2,kek + γ2x, e2

]
= −γ2βe2 − b2,1e3,

D(ei) =D([ei−1, e1])=[D(ei−1), e1]+[ei−1, D(e1)] =−((i− 2)γ1+βγ2)ei− b2,1ei+1, 3 6 i 6 n.
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Let D(x) =
n∑
k=1

bx,k + δxx. Now we check the conditions of derivation:

From D([e1, x]) we have{
γx = 0,
bx,k = (k − 1 + β)b1,k, 2 6 k 6 n− 1.

From D([e2, x]) we obtain bx,1 = b2,1. Hence D(x) = b2,1e1 +
n−1∑
k=2

(k − 1 + β)b1,kek + bx,nen.

For every element y =
n∑
i=1

yiei + yn+1x ∈ g we take element b = b2,1e1 +
n−1∑
k=2

b1,kek + bx,nen +

(γ1 +γ2)x ∈ g such that D(y) = adb(y), and this means that almost inner derivations D is inner.
For the remaining algebras Sn+1,2, Sn+1,3, Sn+1,4(α3, . . . , αn−1) is proved in a similar way.

6. Almost inner derivations of solvable Leibniz
algebra whose nilradical is null filiform algebra

Recall the definition of null-filiform Leibniz algebras.

Definition 6.1 ( [5]). An n-dimensional Leibniz algebra is said to be null-filiform if dimLi =
n+ 1 − i, 1 6 i 6 n+ 1.

Theorem 6.1 ( [5]). An arbitrary n-dimensional null-filiform Leibniz algebra is isomorphic to
the algebra:

NFn : [ei, e1] = ei+1, 1 6 i 6 n− 1,

where {e1, e2, . . . , en} is a basis of the algebra NFn.

From this theorem it is easy to see that a nilpotent Leibniz algebra is null-filiform if and only
if it is a one-generated algebra. Note that this notion has no sense in Lie algebras case, because
they are at least two-generated.

We present the following well-known results that we will use to study the main result.

Theorem 6.2 ( [11]). Let R be a solvable Leibniz algebra whose nilradical is NFn. Then there
exists a basis {e1, e2, . . . , en, x} of the algebra R such that the multiplication table of R with
respect to this basis has the following form:

[ei, e1] = ei+1, 1 6 i 6 n− 1,

[x, e1] = e1,

[ei, x] = −iei, 1 6 i 6 n.

(7)

Theorem 6.3 ( [11]). Let R be a solvable Leibniz algebra such that R = NFk ⊕NFs +Q, where
NFk⊕NFs is the nilradical of R and dimQ = 1. Let us assume that {e1, e2, . . . , ek} is a basis of
NFk, {f1, f2, . . . , fs} is a basis of NFs and {x} is a basis of Q. Then the algebra R is isomorphic
to one of the following pairwise non-isomorphic algebras:

R(α) :


[ei, e1] = ei+1, 1 6 i 6 k − 1, [fi, f1] = fi+1, 1 6 i 6 s− 1,

[x, e1] = e1, [x, f1] = αf1, α ̸= 0,

[ei, x] = −iei, 1 6 i 6 k, [fi, x] = −iαfi, 1 6 i 6 s.

(8)
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R(β2, β3, . . . , βs, γ) :



[ei, e1] = ei+1, 1 6 i 6 k − 1,

[fi, f1] = fi+1, 1 6 i 6 s− 1,

[x, e1] = e1,

[fi, x] =
s∑

j=i+1

βj−i+1fj , 1 6 i 6 s,

[ei, x] = −iei, 1 6 i 6 k,

[x, x] = γfs.

(9)

in the second family of algebras the first non-zero element of the set (β2, β3, . . . , βs, γ) can be
assumed equal to 1.

Theorem 6.4 ( [11]). Let L be a solvable Leibniz algebra such that L = NFn1
⊕ NFn2

⊕ ... ⊕
NFns+̇Q, where NFn1

⊕ NFn2
⊕ · · · ⊕ NFns is nilradical of L and dimQ = 1. There exists

p, q ∈ N with p ̸= 0 and p + q = s, a basis {ei1, ei2, . . . , eini} of NFni , for 1 6 i 6 p, a basis
{fk1 , fk2 , . . . , fknk} of NFp+k, for 1 6 k 6 q, and a basis {x} of Q such that the multiplication
table of the algebra is given by

Rp,q =



[eji , e
j
1] = eji+1, 1 6 i 6 nj − 1, [fki , f

k
1 ] = fki+1, 1 6 i 6 nk − 1,

[x, ej1] = δjej1, δ
j ̸= 0, [fki , x] =

nk∑
m=i+1

βkm−i+1f
k
m, 1 6 i 6 nk,

[eji , x] = −iδjeji , 1 6 i 6 nj , [x, x] =

k∑
m=1

γmfnm .

(10)

6.1. Almost inner derivations of solvable Leibniz algebra whose
nilradical is NFn

In the subsection consider almost inner derivations on solvable Leibniz algebra whose nilrad-
ical is NFn.

Let L solvable Leibniz algebra whose nilradical is NFn with multiplication the form (7). Then
we have the next is one of the main results in this section.

Theorem 6.5. Let L solvable Leibniz algebra with nilradical NFn. Then any almost inner
derivations solvable Leibniz algebra L is inner

Proof. The solvable algebra L is a two-generated algebra, i.e. generated by e1, x. Let D ∈
AID(L). Then, by the definition of almost inner derivation, for basis e1 there exists be1 such
that D(e1) = Rbe1 . Let D′ ∈ AID(L) and let D′ = D −Rbe1 , then we get D′(e1) = 0. Then by
multiplication (7) we have

D′(ei) = D′([ei−1, e1]) = [D′(ei−1), e1] + [ei−1, D
′(e1)] = 0, 2 6 i 6 n.

Let D′(x) =
n∑
i=1

aiei + an+1x. Consider

0 = D′(e1) = D′([x, e1]) = [D′(x), e1] + [x,D′(e1)] =

[ n∑
i=1

aiei + an+1x, e1

]
=

= an+1e1 + a1e2 + a2e3 + · · · + an−1en.

Hence we have
a1 = a2 = · · · = an−1 = an+1 = 0

and D′(x) = anen.
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On the other hand by definition of almost inner derivations for basis x exists ξx ∈ L, such
that D′(x) = [x, ξx]. Further

anen = D′(x) = [x, ξx] = [x, ξx,1e1 + ξx,2e2 + · · · + ξx,nen + ξx,n+1x] = ξx,1e1.

Hence we get an = ξx,1 = 0. Then D′(x) = 0.

6.2. Almost inner derivations of solvable Leibniz algebra whose nilrad-
ical is NFk ⊕NFs

In this subsection consider almost inner derivations on solvable Leibniz algebra whose nil-
radical is NFk ⊕ NFs. Let L = R(α) first solvable Leibniz algebra in Theorem 6.2 with table
multiplication (8). Then we get the following results. The following theorem is one the results
in this section.

Theorem 6.6. Let L = R(α) solvable Leibniz algebra with nilradical NFk ⊕ NFs. Then any
almost inner derivation solvable Leibniz algebra L is inner.

Proof. The solvable algebra L is a three-generated algebra, i.e.generated by e1, f1, x. Let D ∈
AID(L). Then, by the definition of almost inner derivation, for element e1 there exists be1 such
that D(e1) = Rbe1 . Let D′ ∈ AID(L) and let D′ = D −Rbe1 , then we get D′(e1) = 0. Then by
multiplication (8) we have

D′(ei) = D′([ei−1, e1]) = [D′(ei−1, e1)] + [ei−1, D
′(e1)] = 0, 2 6 i 6 k.

Let D′(x) =
k∑
i=1

ϵx,iei +
s∑
j=1

ϕx,jfj + axx. Consider

0 = D′(x) = D′([x, e1]) = [D′(x), e1] =

[ k∑
i=1

ϵx,iei +

s∑
j=1

ϕxjfj + axx, e1

]
=

= axe1 + ϵx,1e2 + ϵx,2e3 + ...+ ϵx,k−1ek.

We have
ϵx,1 = · · · = ϵx,k−1 = ax = 0.

Hence D′(x) = ϵx,kek+
s∑
j=1

ϕx,jfj . By definition AID (Almost Inner Derivation) for basis x exists

the element bx ∈ L such that D′(x) = [x, bx]. Then we obtain

ϵx,kek +

s∑
j=1

ϕx,jfj = D′(x) = [x, bx] = [x, ϵbx,1e1 + ϕbx,1f1] = ϵbx,1e1 + αϕbx,1f1.

Hence  ϵbx,1 = ϵx,k = 0
ϕx,1 = αϕbx,1
ϕx,j = 0, 2 6 j 6 s

.

Then D′(x) = ϕx,1f1.

Let D′(f1) =
k∑
i=1

ϵf1,iei +
s∑
j=1

ϕf1,jfj +af1x. By definition AID for basis f1 exists the element

bf1 ∈ L such that

D′(f1) = [f1, bf1 ] = [f1, ϕbf1 ,1f1 + abf1,xx] = −αabf1 f1 + ϕbf1,1f2.
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Comparing the coefficients at the basis elements we get

ϵf1,i = 0, 1 6 i 6 k

ϕf1,1 = −αabf1
ϕf1,2 = ϕf1,1

ϕf1,j = 0, 3 6 j 6 s

af1 = 0

.

Hence D′(f1) = ϕf1,1f1 + ϕf1,2f2.
Consider the following:
1)

D′(f2) = D′([f1, f1]) = [D′(f1), f1] + [f1, D
′(f1)] =

= [ϕf1,1f1 + ϕf1,2f2, f1] + [f1, ϕf1,1f1 + ϕf1,2f2] =

= 2ϕf1,1f2 + ϕf1,2f3.

On other hand by definition AID for basis f2 exists bf2 such that

2ϕf1,1f2 + ϕf1,2f3 = D′(f2) = [f2, bf2 ] = [f2, ϕbf2 ,1f1 + abf2x] = −2αabf2 f2 + ϕbf2 ,1f3.

From here we get
ϕf1,1 = −αabf2 , ϕf1,2 = ϕbf2 ,1. (11)

2)

D′(f3) = D′([f2, f1]) = [D′(f2), f1] + [f2, D
′(f1)] =

= [2ϕf1,1f2 + ϕf1,2f3, f1] + [f1, ϕf1,1f1 + ϕf1,2f2] =

= 3ϕf1,1f3 + ϕf1,2f4.

On other hand by definition AID for f3 exists bf3 such that

3ϕf1,1f3 + ϕf1,2f4 = D′(f3) = [f3, bf3 ] = [f3, ϕbf3 ,1f1 + abf3x] = −3αabf3 f3 + ϕbf3 ,1f4.

From here we have
ϕf1,1 = −αabf3 , ϕf1,2 = ϕbf3 ,1. (12)

Continuing this process we obtain

D′(fj) = D′([fj−1, f1]) = jϕf1,1fj + ϕf1,2fj+1, 4 6 j 6 s

and by definition AID for 4 6 j 6 s:

D′(fj) = [fj , bfj ] = −jαabfj fj + ϕbfj ,1fj+1,

and we have that
ϕf1,1 = −αabfj , ϕf1,2 = ϕbfj ,1, 4 6 j 6 s.

So, we have that b := bf1 = bf2 = · · · = bfs , 1 6 j 6 s, i.e.

D′(fj) = [fj , b], 1 6 j 6 s.

Let T ∈ AID(L), then for basis fi, 1 6 i 6 s exists element b ∈ L such that T (fi) = [fi, b].
Since D′ = D −Rbe1 , then

D′(f1) = D(f1) −Rbe1 (f1) = [f1, b] − [f1, be1 ] = [f1, b] − [f1, b] = 0.

– 471 –



Tuuelbay K. Kurbanbaev Almost Inner Derivations of Some Leibniz Algebras

Thus, according to the multiplication (8) for all 2 6 i 6 s we have

D′(fi) = D′([fi−1, f1]) = [D′(fi−1), f1] + [fi−1, D
′(f1)] = 0

and D′(x) = ϕx,1f1.
Now from the following equality

0 = αD′(f1) = D′([x, f1]) = [D′(x), f1] = ϕx,1f2.

we get that ϕx,1 = 0. Then D′(x) = 0.

Let L = R(β2, β3, . . . , βs, γ) solvable Leibniz algebra with product table (9). The following
result holds. The following theorem is one the results in this section.

Theorem 6.7. Let L = R(β2, β3, . . . , βs, γ) solvable Leibniz algebra with nilradical NFk ⊕NFs.
Then any almost inner derivations solvable Leibniz algebra L is inner.

Proof. The solvable algebra L is a three-generated algebra, i.e. generated by e1, f1, x. Let
D ∈ AID(L). Then, by the definition of almost inner derivation, for basis f1 there exists bf1
such that D(f1) = Rbf1 (f1). Let D′ ∈ AID(L) and let D′ = D − Rbf1 , then we get D′(f1) = 0.
Then by multiplication (8) we have

D′(fi) = D′([fi−1, f1]) = [D′(fi−1, f1)] + [fi−1, D
′(f1)] = 0, 2 6 i 6 s.

Let D′(x) =
s∑
i=1

ϵx,iei +
s∑
j=1

ϕx,jfj + axx. By the definition of AID for basis x exists bx ∈ L

such that
D′(x) = [x, bx] = [x, ϵbx,1e1 + abxx] = ϵbx,1e1 + abxγfs,

and we have that 

ϵx,1 = ϵbx,1

ϵx,i = 0, 2 6 i 6 k

ϕx,i = 0, 1 6 i 6 s− 1

ϕx,s = abxγ

ax = 0

.

Then D′(x) = ϵx,1e1 + ϕx,sfs = ϵbx,1e1 + abxγfs.

Let D′(e1) =
k∑
i=1

ϵe1,iei +
s∑
j=1

ϕe1,jfj + ae1x. By the definition of AID for basis e1 exists

element be1 ∈ L such that

D′(e1) = [e1, be1 ] = [e1, ϵbe1 e1 + abe1x] = −abe1 e1 + ϵbe1 ,1e2.

Comparing we get 

ϵe1,1 = −abe1
ϵe1,2 = ϵbe1 ,1

ϵe1,i = 0, 3 6 i 6 k

ϕe1,i = 0, 1 6 i 6 s,

ae1 = 0

.

Then D′(e1) = ϵe1,1e1 + ϵe1,2e2 = −abe1 e1 + ϵbe1 ,1e2. Further for all 2 6 i 6 k we have

D′(ei) = D′([ei−1, e1]) = [D′(ei−1), e1] + [ei−1, D
′(e1)] =

= [(i− 1)ϵe1,1ei−1 + ee1,2ei, e1] + [ei−1, ϵe1,1e1 + ϵe1,2e2] =
= iϵe1,1ei + ϵe1,2ei+1.
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Hence D′(ej) = jϵe1,1ej + ϵe1,2ej+1, 1 6 j 6 k. By the definition of AID for ei exists
elements bei such that

D′(ei) = [ei, bei ] = [ei, ϵei,1e1 + aeix] = −iaeiei + ϵei,1ei+1, 1 6 i 6 k.

So, for all 1 6 i 6 k we have {
ϵe1,1 = −aei
ϵe2,1 = ϵei,1

.

From the last equality we obtain be1 = be2 = · · · = bek =: b, 1 6 i 6 k, i.e. for any T ∈ AID(L)
such that T (ei) = [ei, b], 1 6 i 6 k.

Since D′ = D −Rbf1 , then

D′(e1) = (D −Rbf1 )(e1) = D(e1) −Rbf1 (e1) = [e1, b] − [e1, bf1 ] = [e1, b] − [e1, b] = 0.

Hence D′(ei) = 0, 2 6 i 6 k.
Now consider the following:

0 = D′(e1) = D′([x, e1]) = [D′(x), e1] = [ϵx,1e1 + ϕx,sfs, e1] = ϵx,1e2.

From here we have ϵx,1 = 0. Hence D′(x) = ϕx,sfs = abxγfs.
Consider the following cases.

Case 1. Let γ = 0. Then D′(x) = 0 and AID(L) = InDer(L).

Case 2. Let γ ̸= 0. Then by the definition of AID for e1 + x exists be1+x ∈ L such that

D′(e1 + x) = [e1 + x, be1+x] =
[
e1 + x,

k∑
i=1

ϵe1+x,iei +

s∑
j=1

ϕe1+x,jfj + ae1+xx
]

=

= (ϵe1+x,1 − ae1+x)e1 + ϵe1+x,1e2 + αϕe1+x,1f1.

On the other hand

abxγfs = D′(x) = D′(x) +D′(e1) = D′(e1 + x) = [e1 + x, be1+x].

Comparing the coefficients at the basic elements, we obtain the following
ϵe1+x,1 = ae1+x
ϵe1+x,1 = 0

αϕe1+x,1 = 0

γabx = 0

.

The last equation implies abx = 0, hence D′(x) = 0.
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Почти внутренние дифференцирования некоторых алгебр
Лейбница

Тууелбай К. Курбанбаев
Каракалпакский государственный университет

Нукус, Узбекистан
Институт математики имени И. Романовского АН Узбекистана

Ташкент, Узбекистан

Аннотация. Настоящая работа посвящена почти внутренним дифференцированиям тонких и раз-
решимых алгебр Лейбница. А именно мы рассматриваем тонкую алгебру Ли, разрешимую алгебру
Ли с нильрадикалом естественной градуированной филиформной алгеброй Ли, натуральную гра-
дуированную тонкую алгебру Лейбница, тонкую нелиевскую алгебру Лейбница и разрешимую
алгебру Лейбница с нильрадикалом нуль-филиформная алгебра. Доказано, что любые почти внут-
ренние дифференцирования всех этих алгебр являются внутренними дифференцированиями.

Ключевые слова: алгебра Ли, алгебра Лейбница, разрешимая алгебра, нильрадикал, тонкая ал-
гебра Ли, тонкая алгебра Лейбница, дифференцирования, внутренние дифференцирования, почти
внутренние дифференцирования.
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Abstract. A new mathematical model is proposed to describe the spatial static state of a cholesteric
liquid crystal. The model is constructed with the assumption of elastic resistance of a liquid crystal
under weak mechanical action or under disturbance of electric field. Along with rotational degrees of
freedom displacements of the centres of mass of the liquid crystal molecules relative to initial positions
are taken into account. Using numerical calculations, the effect of deformation of cholesteric spirals in a
thin layer under the action of electric field of a capacitor is analysed.
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Citation: V.M. Sadovskii, O.V. Sadovskaya, I.V. Smolekho, Modeling of Electric Field
Impact on a Cholesteric Liquid Crystal Layer, J. Sib. Fed. Univ. Math. Phys., 2023,
16(4), 475–487. EDN: QJPIWS.

Introduction

It is common to divide natural and artificial liquid crystals into three classes. These classes
include nematics, smectics and cholesterics. The centres of mass of molecules are randomly
distributed in space in nematics but the direction vectors of molecules lie in the same plane.
Smectics differ from nematics in a layered structure with abrupt/sharp boundaries of change
in the orientation of molecules when moving from layer to layer. Cholesterics have a helical
structure. The essential difference between these classes from the point of view of mathematical
modelling is that under certain assumptions regarding external actions, two-dimensional models
can be used to analyse nematics and smectics while two-dimensional models are not applicable
to cholesterics. To simulate the deformation of liquid crystals in the cholesteric phase under the
action of homogeneously distributed volumetric and surface forces and moments of forces it is
necessary to use three-dimensional equations.
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Cholesterics are structurally similar to nematics. The molecules in cholesterics are arranged
in thin layers in such a way that their long axes are parallel to each other, that is, a layer-by-layer
orientation order is observed. But the presence of asymmetric (chiral) atoms in the molecules
causes the molecules of the next layer to rotate through a small angle forming a helical structure
(see Fig. 1). If we move along the helix axis then after a certain number of layers the orientation
of the molecules becomes the same as in the first layer. One of the main characteristics of
a cholesteric liquid crystal (ChLC) is the pitch of the cholesteric helix p0, i.e., the distance over
which liquid crystal molecules rotate in space by the angle 2π. Another important characteristic
of a liquid crystal is the director (vector) n⃗ which determines the direction of the preferred
orientation of the long axes of LC molecules.

Fig. 1. Packing of rod-shaped molecules in cholesterics (a) and spiral arrangement of director n⃗ (b)

The interaction of a cholesteric liquid crystal with bounding surfaces leads to the formation of
various structures depending on the boundary conditions and the ratio of the helix pitch and the
thickness of the drop or layer [1]. Various orientations of near-boundary molecules are provided
at the stage of preliminary preparation of liquid crystal with the help of special technological
processes. Orientation structures in cholesteric droplets and their optical textures were studied,
for example, in [2,3]. Oriented ChLCs have a wide area of practical application as highly sensitive
sensors based on colour changes, thermal indicators, reflectors, notch filters, polarizes and optical
rotators, lasers, microlenses, etc. Detailed information about the current state of researche on
physical properties of cholesteric liquid crystals and technical devices based on them can be found
in [4–6].

The theory of Eriksen–Leslie is used for mathematical modelling of liquid crystals (see, for
example, [7]). It is applicable for solving static and non-stationary problems without restrictions
on the flow structure. However, the complexity of non-linear equations of this theory is a sig-
nificant obstacle to the development and justification of methods and algorithms for numerical
implementation. Therefore, it is appropriate to apply approximate models that are based on
simplifying hypotheses to solve specific problems.

We develop one of the approaches to model the behaviour of liquid crystals under the action
of weak thermomechanical and electromagnetic perturbations. The model of acoustic approxi-

– 476 –



Vladimir M. Sadovskii. . . Modeling of Electric Field Impact on a Cholesteric Liquid Crystal Layer

mation for the description of dynamic processes in liquid crystals was proposed [8]. Algorithms
for numerical implementation of this model were developed and computations were performed for
the layer of nematic liquid crystal (NLC) under the action of inhomogeneous electric field [9,10].
Computational algorithms for solving two-dimensional static problems were described [11]. The
purpose of this paper is to create a simplified mathematical model of spatial deformation of a
liquid crystal that is suitable for describing the cholesteric phase.

1. Mathematical model

The distribution of director in the liquid crystal relative to the Cartesian coordinate system
x1, x2, x3 with basis vectors e⃗1, e⃗2, e⃗3 is given by a field of normals with orientation angles θ
and ψ:

n⃗ = cos θ cosψ e⃗1 + sin θ cosψ e⃗2 + sinψ e⃗3 .

In the initial state of the ChLC layer ψ = ψ0 and θ = ∆θ x3/h that corresponds to helical
structure with a given helix twist angle ∆θ over the layer thickness h (ψ0 = 0 in Fig. 2).

Fig. 2. Kinematic scheme of the rotational motion of director

Deformation caused by inhomogeneous external action at the boundary or inside the layer
can lead to arbitrary change in both angles θ and ψ. Wherein a spatial stress-strain state
is realized that is described on the basis of simplified equations of the Cosserat continuum
under the assumption on hydrostatic state of a medium in the liquid phase. In this case, the
stress tensor is represented by the components σjk = − p δjk + τjk, where p is the hydrostatic
pressure, τjk = − τkj are the components of antisymmetric tensor of tangential stresses, δjk is the
Kronecker delta. Tangential stresses in a medium are due to the rotational degrees of freedom of
the particles. In addition to tangential stresses the rotation of particles leads to the occurrence
of couple stresses µjk which are the components of asymmetric tensor. Differential equations of
equilibrium for an element of the medium take the following form

∂p

∂xk
− ∂τjk
∂xj

= fk ,
∂µjk
∂xj

+ εijk τij = −mk . (1)

Here fk и mk are the projections of vectors of external body force and moment of force, εijk is the
Levi – Civita symbol. Einstein’s summation rule over repeated indices is accepted. Everywhere
below the commonly accepted notations and operations of tensor analysis are used.

The governing equations of the model are obtained using the Castigliano variational prin-
ciple. According to this principle the actual equilibrium state of the medium minimizes the
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potential energy integral on the set of admissible states that satisfies equilibrium equations (1)
and boundary conditions in stresses. These conditions are

− p νk + νj τjk = σ0
k on Sσ , νj µjk = µ0

k on Sµ , (2)

where Sσ and Sµ are the parts of boundary S of domain V (layer, in a particular case), νk are
projections of the outer normal vector to the boundary, σ0

k and µ0
k are the surface stresses given

on Sσ and Sµ. The energy integral takes the form

J =
1

2

∫
V

(
1

κ
p2 +

1

α
τjk τjk +

1

γ
µjk µjk

)
dV +

∫
Su

u0k
(
p νk − νj τjk

)
dS −

∫
Sw

w0
k νj µjk dS .

Here κ, α and γ are phenomenological parameters of the medium: κ is the bulk compression
modulus, α is the modulus of elastic resistance to relative rotation of particles, γ is the modulus of
elastic resistance to curvature change; u0k and w0

k are the displacements and rotations of particles
that are set on the remaining parts of the boundary Su = S \Sσ and Sw = S \Sµ, respectively.

The kinematic characteristics in the state of equilibrium (components of the displacement
vector and the rotation vector in the case of the Cosserat continuum) are the Lagrange multi-
pliers that corresponds to the constraints in the form of equilibrium equations. Therefore, the
Lagrangian in the problem of conditional minimization under consideration can be represented
as follows

L = J +

∫
V

(
−uk

∂p

∂xk
+ uk

∂τjk
∂xj

+ wk
∂µjk
∂xj

+ εijk wi τjk

)
dV .

Equating to zero the variation of Lagrangian δp L = 0, we obtain∫
V

(
1

κ
p δp− uk

∂ δp

∂xk

)
dV +

∫
Su

u0k νk δp dS = 0.

After applying Green’s formula, we have∫
V

(
1

κ
p+

∂uk
∂xk

)
δp dV +

∫
Su

(
u0k − uk

)
νk δp dS = 0.

Since variation δp is arbitrary we obtain equation and boundary condition

p = −κ
∂uk
∂xk

,
(
uk − u0k

)
νk = 0 on Su . (3)

Similarly, the equality δτjkL = 0 implies that∫
V

(
1

α
τjk −

∂uk
∂xj

+ εijk wi

)
δτjk dV +

∫
Su

(
uk − u0k

)
νj δτjk dS = 0 .

Hence, taking into account boundary condition (3) and the antisymmetry of variation δτjk =

= − δτkj , the following equations and boundary condition are obtained

τjk =
α

2

(
∂uk
∂xj

− ∂uj
∂xk

− 2 εijk wi

)
, uk = u0k on Su . (4)

The equality δµjkL = 0 leads to equations and boundary condition

µjk = γ
∂wk
∂xj

, wk = w0
k on Sw . (5)
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With an appropriate choice of phenomenological parameters of the medium system of equa-
tions and boundary conditions (1)–(5) is a closed mathematical model of the spatial deformation
of the liquid crystal. To reduce it to a compact vector form the antisymmetric tangential stress
tensor  0 − τ21 τ13

τ21 0 − τ32
− τ13 τ23 0

 ,

is identified with the pseudovector

τ⃗ × = τ32 e⃗1 + τ13 e⃗2 + τ21 e⃗3 = − εijk τjk e⃗i .

Then τjk = − εijk τ
×
i , νj τjk e⃗k = − εijk νj τ

×
i e⃗k = εijk νj τ

×
k e⃗i = ν⃗ × τ⃗ ×,

∂τjk
∂xj

e⃗k = − εijk
∂τ×i
∂xj

e⃗k = εijk
∂τ×k
∂xj

e⃗i = ∇× τ⃗ ×, ∇× u⃗ = εijk
∂uk
∂xj

e⃗i .

Using these relations, differential equations included in (1)–(5) are transformed to the following
form

∇p−∇× τ⃗ × = f⃗ , p = −κ∇ · u⃗ , τ⃗ × = α

(
w⃗ − 1

2
∇× u⃗

)
,

−∇ ·µµµ+ 2 τ⃗ × = m⃗ , µµµ = γ∇w⃗ .
(6)

Boundary conditions for displacements and rotation angles obtained from the Castigliano varia-
tional principle have the following vector form

u⃗ = u⃗ 0 on Su , w⃗ = w⃗ 0 on Sw . (7)

Boundary conditions (2) for stresses and couple stresses are as follows

− p ν⃗ + ν⃗ × τ⃗ × = σ⃗ 0 on Sσ , ν⃗ ·µµµ = µ⃗ 0 on Sµ . (8)

Equations (6) with boundary conditions (7), (8) can be used to model the deformation of liquid
crystal occupying an arbitrary domain under sufficiently general external actions of mechanical,
temperature or electromagnetic fields inside the domain and on its boundary.

Let us consider the case of a non-magnetic liquid crystal (dielectric) when the bulk forces and
moments of forces are caused by the action of an inhomogeneous electric field.

2. The action of electric field

The inhomogeneity of electric field is directly connected with the previously unknown ori-
entation of LC molecules in a deformed state. Orientation, in its turn, depends on the electric
field direction. The electric field E⃗ is defined in terms of the spatial distribution of the electric
potential φ: E⃗ = −∇φ. In the absence of bulk electric charges inside domain V , the equation
for the potential takes the form:

∇ · D⃗ = 0 , D⃗ = εεε · E⃗ =⇒ ∇ ·
(
εεε · ∇φ

)
= 0 . (9)

Here D⃗ is the electric induction vector, εεε is the dielectric permittivity tensor. It is defined as

εεε = ε⊥ III + ∆ε n⃗ n⃗ ,
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where ε∥ and ε⊥ are permittivities along and across molecules, respectively, III is the unit tensor,
∆ε = ε∥ − ε⊥.

The spatial distribution of the director n⃗ depends on the electric field indirectly through the
molecular rotation vector w⃗. When rotating through an infinitesimal angle, one can write

n⃗ = n⃗ 0 + w⃗ × n⃗ 0. (10)

This relation has a simple geometric interpretation (see Fig. 2). The projection wn = w⃗ ·n⃗ 0 of the
rotation vector onto the initial direction of the director describes the rotation of a medium around
the n⃗ 0 axis. Such rotation has no effect on the distribution of mechanical stresses and electric
field since individual LC molecules are represented as rectilinear rigid needles of nanoscale length
with negligible thickness. Vector w⃗−wn n⃗ 0 is orthogonal to the direction n⃗ 0 and it describes the
rotation of director from the initial position to the current one. Therefore, w⃗−wn n⃗

0 = n⃗ 0 × n⃗.
It is consistent with relation (10):

n⃗ 0 × n⃗ = n⃗ 0 × n⃗ 0 + n⃗ 0 ×
(
w⃗ × n⃗ 0

)
= w⃗

(
n⃗ 0 · n⃗ 0

)
− n⃗ 0

(
n⃗ 0 · w⃗

)
= w⃗ − wn n⃗

0.

For finite rotations relation (10) is not applicable because condition n⃗ 2 = 1 is violated. In this
case, n⃗ = RRR · n⃗ 0, where RRR is the rotation tensor that is defined in terms of the unit vector of the
rotation axis

q⃗ =
w⃗

|w⃗|
=

n⃗ 0 × n⃗

|n⃗ 0 × n⃗|

and the rotation angle ϕ as follows

RRR = III + sinϕQQQ+ (1 − cosϕ)QQQ2 , QQQ =

 0 − q3 q2
q3 0 − q1
− q2 q1 0

 .

If rotation occurs in the positive direction of vector w⃗ then ϕ = |w⃗|. If rotation takes place in
the negative direction then ϕ = −|w⃗|.

Contrary to traditional mathematical models of LC deformation in this model the director
n⃗, which is required to calculate the dielectric permittivity tensor, does not belong to the main
required functions. It is determined using rotation vector w⃗ by relation (10) or by the more
precise relation n⃗ = RRR · n⃗ 0.

Let us note that differential equation (9) is not sufficient to uniquely define the electric
potential in V since the electric potential must be determined in the entire space including the
exterior of V . If there are no bulk electric charges in the surrounding space and if it is filled
with air or other rarefied gas with dielectric permittivity close to unity then the potential in it
satisfies the Laplace equation ∇2φ = 0. Moreover, it tends to zero at infinity. At the same time,
conditions for continuity of the electric potential and the component of the electric induction
vector normal to the interface are satisfied at the interface between the dielectric and the gas.
It is also necessary to add to equation (9) boundary conditions on boundary S or on its part
simulating the occurrence of non-zero electric field.

When potential is given the vector of bulk forces caused by the inhomogeneity of electric field
is determined as follows

f⃗ =
(
P⃗ · ∇

)
E⃗ , P⃗ = ε0χχχ · E⃗ , χχχ = εεε− III ,
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where χχχ is the dielectric susceptibility tensor, P⃗ is the polarization vector, ε0 = 8.854 ·10−12 F/m
is the electrical constant. In expanded form it becomes

f⃗ = ε0

(
(ε⊥ − 1)∇φ · ∇ + ∆ε (n⃗ · ∇φ) n⃗ · ∇

)
∇φ . (11)

To determine the vector of moment of bulk forces the following relation is used

m⃗ = P⃗ × E⃗ =⇒ m⃗ = ε0 ∆ε (n⃗ · ∇φ) n⃗×∇φ (12)

It follows from (11) and (12) that LC molecules are subjected to bulk moments of forces in
an arbitrary electric field, not excluding the case when field vector E⃗ is constant everywhere in
V , while bulk forces appear only with a non-uniform distribution of this vector.

3. One-dimensional problem

Let us consider LC layer of thickness h infinite in the plane x1, x2 between extended capacitor
plates. Initial distribution of molecular orientation angles inside the layer is known: θ0(x3) =

∆θ x3/h, ψ0 = ψ0(x3). It corresponds to the cholesteric phase with the turn of spirals across
the layer at an angle ∆θ. Molecules are reoriented when charges appear on the capacitor plates
under the action of electric field.

Components of the dielectric permittivity tensor εjk = ε⊥ δjk + ∆ε nj nk in the considered
Cartesian coordinate system are

ε11 = ε⊥ + ∆ε cos2 θ cos2 ψ , ε12 =
1

2
∆ε sin 2θ cos2 ψ ,

ε22 = ε⊥ + ∆ε sin2 θ cos2 ψ , ε23 =
1

2
∆ε sin θ sin 2ψ ,

ε33 = ε∥ sin2 ψ + ε⊥ cos2 ψ , ε13 =
1

2
∆ε cos θ sin 2ψ .

In addition to reorientation, the layer is deformed under the action of electromagnetic forces.
Taking into account the symmetry of the problem, we have

E⃗ = −φ′ e⃗3 , P⃗ = − ε0 φ
′
(
ε13 e⃗1+ε23 e⃗2+(ε33−1) e⃗3

)
, f1 = f2 = 0 , f3 = ε0 (ε33−1)φ′φ′′,

and the prime denotes the derivative with respect to x3. The rotation of molecules is due to the
action of moments of forces. Non-zero projections of the vector of moments are

m1 =
ε0 ∆ε

2
(φ′)2 sin θ sin 2ψ , m2 = − ε0 ∆ε

2
(φ′)2 cos θ sin 2ψ .

Vector m⃗ at each point of the layer is turned out to be directed perpendicular to the plane
passing through the director n⃗ and the axis x3. This follows from the equality to zero of the
scalar products m⃗ · n⃗ = m⃗ · e⃗3 = 0. Thus, the reorientation of molecules occurs only due to the
change in angle ψ while angle θ = θ0(x3) remains unchanged.

The differential equations of equilibrium for the layer take the form

− p′ = f3 , µ′
31 − 2 τ×1 = −m1 , µ′

13 − 2 τ×2 = −m2 .

Non-zero projections of the rotation vector are

w1 = ∆ψ sin θ , w2 = −∆ψ cos θ (∆ψ = ψ − ψ0) .
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Constitutive equations for pressure, moment stresses and tangential stresses are

p = −κu′3 , µ31 = γ w′
1 , µ32 = γ w′

2 , τ×1 = αw1 , τ×2 = αw2.

They allow one to transform the equilibrium equations to the following system of equations for
displacement u3 and rotation angle ψ

κu′′3 = ε0 (ε33 − 1)φ′φ′′ , − 2 γ
(
ψ′′ − ψ′′

0

)
+ 4α (ψ − ψ0) = ε0 ∆ε (φ′)2 sin 2ψ . (13)

Equation (9) for the electric potential is integrated as follows

(ε33 φ
′)′ = 0 =⇒ φ′ =

C1

ε33
.

The next condition is used to determine constant C1

C1

∫ h

0

dx3
ε33

= ∆φ
(
ε33 = ε∥ sin2 ψ + ε⊥ cos2 ψ

)
, (14)

where ∆φ is the difference of potentials on the capacitor plates.
After substituting expression for φ′ and integrating the first equation (13), the system is

transformed into

κu′3 = − ε0 C
2
1

1 − 2 ε33
2 ε233

+ C2 , − 2 γ∆ψ′′ + 4α∆ψ = ε0 C
2
1 ∆ε

sin 2(ψ0 + ∆ψ)

ε233
. (15)

The boundary conditions ∆ψ(0) = ∆ψ(h) = 0 are added to the equation for the angle of
rotation. Such problem is solved numerically. The distribution ψ0(x3) = ψ0(x3) is taken as
the initial distribution of angles. According to the given distribution ψn(x3), the approximate
value of constant Cn1 is calculated using (14). New approximation ψn+1(x3) is determined using
three-point sweep method based on the iterative algorithm

− 2 γ
∆ψn+1

j+1 − 2 ∆ψn+1
j + ∆ψn+1

j−1

∆x23
+ 4α∆ψn+1

j = ε0 C
2
1 ∆ε

sin 2(ψ0 j + ∆ψnj )

(εn33 j)
2

. (16)

The process is stopped when the condition ||∆ψn+1−∆ψn||/||∆ψn|| < δ is fulfilled, where ||∆ψ||
is a uniform difference norm, δ is a given calculation error.

After finding constant C1 using the trapezoid rule, potential φ is calculated from relation

φ(x3) = C1

∫ x3

h/2

dx3
ε33

.

The equation for displacement is integrated numerically for boundary conditions of two types:
u3(0) = u3(h) = 0 and u3(0) = 0, u′3(h) = 0. In the first case, constant C2 is determined as

C2 =
ε0 C

2
1

2h

∫ h

0

1 − 2 ε33
ε233

dx3,

and in the second case as

C2 = ε0 C
2
1

1 − 2 ε33
2 ε233

∣∣∣∣
x3=h

.
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When initial angle ψ0 = 0 is equal to zero equation (15) for the rotation angle describes
the Fréedericksz effect of the loss of equilibrium of LC molecules in electric field. As a result of
linearisation of the equation, the problem is reduced to the boundary value problem

γ h2 ψ′′ =
(
2αh2ψ − ε0 ∆ε∆φ2

)
ψ , ψ(0) = ψ(h) = 0 .

After substituting the solution ψ = A sinπx3/h, where A is an arbitrary constant, we obtain the
formula for the difference of potentials at which the trivial solution becomes unstable

∆φ0 =

√
π2 γ + 2h2 α

ε0 ∆ε
. (17)

In comparison with the classical formula for the Fréedericksz transition threshold, which takes
into account only moment interactions, it contains a correction accounting the resistance to
rotation of particles due to tangential stresses and it shows that such resistance prevents the loss
of stability.

Formula (17) is used for verification of the algorithm and program. According to the results of
computations of the liquid crystal with parameters ε∥ = 16.7, ε⊥ = 7, α = 2.45 Pa, γ = 6·10−12 N
and κ = 3.12 GPa the value of potential difference ∆φ = 1.27 V is obtained which is close to the
threshold value corresponding to the transition of the layer into unstable state. At smaller values
of ∆φ the orientation of molecules calculated by scheme (16) with ψ0 = 0 remains unchanged
and ψ = 0. The electric potential is distributed linearly over the layer: φ = (x3/h − 0.5) ∆φ.
For larger values of the difference of potentials the transition occurs from initial unstable state
to a stable one which is characterized by inhomogeneous distribution of angle ψ and non-linear
distribution of potential φ over the layer. There are two stable states that differ in the sign of
the molecular orientation angle. The positive or negative sign is realized in computations. It
depends on the small perturbation of the initial angle ψ0.

Let us note that the sequence of approximations of the orientation angle in the numerical
implementation of scheme (16) is rapidly converges (number of iterations is about 10) if the
resulting value of angle ψ at the layer centre is away from 90◦, i.e., differs from the orientation
angle of the electric field. When the value of angle ψ approaches 90◦ the convergence of the iter-
ative process slows down with the transition to the divergent regime. In addition, the expansion
of non-linear right-hand side (16) according to the Newton method does not allow one to expand
the range of admissible setting of potential difference ∆φ in which the approximations converge
but, on the contrary, leads to a significant narrowing this range.

4. Numerical results

The results of computations for the layer of thickness h = 4 µm with potential difference
∆φ = 1.28 V (it is close to the threshold value) are shown in Figs. 3– 6. The curves of red, green,
blue and violet colours in Fig. 3 demonstrate diagrams of the distribution of the orientation angle
over the layer for initial values ψ0 ≈ 0, ψ0 = 5◦, 10◦ and 15◦. Deviations of potential from the
linear distribution δφ(x3) = φ(x3) − (x3/h − 0.5) ∆φ corresponding to these values are shown
in Fig. 4. Results of computations demonstrate that potential distribution for small values of
initial angle ψ0 is close to linear distribution but it changes significantly with a slight change in
this parameter.

Figs. 5 and 6 show diagrams of strain distribution ϵ33 = u′3 for two types of boundary
conditions on the sides of the layer (on capacitor plates). In both cases, the level of strains is
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Fig. 3. Distribution of the rotation angles of molecules over the LC layer
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Fig. 4. Deviation of the electric potential from linear distribution
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Fig. 5. Strain distribution over the LC layer for fixed sides

negligible (about 10−7 %) since the electric field in the problem under consideration is practically
uniform. Its inhomogeneity is determined by a slight change in the LC dielectric permittivity due
to relative rotation of molecules. Nevertheless, the following characteristic qualitative features
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Fig. 6. Strain distribution over the LC layer for free surface

can be noted. If both sides are fixed, the layer is stretched near boundaries and compressed in
the centre. Thus, the pitch of cholesteric helices of the liquid crystal is increased in comparison
with the initial pitch near capacitor plates, and it is decreased in the middle part of the layer.
Under the condition of a free surface, the layer is compressed everywhere but the pitch of helices
is decreased in the centre, and it remains practically the same as in the initial undeformed state
near the sides.

Results of computations presented in Fig. 7 correspond to the LC layer that consists of two
sublayers of equal thickness. The initial orientation angles are ψ0 = 0 (in the lower sublayer)
and ψ1 = 5◦, 10◦, 15◦, 20◦ (in the upper sublayer). Considering results of computations, one can
see that jump in the orientation angle of molecules at the interface between sublayers after the
application of constant electric field remains the same as it was set in the initial state. This
follows directly from the analysis of equation (15) for the rotation angle. The right-hand side of
the equation is discontinuous function with discontinuity of the first kind at the interface between
sublayers.
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Fig. 7. Distribution of the rotation angles of molecules over the LC layer consisting of two
sublayers

Performed computations demonstrate the applicability of the proposed mathematical model
for calculating liquid crystals of a layered smectic phase.
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Conclusion

To describe the static deformed state of the liquid crystal under the action of weak external
perturbations a simplified mathematical model is proposed. The liquid crystal is considered as
structurally inhomogeneous continuum with translational and rotational degrees of freedom of the
micro-structure particles (LC molecules). This model is applicable to the analysis of cholesteric
liquid crystals with spatial helical orientation of molecules. To demonstrate implementation of
the model the problem of deformation of a cholesteric liquid crystal layer in the electric field of
a capacitor was considered. The state of the liquid crystal in the vicinity of the Fréedericksz
transition was studied numerically. Distributions of the orientation angle, electric potential
and strain over the layer were obtained for various initial orientation angles. Analysis of the
results of computations demonstrates that predominant compression of cholesteric spirals under
the electric field action (its inhomogeneity over the layer is determined by the change in the
dielectric permittivity due to the rotation of molecules) occurs in the middle part of the ChLC
layer.

This work is supported by the Krasnoyarsk Mathematical Center and financed by the Ministry
of Science and Higher Education of the Russian Federation in the framework of the establish-
ment and development of regional Centers for Mathematics Research and Education (Agreement
no. 075-02-2023-912).
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Моделирование действия электрического поля
на жидкокристаллический слой холестерика
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Аннотация. В рамках предположения об упругом сопротивлении холестерического жидкого кри-
сталла слабым механическим воздействиям или возмущениям электрическим полем строится новая
математическая модель для описания пространственного статического состояния. Наряду с вра-
щательными степенями свободы учитываются смещения центров масс молекул жидкого кристалла
относительно начального положения. С помощью численных расчетов в задаче для тонкого слоя
анализируется эффект деформации холестерических спиралей под действием электрического поля
конденсатора.

Ключевые слова: холестерический жидкий кристалл, статика, электрическое поле, эффект Фре-
дерикса.
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Introduction

Let P (x, s) ∈ R[x] (where x ∈ Rk) be a polynomial with real coefficients s ∈ RN . We consider
the trigonometric integral given by

T (s) =

∫
Q

exp(iP (x, s))dx, (1)

where Q ⊂ Rk is a compact set.
Problems related to such kind of integrals arise in mathematical physics (see [1]), harmonic

analysis (see [2–5]), analytic number theory (see [6–11]) and so on. Surely, the given references
are not complete.
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One of the well known problems related to the trigonometric integrals is the issue on conver-
gence of the special integral of the Tarry problem, which is given by the following:

θ =

∫
RN

|T (s)|pds, with Q = [0, 1]k. (2)

The integral θ arises as the coefficient of asymptotic representation for a number of integer
solutions of a Diophantine system [2, 6, 7]. Therefore, it is important to find a minimal value of
the parameter p, where the special integral is convergent, which is also essential in the Fourier
restriction problem in harmonic analysis [3].

Definition. A real number γ is called to be a convergence exponent of the special integral if for
every p > γ the integral (2) is convergent and for every p < γ it is divergent. In other words
γ = inf{p : T ∈ Lp(RN )}.

It should be noted that the convergence exponent essentially depends on the form of the
polynomials P (x, s). Thus the main problem can be formulated as:

Problem: Find the number γ.
This problem was considered by I. M. Vinogradov [11] in connection with the problems of

analytic number theory. He obtained an upper bound for the number γ in the case k = 1. This
bound was improved in [10].

The exact value of γ was indicated in [6] for the case k = 1. It is interesting to note that in
one-dimensional case depending on form of the polynomial P (x, s) the exact value of γ can be
expressed by the sum of exponents of the non-trivial terms of the polynomial P (x, s). Moreover,
it was proved un upper bound for the number γ in multidimensional cases.

It should be noted that, in [12] a lower bound was found for the number γ. Moreover, it was
found the number γ provided that the coefficients of the polynomial vary in some subspace of
RN . Similar problems were considered in the works [13, 14, 15].

In [7] a lower bound was obtained for γ and also, it was investigated analogical problem for
more subtle object trigonometric sums in the case k = 2. In [7] and [9] a similar problem was
considered in the case k = 2. Moreover, in [7], it is shown that if P is a homogeneous quadratic
polynomial and k = 2, then γ = 4 in the case when Q = [0, 1]2, more precisely, the special
integral θ is convergent if p > 4 and divergent if p 6 4.

It was interesting to extend the results proved by L. G .Arkhipova, V. N.Chubarikov related
to trigonometric integrals to multidimensional case.

In this paper we study the problem in the classical setting. In other words, P is a quadratic
polynomial function and Q = [0, 1]k is the unit cube and also for the case when Q is a compact
domain. Analogical problem was considered by J. Makenhaupt [2], who obtain the number γ in
the case when the polynomial P (x, s) satisfies some "non-degeneracy" condition.

It should be noted that the condition of J. Makenhaupt does not hold for the general case
(see [2]). Actually, J. Mokenhaupt used an interesting approach. He computed the multidi-
mensional trigonometric integral, for which the amplitude function is the gauss function. Then
he be able to get the sharp value of the convergence exponent for some cases. It should be
noted that using the gauss functions to investigate behavior of oscillatory integrals goes back
to E. M. Stein [1]. We obtain the exact value of γ, whenever P is a homogeneous polynomial of
degree two.

We use the idea of J.Makenhaupt and then we able to investigate the obtained integrals. We
observe that the integral over RN can be written as an iterated integral over the orbit of the
orthogonal group and then over the corresponding fundamental domain. It is interesting that the
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integrant in the trigonometric integrals with quadratic phase with special amplitude function,
more precisely gauss functions, is invariant under action of the orthogonal group. Thus, our
approach is natural in this case. Unfortunately, it seems such approach does not work for
trigonometric integrals with more general polynomial phase functions.

The paper is organized as follows in the next Section 1 we formulate our main results. In the
next Section 2 we give some auxiliary results on integrals. In particular, we obtain transformation
of the volume form under the natural action of the orthogonal group. Then we give a proof of
our main results in the next Section 3. Finally, we give some results related to two-dimensional
integrals in the last Section 4.

1. Formulation of the main results

Let P be the polynomial given by

P (x,A, b) = (Ax, x) + (b, x),

where A = (alm)kl,m=1 is a symmetric k × k matrix with real entries, b := (b1, b2, . . . , bk) ∈ Rk

and (·, ·) is the inner product of the corresponding vectors. Consider the trigonometric integral

T (A, b) =

∫
Rk

exp (iP (x,A, b))χQ(x)dx,

where Q is a compact set and χQ(x) is its characteristic function.
Consider the integral

θ =

∫
RN

|T (A, b)|pdb da,

where db = db1db2 . . . dbk and da =
∏

16l6m6k
dalm.

The following is true:

Theorem 1.1. Let Q be a compact set, then the integral θ converges, whenever p > 2k + 2 and
if Q contains an interior point x0 and there exists a line l passing through point x0 such that
the boundary of the set {l∩Q} contains only a finite number of points, then the integral diverges
provided p 6 2k + 2. In particular, if Q = [0, 1]k, then γ = 2k + 2.

1. The case when P is a homogeneous polynomial of the second order

Now suppose that P (x,A) = (Ax, x). In [9] it has been proved that if Q is a quadratic
polynomial in R2, then for p > 4 the θ integral converges and when p 6 4 the θ integral diverges.
In this paper we extend those results to the case when Q is a polyhedron in Rk.

By polyhedron we mean a finite union of nondegenerate simplexes [5].

Theorem 1.2. If P (x,A) = (Ax, x) and Q is a polyhedron, then for p > 2k the integral θ
converges. If Q = [0, 1]k, then for p 6 2k the integral θ diverges.

Remark 1. In this case, we cannot apply the results of [3] as the corresponding set {xixj}ni6j=1

is not a smooth surface.

Remark 2. Depending on the set Q, the exponent p may be smaller than 2k. For example, if
k = 2 and Q is a sufficiently small square centered at (1, 1), then it can be proved that for p > 3

the integral θ converges.
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2. Preliminaries

Consider the following integral

T∞(A, b) =

∫
Rk

exp (iP (x,A, b) − (x, x))dx.

It is easy to check that this integral, whose calculation details are given in [2], is absolutely and
uniformly converges with respect to the parameters A and b.

Lemma 2.1. The following equality holds

T∞(A, b) = (2π)
k
2 (det(I − iA))

− 1
2 exp

(
− ((I − iA)

−1
b, b)

4

)
,

where the square root is determined in the following way

(det(I − iA))
− 1

2 := (1 − iλ1)−
1
2 · (1 − iλ2)−

1
2 · . . . · (1 − iλk)−

1
2 ,

with λ1, . . . , λk being eigenvalues of A. The branch cut of the multiply-valued function z−
1
2 is

taken on the complex plane by cutting the negative part of the real axis and 1−
1
2 = 1.

Lemma 2.1 is proved by reducing A to the diagonal form. Consequently, the calculation of
the integral is reduced to a one-dimensional integral and it is explicitly calculated (see. [1]).

Obviously, the following equations are satisfied:∣∣∣∣∣exp
(
− ((I − iA)

−1
b, b)

4

)∣∣∣∣∣
p

= exp(− ((I +A2)
−1
b, b)p

4
),

∫
Rk

exp
(
− ((I +A2)

−1
b, b)p

4

)
db =

(8π)
k
2 (det(I +A2))

1
2

p
k
2

.

Let us introduce the following notation:

θ∞ =

∫
RN

|T∞(A, b)|pdb da,

where N =
k(k + 2)

2
.

Proposition 1. The integral θ∞ converges when p > 2k + 2 and diverges when p 6 2k + 2.

Due to Lemma 2.1, the proof of the Proposition 1 comes by studying the following integral

θ∞ = c(p)

∫
RN−k

da

(det(I +A2))
p−2
4

, (3)

where c(p) is some positive number.
As the determinant is an invariant of the orthogonal group, it is convenient to integrate it

first by the orbits of the orthogonal group and then by the quotient space, e.g. over fundamental
domain with respect to action of the orthogonal group.

Let M be the set of symmetric matrices with real entries and G = SOk be a special subgroup
of orthogonal matrices. This group naturally acts in the space M as g(A) = gtAg, where g∈ SOk
and A∈M .
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It is known that for any real symmetric matrix A, there exists g∈ G such that
g(A) = diag(λ1, . . . , λk), where diag(λ1, . . . , λk) is a diagonal matrix with diagonal elements
λ1, . . . , λk. In other words for any matrix A there exists g∈ G such that A = gtΛg, where
Λ = diag(λ1, . . . , λk). Hence it is possible to define a surjective smooth map

Φ : Rk×G 7→M

which is defined by the formula Φ(Λ, g) = gtΛg.
Let da = da11∧ . . .∧dakk be the standard volume form in the space M . We can define the

image of this form under the map Φ, denoted by Φ∗da∈∧N−k(Rk×SOk).

Lemma 2.2. The following equality holds

Φ∗da =
∏

16l<m6k
(λm − λl)dλ1∧ . . .∧dλk∧ω,

where ω is the volume form on the orthogonal group SOk.

Lemma 2.2 can be proved by using the zero sets of the Jacobian of the map Φ. Note that the
equality

∏
16l<m6k

(λm−λl)
2 = ρA(λ) holds, where ρA(λ) is the discriminant of the characteristic

polynomial of the matrix A.
By Lemma 2.1 the integral (3) can be rewritten as

∫
RN−k

da

(det(I +A2))
p−2
4

=

∫
Rk

∏
16l<m6k

|λm − λl|∏
16l6k

(1 + λl
2)

p−2
4

dλ1∧ . . .∧dλk
∫
SOk

ω.

From the last equality, it follows that the convergence of the integral (3) comes from the inves-
tigation of the convergence of the following integral

∫
Rk

∏
16l<m6k

|λm − λl|∏
16l6k

(1 + λl
2)

p−2
4

dλ1∧ . . .∧dλk.

Note that this integral converges when p > 2k + 2 and diverges when p 6 2k + 2 and this proves
the Proposition 1. 2

3. Proofs of the main results

Proof of the Theorem 1.1. The upper bound for γ follows from the main Theorem 1.1 of paper [3].
Consider the following subset Ω(a11) in RN−1:

|a12| + |a13| + · · · + |a1k| < c1a11, −1

2
<

b1
a11

< −1

4
, |alj −

a1la1j
a11

|6 c2, |bl −
2bla1l
a11

|6 c2,

where l = 2, . . . , n and c1, c2 are sufficiently small fixed positive numbers and a11 > 1.

Lemma 3.1. There is a positive number c such that, the following equality holds:

µ(Ω(a11)) = c · ak11,

for the Lebesgue measure of µ of the set Ω(a11).
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Proof. Consider the following maps:

ξ1l(A, b1, . . . , bk) = a1l,

ξ1(A, b1, . . . , bk) = b1,

ξl(A, b1, . . . , bk) = bl −
2b1a1l
a11

,

ξlj(A, b1, . . . , bk) = alj −
a1la1j
a11

,

j 6 l, j, l = 2, 3, . . . , k.

Jacobian of this map is equal to ±1.
Denote by Ω(ξ11) the image of the map. Since the Jacobian is ±1, then we have

µ(Ω(a11)) = µ(Ω(ξ11)).

It is easy to verify that for the set Ω(ξ11) with

| ξ12 | + | ξ13 | + · · ·+ | ξ1k |< c1 · a11,

−1

2
<

ξ1

ξ11
< −1

4
,

| ξl | 6 c2, | ξlj | 6 c2, j 6 l, j, l = 2, 3, . . . , k

we have
µ(Ω(ξ11) = c · ξk11 = c · ak11.

Hence,
µ(Ω(a11)) = c · ak11.

2

Lemma 3.2. There exists a positive number L such that when a11 > L and (A, b)∈ Ω(a11) for
the integral T (A, b) the following asymptotic equality holds

T (A, b) =
c(A, b)

a
1
2
11

+O

(
1

a11

)
as a11→+∞.

Moreover, there exists a positive number δ such that for any (A, b)∈ Ω(a11), the following in-
equality holds:

|c(A, b)| > δ.

Proof. Lemma 3.2 is proved by the method of stationary phases. Note that for the sufficiently
small c1, c2 and for the sufficiently large L, the phase has oscillation only in the x1 direction on
the set (A, b) ∈ Ω(a11). Consequently, for fixed values of x2, . . . , xn∈ [0, 1], the non-degenerated
critical point x1(A, b, x2, . . . , xn) lies in (0, 1). 2

Finally, for integral θ we have the following lower bound:

θ >
∫ ∞

L

∫
Ω(a11)

|T (A, b)|pdb da > δc

∫ ∞

L

a
k− p

2
11 da11.

Thus, when p 6 2k + 2 the last integral diverges, which proves the Theorem 1.1. 2
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Proof of the Theorem 1.2. We use the classical Young inequality.
Let f∈ Lp(Rk) and g∈ Lr(Rk) be arbitrary functions. The following inequality holds:

∥f∗g∥Lq 6 ∥f∥Lp∥g∥Lr ,

where f∗g is a convolution of the functions f and g. Moreover, constants 16p, q, r6∞ are related
by

1

q
+ 1 =

1

p
+

1

r
.

Let Q be a compact polyhedron in Rk and

h(b) =

∫
Rk
e|x|

2

χQ(x)e−2πi(b,x)dx.

Lemma 3.3. The following relation h∈ L1+0(Rk) holds true, where L1+0(Rk) := ∩p>1Lp(Rk).

Proof. Note that, for any ε > 0, χ̂Q ∈ L1+ε(Rk) (see. [4]). Then the statement of Lemma 2.1
easily follows from the Young’s inequality.

Now let us return to the proof of Theorem 1.2. According to the Plancherel theorem we have:

T (A) =

∫
Q

ei(Ax,x)dx =

∫
Rk
ei(Ax,x)χQ(x)dx =

∫
Rk
ei(Ax,x)−|x|2e|x|

2

χQ(x)dx =

∫
Rk
f̂(A, b)g(b)db,

where f̂(A, b) =
∫
Rk
ei(Ax,x)−|x|2−2πi(x,b)dx and ĝ(b) =

∫
Rk
e|x|

2

e−2πi(x,b)dx.

Let q > 1 be a fixed number. Then, using the Hölder inequality, we have:

|T (A)| 6 ∥f̂(A, ·)∥L
q
′ (Rk)∥g∥Lq(Rk),

where
1

q
+

1

q′ = 1.

According to Lemma 2.1 , we have

|T (A)| 6 cq

(det(I +A2))
p
4−

1

2q
′
.

Thus, if p > 2k, then we can choose q
′
> 1 such that

p

4
− 1

2q′ >
k

2
. It follows that if

p

4
− 1

2q′ >
k

2
,

then T ∈ Lp(Rk).

It remains to prove the sharpness of the result. Consider the following subset Ω+(a11) in

RN−1, where N =
k(k + 1)

2
.

a11 > 0, |a12| + |a13| + · · · + |a1k| < c1a11,

∣∣∣∣alj − a1la1j
a11

∣∣∣∣6 c2, a1l < 0

where l 6 j = 2, n, l = 2, . . . , n and c1, c2 are sufficiently small fixed positive numbers.
According to the Lemma 3.1 there exist positive numbers c1 and c2 such that the following

equality holds for the Lebesgue measure of Ω+(a11):

µ(Ω+(a11)) = c · ak−1
11 . 2
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Lemma 3.4. There exists a positive number L such that when a11 > L and (A, b)∈ Ω(a11) for
the integral T (A) the following asymptotic equality holds

T (A) =
c(A)

a
1
2
11

+O

(
1

a11

)
as a11→+∞.

Moreover, there exists a positive number δ such that for any (A, b)∈ Ω+(a11) the inequality

|c(A)| > δ > 0

holds true.

Lemma 3.4 is proved by the method of stationary phases. Note that if δ2 > 0 and δ1 < 0 are
fixed numbers then the following relation holds true

δ2
√
λ∫

δ1
√
λ

cos y2dy = c(δ1, δ2, λ)

and there exist λ0, ε > 0 such that the inequality c(δ1, δ2, λ) > ε > 0 holds for all λ > λ0.

Indeed, we have the following relation

lim
λ→+∞

δ2
√
λ∫

δ1
√
λ

cos y2dy =

√
2π

2
.

Note that, for sufficiently small c1, c2 at A ∈ Ω+(a11) and for sufficiently large L, the phase has
oscillations only in the x1 direction. Also, for fixed values x2, . . . , xn∈ [0, 1], the nondegenerate
critical point x1(A, b, x2, . . . , xn) lies inside (0, 1).

Finally, for the integral θ, we have the following lower bound:

θ >
∫ ∞

L

∫
Ω(a11)

|T (A)|pda > δc

∫ ∞

L

a
k− p

2−1
11 da11.

Thus, the last integral diverges, whenever p 6 2k. The Theorem 1.2 is proved. 2

4. Two-dimensional case

Note that in the homogeneous case the results of [3] are not applicable. The proof of
Theorem 1.2 essentially uses the property χ̂Q ∈ L1+0(Rk).

In Lebedev’s paper, it is given an example of the domain ∂D ∈ C1,ω, where ω is the continuity
module of the gradient φ that locally defines ∂D, such that χ̂Q ∈ L1+0(Rk). Therefore, we can
assume that D is a compact domain with sufficiently smooth boundary.

The following is true

Theorem 4.1. Let D be a compact domain such that χ̂D ∈ Lq(R2) and T (A) =
∫
D

ei(Ax,x)dx.

Then T ∈ Lp(R3) for p > 6 − 2

q
. Moreover, if χ̂D ∈ L1+0(R2), then for any p > 4, the inclusion

T ∈ Lp(R3) is valid.

Remark 3. From the results given in [4] it follows that there exists a domain D other than a
polygon such that χ̂Q ∈ L1+0(R2).

Corollary 1. If D ⊂ R2 is a compact set such that ∂D ⊂ C1, then for p > 4.5 the relation
T ∈ Lp(R3) holds.
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1. Introduction and preliminaries

The following standard notations will be used throughout the paper:

N := {1, 2, 3, . . . } and N0 := N ∪ {0}.

The generalized hypergeometric function with p numerator and q denominator parameters is
defined by [12, p. 73, Eqn.(2)]

pFq

[
a1, a2, . . . , ap
b1, b2, . . . , bq

; z

]
=

∞∑
n=0

(a1)n . . . (ap)n
(b1)n . . . (bq)n

.
zn

n!
, (1)

where (a)n denotes the well-known Pochhammer’s symbol (or the shifted or the raised factorial
since (1)n = n!) defined for any complex number a( ̸= 0) by

(a)n =

{
a(a+ 1) . . . (a+ n− 1), n ∈ N
1, n = 0

. (2)

Using the fundamental relation Γ(a+ 1) = aΓ(a), (a)n can be written in the form

(a)n =
Γ(a+ n)

Γ(a)
(3)

∗prathima.amrutharaj@manipal.edu
†arjunkumarrathie@gmail.com

c⃝ Siberian Federal University. All rights reserved
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where Γ is the well known Gamma function.
For more details about this function, and its convergence conditions (including absolute

convergence), we refer standard texts [12,14].
It’s worth noting that anytime a generalized hypergeometric function reduces to the gamma

function, the results are crucial from the standpoint of applications. Thus, classical summation
theorems like as those of Gauss, Gauss second, Kummer, and Bailey for the series 2F1; Watson,
Dixon, Whipple, and Saalschütz for the series 3F2, and others, are relevant.

During 1992–2011, the classical summation theorems listed above have been extended and
generalised to their most general form. For this we refer interesting research papers by Lavoie et
al. [6–8], Kim et al. [5] and Rakha and Rathie [13].

The following summation formula for the series 2F1 which can be obtained from a very general
summation formula established earlier by Rakha and Rathie [13, Theorem 2 (for i = 2), p. 828]
is required in our current inquiry.

2F1

[
a, b

1
2 (a+ b− 1)

;
1

2

]
= Γ

(
1

2

)
Γ

(
a

2
+
b

2
− 1

2

)[ 1
2 (a+ b− 1)

Γ(a2 + 1
2 )Γ( b2 + 1

2 )
+

2

Γ(a2 )Γ( b2 )

]
. (4)

The result (4) is seen to be closely related to the following well-known and useful Gauss’s second
summation theorem [12, p. 69, Ex. 2; 14, p. 243, Eqn. (III.6)] viz.

2F1

[
a, b

1
2 (a+ b+ 1)

;
1

2

]
=

Γ( 1
2 )Γ(a2 + b

2 + 1
2 )

Γ(a2 + 1
2 )Γ( b2 + 1

2 )
. (5)

On the other hand, in 1979, Apéry [1] proved irrationality of ζ(3) and in the same manner, the
irrationality of ζ(2) by making use of the following well-known identities viz,

ζ(3) =
5

2

∞∑
n=1

(−1)n−1(n!)2

(2n)! n3

and

ζ(2) = 3

∞∑
n=1

(n!)2

(2n)! n2
.

Also, following Apéry’s proof, a large number of a similar series
∞∑
n=0

(n!)2

(2n)!
f(n) =

∞∑
n=0

f(n)(
2n
n

)
which was commonly referred to as Apéry-like series have been studied by van der Poortan [11],
Leschiner [10], Lehmer [9], Zucker [16] and Borwein et al. [3]. Berndt and Joshi [2], in a review
of chapter 9 of Ramanujan’s second notebook have also recorded many of such similar formulas.
In addition to this, if we denote

Sk =

∞∑
n=0

(n!)2

(2n)!
nk 2n, (6)

then in the year 2000, Sherman [15] establishedthe results Sk for k = 0, 1, 2, . . . , 10 given here in
the Tab. 1.

On the other hand, it is not difficult to see that

nk =

k∑
r=0

(−1)r
{
k

r

}
(−n)r
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Table 1. For Sk

k 0 1 2 3 4 5 6

Sk
π

2
+ 2 π + 3

7π

2
+ 11

35π

2
+ 55 113π + 355

1787π

2
+ 2807

16717π

2
+ 26259

k 7 8 9 10

Sk 90280π+ 283623
2211181π

2
+ 34733315

30273047π

2
+ 47552791 229093376π+ 719718067

where
{
k
r

}
denotes the well-known Sterling numbers of the second kind [4] written here in slightly

modified form as: {
k

r

}
=

1

r!

r∑
i=0

(−1)r
(
r

i

)
(r − i)k.

Thus this note aims to offer closed expressions for Apéry-like series of the form

∞∑
n=k

(n!)32n

(2n)!(n− k)!

for k = 1, 2, . . . , 10 via a hypergeometric series approach. As an application, we recover the
above results of Apéry-like series obtained earlier by Sherman [15].

2. Main results

In this section, we shall establish the results asserted in the following theorem.

Theorem 2.1. For k ∈ N0, the following general result holds true.

∞∑
n=k

(n!)32n

(2n)!(n− k)!
= 2−kπΓ2(k + 1)

[
k + 1

2

Γ2( 1
2k + 1)

+
2

Γ2( 1
2k + 1

2 )

]
. (7)

Proof. In order to establish the result (7) asserted in the Theorem 2.1, we proceed as follows.
Denoting the left hand side of (7) by ∆k, we have

∆k =

∞∑
n=k

(n!)3 2n

(2n)!(n− k)!
.

Replacing n by n+k, we have

∆k =

∞∑
n=0

((n+ k)!)3 2n+k

(2n+ 2k)! n!
.

But it is easy to see that (n + k)! = Γ(n + k + 1) = Γ(k + 1)
Γ(n+ k + 1)

Γ(k + 1)
= Γ(k + 1)(k + 1)n

(using (3)) and using Duplication formula for the gamma function

Γ(2z) = 22z−1π− 1
2 Γ(z)Γ

(
z +

1

2

)
,

we see that
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(2n+ 2k)! = Γ(2n+ 2k + 1) =

= 22n+2kπ− 1
2 Γ
(
n+ k +

1

2

)
Γ(n+ k + 1) =

= 22n+2kπ− 1
2 Γ
(
k +

1

2

)
Γ(k + 1)

(
k +

1

2

)
n
(k + 1)n (using(3)).

Thus we have after some algebra

∆k =
2−kπ

1
2 Γ2(k + 1)

Γ(k + 1
2 )

∞∑
n=0

(k + 1)n(k + 1)n

2n(k + 1
2 )n n!

.

Summing up the series using (1), we have

∆k =
2−kπ

1
2 Γ2(k + 1)

Γ(k + 1
2 )

2F1

[
k + 1, k + 1

k + 1
2

;
1

2

]
.

We now observe that the 2F1 appearing can be evaluated with the help of the result (4) by
letting a = b = k+ 1, and we easily arrive at the right hand side of (7). This completes the proof
of the result (7) asserted in the Theorem 2.1. 2

3. Corollaries

In this section, we shall provide several interesting special cases of our main result asserted
in the Theorem 2.1 since

∆k =

∞∑
n=k

(n!)32n

(2n)!(n− k)!
=

∞∑
n=k

(n!)22n

(2n)!
(n− k + 1)k. (8)

Fortunately, the results ∆k for k= 0 and 1, we get the same results ∆0 = S0 and ∆1 = S1

due to Sherma [15] recorded in Section 1. The results ∆k for k = 2 to 10 are recorded in the
Tab. 2.

Table 2. For ∆k

k 2 3 4 5 6

∆k
5π

2
+ 8 9π + 28

81π

2
+ 128 225π + 704

2925π

2
+ 4608

k 7 8 9 10

∆k 11025π + 34560
187425π

2
+ 294912 893025π + 2801664

18753525π

2
+ 29491200

Application of these results will be given in the next section.

4. Application

As an application of our newly obtained results given in section 3, in this section, we shall
obtain the results given in the table Sk.

(a) Derivation of the result Sk for k = 0.
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Denoting the left-hand side of the series given in (6) for k = 0 by S0 and converting the
factorials into the Pochhammer symbols, we have

S0 =

∞∑
n=0

(1)n(1)n

( 1
2 )n2nn!

.

Summing up the series we have

S0 = 2F1

[
1, 1

1
2

;
1

2

]
.

This may be evaluated using the result (4) by letting a = b = 1, and we get the right-hand side
of (6) for k = 0 right away.

(b) Derivation of the result Sk for k = 1.

Denoting the left-hand side of the series given in (6) for k = 1 by S1, we have

S1 =

∞∑
n=1

(n!)2

(2n)!
n2n.

Setting n = m+ 1 and proceeding as above, we have

S1 = 2F1

[
2, 2

3
2

;
1

2

]
.

The result follows by using the result (4) by letting a = b = 2

(c) Derivation of the result Sk for k = 2.

Denoting the left-hand side of the series given in (6) for k = 2 by S2, we have

S2 =

∞∑
n=1

(n!)2

(2n)!
n2 2n.

Expressing n2 = n(n− 1) + n and separating into two series, we get

S2 =

∞∑
n=2

(n!)2

(2n)!
(n− 1)2 2n +

∞∑
n=1

(n!)2

(2n)!
n 2n.

Finally, using the result given in the table ∆k for k = 2 and Sk for k = 1, we get at once the
right-hand side of Sk for k = 2.

In exactly the same manner, the results Sk for k = 3, 4, . . . , 10 can be proven on similar lines
by using the result (7) for k = 3, 4, . . . , 10 and taking appropriate results of ∆k given in the
tabular form in Section 3 together with the result S2 given in the tabular form in Section 2. So
we left as an exercise to the interested reader.

5. Hypergeometric series representations of the result
given in the equations (7) and (8)

It is interesting to mention here that the results given in the equations (7) and (8) can also
be written in terms of generalized hypergeometric series. These are

2F1

[
1, 1

1
2

;
1

2

]
=
π

2
+ 2 (9)

– 502 –



Prathima Jayarama, Arjun Kumar Rathie On a Note on Apéry-like Series with an Application

2F1

[
2, 2

3
2

;
1

2

]
= π + 3 (10)

3F2

[
2, 2, 2
3
2 , 1

;
1

2

]
=

7π

2
+ 11 (11)

4F3

[
2, 2, 2, 2
3
2 , 1, 1

;
1

2

]
=

35π

2
+ 55 (12)

5F4

[
2, 2, 2, 2, 2
3
2 , 1, 1, 1

;
1

2

]
= 113π + 355 (13)

6F5

[
2, 2, 2, 2, 2, 2
3
2 , 1, 1, 1, 1

;
1

2

]
=

1787π

2
+ 2807 (14)

7F6

[
2, 2, 2, 2, 2, 2, 2
3
2 , 1, 1, 1, 1, 1

;
1

2

]
=

16717π

2
+ 26259 (15)

8F7

[
2, 2, 2, 2, 2, 2, 2, 2
3
2 , 1, 1, 1, 1, 1, 1

;
1

2

]
= 90280π + 283623 (16)

9F8

[
2, 2, 2, 2, 2, 2, 2, 2, 2
3
2 , 1, 1, 1, 1, 1, 1, 1

;
1

2

]
=

2211181π

2
+ 34733315 (17)

10F9

[
2, 2, 2, 2, 2, 2, 2, 2, 2, 2
3
2 , 1, 1, 1, 1, 1, 1, 1, 1

;
1

2

]
=

30273047π

2
+ 47552791 (18)

11F10

[
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2
3
2 , 1, 1, 1, 1, 1, 1, 1, 1, 1

;
1

2

]
= 229093376π + 719718067 (19)

2F1

[
3, 3

5
2

;
1

2

]
=

3

4

(
5π

2
+ 8

)
(20)

2F1

[
4, 4

7
2

;
1

2

]
=

5

12
(9π + 28) (21)

2F1

[
5, 5

9
2

;
1

2

]
=

32

192

(
81π

2
+ 128

)
(22)

2F1

[
6, 6

11
2

;
1

2

]
=

21

320
(225π + 704) (23)

2F1

[
7, 7

13
2

;
1

2

]
=

77

3840

(
2925π

2
+ 4608

)
(24)

2F1

[
8, 8

15
2

;
1

2

]
=

143

26880
(11025π + 34560) (25)

2F1

[
9, 9

17
2

;
1

2

]
=

45045

896

(
187425π

2
+ 294912

)
(26)

2F1

[
10, 10

19
2

;
1

2

]
=

2431

9289728
(893025π + 2801664) (27)

2F1

[
11, 11

21
2

;
1

2

]
=

46189

928972800

(
18753525π

2
+ 29491200

)
(28)
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Concluding remark

In this note we have established the closed expressions for the Apéry-like series of the form

∞∑
n=k

(n!)3 2n

(2n)!(n− k)!
(*)

for k = 1, 2, . . . , 10 via a hypergeometric series approach. As an application, we obtained the
Apéry-like series of the form

∞∑
n=0

(n!)2nk 2n

(2n)!
(**)

for k = 1, 2, . . . , 10 established earlier by Sherman [15].

We conclude this note by remarking that the results (*) and (**) in the most general forms
for k ∈ N0 are under investigations and will form a part of the subsequent paper in this direction.

The authors are grateful to the Leading Editor and the learned referee for providing construc-
tive and encouraging comments which improved the presentation of the paper in a very nice and
compact form.
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Introduction
The fixed point theory is an exceptional combination of analysis (pure and applied), topology

and geometry. This theory stems from purely mathematical thought, and herein lies the difficulty
of developing and expanding this field. On the other hand, we find that the application of
these theorems as tool to study of non-linear natural phenomena gave amazing results that
match reality in various fields that include biology, chemistry, economics, engineering, game
theory and physics, which increased its aesthetic and importance, for more detait we refer reader
to [10]. Despite the difficulty of purely mathematical study, the fixed point theory developed
rapidly because of its applications in diverse fields, especially after the emergence of Banach’s
contraction [6], which is a basic result on fixed points for contraction type mappings, it was
introduced by great Polish mathematician Stefan Banach in 1922. It has been generalized in
various directions. These generalizations are made either by using contractive conditions or
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by imposing some additional conditions on the ambient spaces for more detail see references
[3–5,13,19,20,22,27].

There exist various generalizations of usual metric spaces. One of them is b-metric space or
metric-type space. This concept was first introduced by Bakhtin [5].

The b-metric space has been studied topologically in many works, including: such as
S.Czerwik [9], N. Bourbaki [8] which confirmed the fundamental difference between it and the
metric space, for example the b-metric is not necessarily continuous unlike the metric distance.

In 1993, Czerwik [9] extended the results of metric spaces that generalized the famous Banach
contraction principle for b-metric space. Later, several authors extended the fixed point theorem
in b-metric space. For fixed point results and more examples in b-metric spaces, the readers may
refer to [1, 2, 7, 9, 11–18, 21–26]. The aim of this paper is to present some fixed point results for
mappings satisfying generalized contractive condition in a b-metric space.

1. Preliminary

In this section, we look back on some famous notions and definition of the b-metric spaces
which will be used in the sequel.

Definition 1 ( [9]). Let X be a nonempty set and let s > 1 be a given real number. A mapping
d : X×X → [0,+∞) is said to be a b-metric if, for all x, y, z ∈ X, the following conditions hold:
(b1) d(x, y) = 0 if and only if x = y;
(b2) d(x, y) = d(y, x);
(b3) d(x, z) 6 s[d(x, y) + d(y, z)].
The triple (X, d, s) is called a b-metric space with constant s > 1.

Remark 1. It is obvious from the above definition that the class of b-metric spaces is larger
than that of metric spaces, since a b-metric space is a metric space when s = 1 but the converse
is not true.

Remark 2. In general, the b-metric is not usually continuous (see example 4 in [19]).

Definition 2 ( [21]). Let (X, d) be a b-metric space. Then a sequence {xn} in X is called
(a) convergent if and only if there exists x ∈ X such that lim

n→+∞
d(xn, x) = 0 and in this case we

write lim
n→+∞

xn = x;

(b) Cauchy if and only if lim
n,m→+∞

d(xn, xm) = 0.

Before starting, we present the following simple lemma proven by A. Aghajani, M.Abbas and
J.R. Roshan [3] which has a fundamental role in proving our results.

Lemma 1 ([3]). Let (X, d, s) be a b-metric space such that s > 1 and {xn} be a convergent
sequence in X to x. Then for each y ∈ X, we have

1

s
d(x, y) 6 lim inf

n→+∞
d(xn, y) 6 lim sup

n→+∞
d(xn, y) 6 sd(x, y). (1)

2. Results

Firstly, we state and prove our first theorem that generalize and improve the result of Kho-
jasteh et al [20].
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Theorem 1. Let (X, d, s) be a complete b-metric space and let T be a self mapping in X. If there
exist five positive real number a, b, c, f , e ∈ R+ such that s2a 6 min{c, f} or s2b 6 min{c, f} and
for all x, y ∈ X

d(Tx, Ty) 6 ad(x, Ty) + bd(y, Tx)

cd(x, Tx) + fd(y, Ty) + e
d(x, y). (2)

Then
1. T has at least one fixed point ẋ ∈ X.
2. Every Picard sequence (Txn)n∈N converges to a fixed point.
3. If T has two distinct fixed points ẋ, ẏ in X then d(ẋ, ẏ) > e

a+ b
.

Proof. Let (xn)n∈N be a Picard sequence(xn+1 = Txn) based on an arbitrary x0 ∈ X. If there
exist an n0 ∈ N such that xn0 = xn0+1 then, xn0 is the fixed point of T and the proof is
completed. If xn ̸= xn+1 for all n ∈ N, we follow the following steps:
Step 1: Let’s show that (xn)n∈N is a Cauchy sequence.
Case 1. If s2a 6 min{c, f}, by putting x = xn−1 and y = xn in inequality (2), we find

d(xn, xn+1) 6 ad(xn−1, xn+1)

cd(xn−1, xn) + fd(xn, xn+1) + e
d(xn−1, xn) 6

6 asd(xn−1, xn) + asd(xn, xn+1)

cd(xn−1, xn) + fd(xn, xn+1) + e
d(xn−1, xn) 6

6 asd(xn−1, xn) + asd(xn, xn+1)

min{c; f}
(
d(xn−1, xn) + d(xn, xn+1)

)
+ e

d(xn−1, xn).

We denote that θn =
asd(xn−1, xn) + asd(xn, xn+1)

min{c; f}
(
d(xn−1, xn) + d(xn, xn+1)

)
+ e

for all n ∈ N.

Since s2a 6 min{c, f}, then 0 6 θn <
1

s
for all n ∈ N, furthermore, the sequence (θn)n∈N is

decreasing because for all n ∈ N,

θn+1 − θn =
ase
[
d(xn+1, xn+2) − d(xn−1, xn)

][
min{c; f}(d(xn, xn+1) + d(xn+1, xn+2)) + e

] ×

× 1[
min{c; f}(d(xn−1, xn) + d(xn, xn+1)) + e

] < 0.

On the other hand we have

d(xn, xn+1) 6 θnd(xn−1, xn) 6
6 θnθn−1d(xn−2, xn−1) 6
...
6 θnθn−1 · · · θ1d(x0, x1) 6
6 θn1 d(x0, x1).

Now for all n, m ∈ N such that m > n, we have

d(xn, xm) 6
m−1∑
i=n

si−n+1d(xi, xi+1) 6

6
m−1∑
i=n

si−n+1θi1d(x0, x1) 6

6 (sθ1)n − (sθ1)m

1 − sθ1
× 1

sn−1
d(x0, x1).
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By passing to the limits n,m→ +∞ on a both side of previous inequality we get

lim
n,m→+∞

d(xn, xm) = 0. (3)

Then (xn)n∈N is a Cauchy sequence in X.
Case 2. If s2b 6 min{c, f}, by putting x = xn and y = xn−1 in inequality (2), we find

d(xn, xn+1) 6 bd(xn−1, xn+1)

cd(xn, xn+1) + fd(xn−1, xn) + e
d(xn−1, xn).

Similarly, as Case 1, we can deduce that (xn)n∈N is a Cauchy sequence in X.
Since the b-metric space (X, d, s) is complete, there exit ẋ ∈ X such that

lim
n→+∞

xn = ẋ.

Step 2: We check that ẋ is a fixed point of T .
By putting x = ẋ, y = xn in inequality (2), we find

d(T ẋ, xn+1) 6 ad(ẋ, xn+1) + bd(xn, T ẋ)

cd(ẋ, T ẋ) + fd(xn, xn+1) + e
d(ẋ, xn). (4)

By taking limit on both sides of (4), we have limn→+∞ xn = T ẋ. Because of the uniqueness of
the limit, we find T ẋ = ẋ.
Step 3: Suppose that T have two distinct fixed points ẋ, ẏ in X and we find the distance between
them.
By putting x = ẋ, y = ẏ in inequality (2), we find,

d(ẋ, ẏ) 6 ad(ẋ, ẏ) + bd(ẏ, ẋ)

cd(ẋ, ẋ) + fd(ẏ, ẏ) + e
d(ẋ, ẏ) 6 (a+ b)d(ẋ, ẏ)

e
d(ẋ, ẏ).

Then d(ẋ, ẏ) > e

a+ b
. This complete the proof of the theorem.

Remark 3. If we take a = b = c = f = e = 1 and s = 1 in Theorem 1, we returne to results of
Khojasteh et al [20].

The following example support our Theorem 1.

Example 1. Let X = {0, 1, 2} and d : X×X → R+ defined by d(x, y) = (x−y)2 for all x, y ∈ X.
(X, d, 2) is a complete b-metric space. Let T : X → X be a self mapping given by T (0) = 0,
T (1) = 0 and T (2) = 2.
If x = y, the equation is obviously verified. Now, we treat the other cases.
If x = 0 and y = 2,

d(0, 2) 6 (d(0, 2) + 5d(0, 2))d(0, 2).

If x = 1 and y = 2,

d(0, 2) 6 d(1, 2) + 5d(0, 2)

4d(1, 0) + 1
d(1, 0).

If x = 2 and y = 0,
d(0, 2) 6 (d(0, 2) + 5d(0, 2))d(0, 2).

If x = 2 and y = 1,

d(0, 2) 6 d(0, 2) + 5d(1, 2)

4d(1, 0) + 1
d(1, 0).

That mean that the equation (2) is verified with constants a = 1, b = 5, c = 4, e = 1 and f = 4.
Over more, all conditions of Theorem 1 was satisfied, then T has at least one fixed point in X.

We remark that T has exactly two fixed point 0, 2, over more, d(0, 2) > 1

6
.
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If we take s = 1 in Theorem 1, we get the following corollary.

Corollary 1. Let (X, d) be a complete metric space and let T be a self mapping in X. If there
exist five positive real number a, b, c, f , e ∈ R+ such that a 6 min{c, f} or b 6 min{c, f} and for
all x, y ∈ X

d(Tx, Ty) 6 ad(x, Ty) + bd(y, Tx)

cd(x, Tx) + fd(y, Ty) + e
d(x, y). (5)

Then
1. T has at least one fixed point ẋ ∈ X.

2. Every Picard sequence (Txn)n∈N converges to a fixed point.

3. If T has two distinct fixed points ẋ, ẏ in X then, d(ẋ, ẏ) > e

a+ b
.

This example illustrates and supports Theorem 1 and Corollary 1.

Example 2. Let X = {0, 1, 2} associated with a metric d such that d(0, 1) = 0.75, d(0, 2) = 1
and d(1, 2) = 0.25. Also, d(x, y) = d(y, x) for all x, y ∈ X and d(x, x) = 0 for all x ∈ X.

Let T be a self mapping in X such that T (0) = 2, T (1) = 1 and T (2) = 2.
It is easy to conclude that (X, d) is a complete metric space and the inequality (5) was verified

for all x, y ∈ X with constant a = b =
1

2
, c = f = 1 and e =

1

4
. According to Corollary 1, we

conclude that T has at least one fixed point. (exactly, it has two fixed point 1 and 2). Moreover,

the distance between them is d(1, 2) > 1

4
.

Remark 4. It should be noted that Khojasteh et al theorem [20] is not applicable in this example
while the generalized Corollary 1 is applicable as shown in the example above, which proves the
robustness of our results.

Secondly, we state and prove our second theorem that generalize and improve the result of
A.C. Aouine and A.Aliouche [4].

Theorem 2. Let (X, d, s) be a complete b-metric space and let T be a self mapping in X. If there
exist five positive real number a, b, c, f , e ∈ R+ such that s2a 6 min{c, f} or s2b 6 min{c, f} and
for all x, y ∈ X

d(Tx, Ty) 6 ad(x, Ty) + bd(y, Tx)

cd(x, Tx) + fd(y, Ty) + e
max{d(x, Tx), d(y, Ty)}. (6)

Then T has a unique fixed point ẋ ∈ X.

Proof. Let (xn)n∈N be a Picard sequence(xn+1 = Txn) based on an arbitrary x0 ∈ X. If there
exist an n0 ∈ N such that xn0

= xn0+1 then, xn0
is the fixed point of T and the proof is

completed. If xn ̸= xn+1 for all n ∈ N, we follow the following steps:
Step 1: Let’s show that (xn)n∈N is a Cauchy sequence.
Case 1. If s2a 6 min{c, f}, by putting x = xn−1 and y = xn in inequality (6), we find

d(xn, xn+1) 6 ad(xn−1, xn+1)

cd(xn−1, xn) + fd(xn, xn+1) + e
max{d(xn−1, xn), d(xn, xn+1)} 6

6 asd(xn−1, xn) + asd(xn, xn+1)

cd(xn−1, xn) + fd(xn, xn+1) + e
max{d(xn−1, xn), d(xn, xn+1)} 6

6 asd(xn−1, xn) + asd(xn, xn+1)

min{c; f}
(
d(xn−1, xn) + d(xn, xn+1)

)
+ e

max{d(xn−1, xn), d(xn, xn+1)} 6

6 asd(xn−1, xn) + asd(xn, xn+1)

min{c; f}
(
d(xn−1, xn) + d(xn, xn+1)

)
+ e

d(xn−1, xn).
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We denote that θn =
asd(xn−1, xn) + asd(xn, xn+1)

min{c; f}
(
d(xn−1, xn) + d(xn, xn+1)

)
+ e

for all n ∈ N.

Since s2a 6 min{c, f}, then 0 6 θn <
1

s
for all n ∈ N, furthermore, the sequence (θn)n∈N is

decreasing because for all n ∈ N,

θn+1 − θn =
ase
[
d(xn+1, xn+2) − d(xn−1, xn)

][
min{c; f}(d(xn, xn+1) + d(xn+1, xn+2)) + e

] ×
× 1[

min{c; f}(d(xn−1, xn) + d(xn, xn+1)) + e
] < 0.

On the other hand, we have

d(xn, xn+1) 6 θnd(xn−1, xn) 6
6 θnθn−1d(xn−2, xn−1) 6
...
6 θnθn−1 · · · θ1d(x0, x1) 6
6 θn1 d(x0, x1).

Now, for all n, m ∈ N such that m > n, we have

d(xn, xm) 6
m−1∑
i=n

si−n+1d(xi, xi+1) 6

6
m−1∑
i=n

si−n+1θi1d(x0, x1) 6

6 (sθ1)n − (sθ1)m

1 − sθ1
× 1

sn−1
d(x0, x1).

By passing to the limits n,m→ +∞ on a both side of previous inequality, we get

lim
n,m→+∞

d(xn, xm) = 0. (7)

Then (xn)n∈N is a Cauchy sequence in X.
Case 2. If s2b 6 min{c, f}, by putting x = xn and y = xn−1 in inequality (6), we find

d(xn, xn+1) 6 bd(xn−1, xn+1)

cd(xn−1, xn) + fd(xn, xn+1) + e
max{d(xn−1, xn), d(xn, xn+1)} 6

6 bsd(xn−1, xn) + bsd(xn, xn+1)

cd(xn, xn+1) + fd(xn−1, xn) + e
max{d(xn−1, xn), d(xn, xn+1)} 6

6 bsd(xn−1, xn) + bsd(xn, xn+1)

min{c, f}[d(xn, xn+1) + d(xn−1, xn)] + e
max{d(xn−1, xn), d(xn, xn+1)} 6

6 bsd(xn−1, xn) + bsd(xn, xn+1)

min{c, f}[d(xn, xn+1) + d(xn−1, xn)] + e
d(xn−1, xn).

Similarly, as Case 1, we can deduce that (xn)n∈N is a Cauchy sequence in X.
Since the b-metric space (X, d, s) is complete, there exit ẋ ∈ X such that

lim
n→+∞

xn = ẋ.
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Step 2: We check that ẋ is a fixed point of T .
Suppose that d(ẋ, T ẋ) > 0

Case 1. If s2a 6 1

2
min{c, f}, by putting x = xn, y = ẋ in inequality (6), we find

d(T ẋ, xn+1) 6 ad(xn, T ẋ) + bd(xn+1, ẋ)

cd(xn, xn+1) + fd(ẋ, T ẋ) + e
max{d(ẋ, T ẋ), d(xn, xn+1)}. (8)

On the other hand, we have

d(ẋ, T ẋ) 6 sd(ẋ, xn+1) + sd(xn+1, T ẋ) 6

6 sd(ẋ, xn+1) + s
ad(xn, T ẋ) + bd(xn+1, ẋ)

cd(xn, xn+1) + fd(ẋ, T ẋ) + e
max{d(ẋ, T ẋ), d(xn, xn+1)}. (9)

By taking limit superior on both sides of (9), we have

d(ẋ, T ẋ) 6 sa lim supn→+∞ d(xn, T ẋ)

fd(ẋ, T ẋ) + e
d(ẋ, T ẋ). (10)

According to Lemma 1, we get

d(ẋ, T ẋ) 6 s2a

fd(ẋ, T ẋ) + e
d(ẋ, T ẋ)2, (11)

then

1 6 s2a

fd(ẋ, T ẋ) + e
d(ẋ, T ẋ). (12)

Since, s2a 6 1

2
min{c, f}, then s2a 6 f , then s2ad(ẋ, T ẋ) < fd(ẋ, T ẋ) + e which contradict

inequality (12). Then d(ẋ, T ẋ) = 0 that mean T ẋ = ẋ.
Case 2. If s2b 6 min{c, f}, by putting x = ẋ, y = xn in inequality (6), we find

d(T ẋ, xn+1) 6 ad(ẋ, xn+1) + bd(xn, T ẋ)

cd(ẋ, T ẋ) + fd(xn, xn+1) + e
max{d(ẋ, T ẋ), d(xn, xn+1)}. (13)

Similarly, as Case 1, we can deduce that T ẋ = ẋ.

Step 3: Suppose that T have two fixed points ẋ, ẏ in X. By putting x = ẋ, y = ẏ in inequality
(6), we find

d(ẋ, ẏ) 6 ad(ẋ, ẏ) + bd(ẏ, ẋ)

cd(ẋ, ẋ) + fd(ẏ, ẏ) + e
max{d(ẋ, ẋ), d(ẏ, ẏ)}. (14)

Then d(ẋ, ẏ) = 0, that mean, ẋ = ẏ, and this completes the proof of the theorem.

Remark 5. If we take a = b = c = f = e = 1 and s = 1 in Theorem 2, we returne to results of
A.C.Aouine and A.Aliouche [4].

The following example illustrates and supports our Theorem 2.

Example 3. Let X = [0, 4.5] and d : X×X → R+ defined by d(x, y) = (x−y)2 for all x, y ∈ X.
(X, d, 2) is a complete b-metric space. Let T : X → X be a self mapping given by

Tx =

{
4.5 if x ∈ [0, 2.5[

4 if x ∈ [2.5, 4.5]
.
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Let x, y ∈ X and denote

m(x, y) = −d(Tx, Ty) +
d(x, Ty) + d(y, Tx)

4d(x, Tx) + 4d(y, Ty) + 1
max{d(x, Tx), d(y, Ty)}.

if x ∈ [0, 2.5[ and y ∈ [2.5, 4.5], we draw the curve of the function m over this domain (Fig. 1).
We remark that it is positive, which proves the validity of the inequality (6) for all x ∈ [0, 2.5[

and y ∈ [2.5, 4.5]. The other cases is trivial.
Therefore, by choosing a = b = e = 1 and c = f = 4 all conditions of Theorem 2 are satisfied.
Hence T has a unique fixed point ẋ in X (here ẋ = 4).

Fig. 1. Curve of the function m

If we take s = 1 in Theorem 2, we get the following corollary.

Corollary 2. Let (X, d) be a complete metric space and let T be a self mapping in X. If there
exist five positive real number a, b, c, f , e ∈ R+ such that a 6 min{c, f} or b 6 min{c, f} and for
all x, y ∈ X

d(Tx, Ty) 6 ad(x, Ty) + bd(y, Tx)

cd(x, Tx) + fd(y, Ty) + e
max{d(x, Tx), d(y, Ty)}. (15)

Then T has a unique fixed point ẋ ∈ X.
Every Picard sequence converge to ẋ.

The following example illustrates and supports Corollary 2 and Theorem 2.

Example 4. Let X = {0, 1, 2} associated with a metric d such that d(0, 1) = 0.6, d(0, 2) = 1
and d(1, 2) = 0.4. Also d(x, y) = d(y, x) for all x, y ∈ X and d(x, x) = 0 for all x ∈ X.

Let T be a self mapping in X such that T (0) = 2, T (1) = 1 and T (2) = 1.
It is easy to conclude that (X, d) is a complete metric space and the inequality (15) was

verified for all x, y ∈ X with constant a = b = c = f = 3 and e =
1

4
. According to Corollary 2,

we conclude that T has a unique fixed point. In additional, every Picard sequence converge to ẋ.

Remark 6. It should be noted that A.C.Aouine and A.Aliouche. Theorem [2] is not applicable
in this example while the generalized Corollary 2 is applicable as shown in the example above,
which proves the robustness of our results.

Third, we can generalize the previous theorems as follow:
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Theorem 3. Let (X, d, s) be a complete b-metric space and let T be a self mapping in X. If there

exist five positive real number a, b, c, f , e ∈ R+ such that s2a 6 1

2
min{c, f} or s2b 6 1

2
min{c, f}

and for all x, y ∈ X,

d(Tx, Ty) 6 ad(x, Ty) + bd(y, Tx)

cd(x, Tx) + fd(y, Ty) + e
max{d(x, Ty), d(y, Tx)}. (16)

Then
1. T has at least one fixed point ẋ ∈ X.

2. Every Picard sequence (Txn)n∈N converges to a fixed point.

3. If T has two distinct fixed points ẋ, ẏ in X then, d(ẋ, ẏ) > e

a+ b
.

Proof. Let (xn)n∈N be a Picard sequence(xn+1 = Txn) based on an arbitrary x0 ∈ X. If there
exist an n0 ∈ N such that xn0

= xn0+1, then xn0
is the fixed point of T and the proof is

completed. If xn ̸= xn+1 for all n ∈ N, we follow the following steps:

Step 1: Let’s show that (xn)n∈N is a Cauchy sequence.

Case 1. If s2a 6 1

2
min{c, f}, by putting x = xn−1 and y = xn in inequality (16), we find

d(xn, xn+1) 6 ad(xn−1, xn+1)

cd(xn−1, xn) + fd(xn, xn+1) + e
d(xn−1, xn+1) 6

6 asd(xn−1, xn) + asd(xn, xn+1)

cd(xn−1, xn) + fd(xn, xn+1) + e
[sd(xn−1, xn) + sd(xn, xn+1)] 6

6 asd(xn−1, xn) + asd(xn, xn+1)

min{c; f}
(
d(xn−1, xn) + d(xn, xn+1)

)
+ e

[sd(xn−1, xn) + sd(xn, xn+1)].

We denote that θn =
asd(xn−1, xn) + asd(xn, xn+1)

min{c; f}
(
d(xn−1, xn) + d(xn, xn+1)

)
+ e

for all n ∈ N.

Since s2a 6 1

2
min{c, f}, then 0 6 θn <

1

2s
for all n ∈ N.

On the other hand we have

d(xn, xn+1) 6 θn[sd(xn−1, xn) + sd(xn, xn+1)],

then
d(xn, xn+1) 6 θns

1 − θns
d(xn−1, xn).

We denote that λn =
θns

1 − θns
for all n ∈ N.

Since 0 6 θn <
1

2s
for all n ∈ N, then 0 6 λn < 1.

Then d(xn, xn+1) < d(xn−1, xn) for all n ∈ N, then d(xn+1, xn+2) < d(xn−1, xn).
Furthermore, the sequence (θn)n∈N is decreasing because for all n ∈ N

θn+1 − θn =
ase
[
d(xn+1, xn+2) − d(xn−1, xn)

][
min{c; f}(d(xn, xn+1) + d(xn+1, xn+2)) + e

] ×
× 1[

min{c; f}(d(xn−1, xn) + d(xn, xn+1)) + e
] < 0.
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Then the sequence (λn)n∈N is decreasing, then

d(xn, xn+1) 6 λnd(xn−1, xn) 6
6 λnλn−1d(xn−2, xn−1) 6
...
6 λnλn−1 · · ·λ1d(x0, x1) 6
6 λn1d(x0, x1).

Now for all n, m ∈ N such that m > n, we have

d(xn, xm) 6
m−1∑
i=n

si−n+1d(xi, xi+1) 6

6
m−1∑
i=n

si−n+1λi1d(x0, x1) 6

6 (sλ1)n − (sλ1)m

1 − sλ1
× 1

sn−1
d(x0, x1).

By passing to the limits n,m→ +∞ on a both side of previous inequality, we get

lim
n,m→+∞

d(xn, xm) = 0. (17)

Then (xn)n∈N is a Cauchy sequence in X.

Case 2. If s2b 6 1

2
min{c, f}, by putting x = xn and y = xn−1 in inequality (16), we find

d(xn, xn+1) 6 bd(xn−1, xn+1)

cd(xn, xn+1) + fd(xn−1, xn) + e
d(xn−1, xn+1).

Similarly, as Case 1, we can deduce that (xn)n∈N is a Cauchy sequence in X.
Since the b-metric space (X, d, s) is complete, there exit ẋ ∈ X such that

lim
n→+∞

xn = ẋ.

Step 2: We check that ẋ is a fixed point of T .
Suppose that d(ẋ, T ẋ) > 0.

Case 1. If s2a 6 1

2
min{c, f}, by putting x = xn, y = ẋ in inequality (16), we find

d(T ẋ, xn+1) 6 ad(xn, T ẋ) + bd(ẋ, xn+1)

cd(xn, xn+1) + fd(ẋ, T ẋ) + e
max{d(ẋ, xn+1), d(xn, T ẋ)}. (18)

On the other hand, we have

d(ẋ, T ẋ) 6 sd(ẋ, xn+1) + sd(xn+1, T ẋ) 6 (19)

6 sd(ẋ, xn+1) +
sad(xn, T ẋ) + sbd(ẋ, xn+1)

cd(xn, xn+1) + fd(ẋ, T ẋ) + e
max{d(ẋ, xn+1), d(xn, T ẋ)}. (20)

By taking limit superior on both sides of (20), we have

d(ẋ, T ẋ) 6 sa

fd(ẋ, T ẋ) + e

(
lim sup
n→+∞

d(xn, T ẋ)
)2
. (21)
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According to Lemma 1, we get

d(ẋ, T ẋ) 6 sa

fd(ẋ, T ẋ) + e
d(ẋ, T ẋ)2, (22)

then
1 6 sa

fd(ẋ, T ẋ) + e
d(ẋ, T ẋ). (23)

Since, s2a 6 1

2
min{c, f}, then s2a 6 f , then s2ad(ẋ, T ẋ) < fd(ẋ, T ẋ) + e which contradict

inequality (23). Then d(ẋ, T ẋ) = 0 that mean T ẋ = ẋ.

Case 2. If s2b 6 1

2
min{c, f}, by putting x = ẋ and y = xn in inequality (16), we find

d(T ẋ, xn+1) 6 ad(ẋ, xn+1) + bd(xn, T ẋ)

cd(ẋ, T ẋ) + fd(xn, xn+1) + e
max{d(ẋ, xn+1), d(xn, T ẋ)}.

Similarly, as Case 1 we can deduce that T ẋ = ẋ.

Step 3: Suppose that T have two distinct fixed points ẋ, ẏ in X and we find the distance between
them.
By putting x = ẋ, y = ẏ in inequality (16), we find

d(ẋ, ẏ) 6 ad(ẋ, ẏ) + bd(ẏ, ẋ)

cd(ẋ, ẋ) + fd(ẏ, ẏ) + e
d(ẋ, ẏ) 6 (a+ b)d(ẋ, ẏ)

e
d(ẋ, ẏ).

Then, d(ẋ, ẏ) > e

a+ b
.

3. Discussion
• The Corollary 1 generalize the result of Khojasteh et al [1] and the Corollary 2 generalize

the result of Aouine and Aliouche [2].

• We note that the choice of constants related to inequalities (2), (5), (6), (15) and (16)
directly affects the dynamic result of Theorems 1, 2, and Corollaries 1, 2 and 3 respectively.

• Note that the ratio
ad(x, Ty) + bd(y, Tx)

cd(x, Tx) + fd(y, Ty) + e
in the inequalities (2), (5), (6), (15) and (16)

might be greater or less than 1, thus theorems is an special case of Banach contraction
principle. Example 1 illustrates this point precisely.

• If rangT is a closed sub set of X, the inequalities (2), (5), (6), (15) and (16) can be
restricted to rangT , and that does not affect the proof and the desired results, which
makes it easier for us to verify its validity and become more applicable.

• The above results can be generalized into several generalized metric spaces as q1 − q2
b-metric space, partial metric space, . . . .
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Некоторые новые результаты с фиксированной точкой
в b-метрическом пространстве с рациональным
обобщенным условием сжатия

Бесма Лауади
Таки Эддин Уссаиф

Лейла Бенауа
Университет Оум Эль Буаги

Ум Эль Буаги, Алжир
Лилиана Гуран

Западный университет Арада
Василе Голдис, Арад, Румыния

Стоян Раденович
Белградский университет

Белград, Сербия

Аннотация. В этой статье мы улучшаем и обобщаем некоторые результаты теории неподвиж-
ных точек на b-метрическое пространство. Где мы подтверждаем существование неподвижной точ-
ки для самоотображения T , удовлетворяющего некоторым рациональным сжимающим условиям.
Более того, мы устанавливаем уникальность фиксированной точки в некоторых случаях и даем
динамическую информацию, связывающую неподвижные точки между собой в других случаях.
Приведены наглядные примеры, демонстрирующие справедливость гипотез.

Ключевые слова: метрическое пространство, b-метрическое пространство, последовательность
Пикара, фиксированная точка, отображение рационального сжатия.
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Introduction
The present paper continues the research started in [15] and [23]. In [23], J. Schmid proved

that a distributive lattice is an algebraically closed lattice if and only if it is a Boolean lattice.
Also, he shows that any strongly algebraically closed lattice is a complete Boolean lattice. Later,
it is proved by the author in [20] that if a complete Boolean lattice is q′-compact, then it is an
strongly algebraically closed lattice. We recall from [17–19] that an algebra A is an strongly
algebraically closed in a class of algebras, if every set of equations (finite or infinite) with coeffi-
cients from A, which is solvable in some algebras of the class of algebras containing A, already
has a solution in A. Similarly, the purpose of this paper is to study strongly algebraically closed
MV-algebras.

MV-algebras were introduced by C. C.Chang in 1958 to give an algebraic proof of the
completeness of  Lukasiewicz logic reducing the problem to require the semisimplicity of the
Lindenbaum–Tarski algebra. Boolean algebras stand to Boolean logic as MV-algebras stand to
 Lukasiewicz infinite-valued logic (see [6]).

This paper continues the examination of the structure of MV-algebras. Algebraically closed
MV-algebras are studied by Lacava in [15] and [16], where an MV-algebra A is called algebraically
closed if every polynomial with coefficients in A having a root in some extension of A has already
a root in A. Similarly, we provide a new axiomatization of strongly algebraically closed MV-
algebras and prove that an MV-algebra A is an strongly algebraically closed MV-algebra if
and only if it is regular, divisible, and equationally compact. We also describe orbit algebras
with other algebraic structures as Wajsberg algebras and  Lukasiewicz semirings. Recall that
Wajsberg algebras are special algebraic structures that naturally arise from  Lukasiewicz logic
and  Lukasiewicz near semirings were introduced by S. Bonzio, I. Chajda, and A. Ledda in [1].

1. Algebraically closed MV-algebras
A structure (A, ⊕, ⊖, ¬, 0, 1) is an MV-algebra iff A satisfies the following equations for all

x, y, z ∈ A:
∗molkhasi@gmail.com

c⃝ Siberian Federal University. All rights reserved
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1. (x⊕ y) ⊕ z = x⊕ (y ⊕ z);
2. x⊕ y = y ⊕ x;
3. x⊕ 0 = x;
4. x⊕ 1 = 1;
5. ¬0 = 1;
6. ¬1 = 0;
7. x⊖ y = ¬(¬x⊕ ¬y);
8. ¬(¬x⊕ y) ⊕ y = ¬(¬y ⊕ x) ⊕ x.
By definition following two new operations ∨ and ∧ on A, the structure (A, ∨, ∧, 0, 1) will be a
bounded distributive lattice:
x ∨ y = ¬(¬x⊕ y) ⊕ y and x ∧ y = ¬(¬x⊖ y) ⊖ y.

We recall from [11] that MV-algebras form a variety and the notion of MV-homomorphism
is just the particular cases of the corresponding universal algebraic notion. In [21], an algebra
A in class of MV-algebras is called an absolute retract in the class of MV-algebras if and only if
every embedding A ↪→ B has a left inverse (i.e., there is a homomorphism h of B onto A such
that h(a) = a for each a ∈ A), whenever B is in the class of MV-algebras and A is a subalgebra
of B, then A is a retract of B. Also, A is equationally compact if and only if every finite subset
of set of equations is satisfiable in A, then the set of equations is satisfiable in A.

Recall from [7] that a maximal ideal M of an MV-algebra A is said to have a finite rank
n, for some integer n = 2 if A/M ∼= Ln, otherwise one says that M has infinite rank, where

Ln = [0, 1] ∩ Z
1

n− 1
. One should observe that every maximal ideal of a Boolean algebra has

finite rank. An MV-algebra A is called regular if for every prime ideal N of its Boolean center,
the ideal of A generated by N is a prime ideal of A [4].
By [22], an MV-algebra A is divisible if and only if for any a ∈ A− {0} and integer n > 0 there
exist a unique least element b ∈ A such that b⊕ b . . .⊕ b︸ ︷︷ ︸

n-times

= a and a · (¬b⊖ ¬b⊖ . . .⊖ ¬b)︸ ︷︷ ︸
(n−1)-times

= b.

By an equation in an algebra A we mean a formal expression

p(a1, . . . , am, x1, . . . , xn) ≈ q(a1, . . . , am, x1, . . . , xn)

where m ∈ N0 = {0, 1, 2, . . . }, n ∈ N+ = N−{0}, p and q are (m+n)-ary terms (in the language
of A), the elements a1, . . . , am belong to A and they are called parameters (or coefficients), and
x1, . . . , xn are the unknowns of this equation.

Definition 1.1. An MV-algebra A is called algebraically closed if every polynomial with coeffi-
cients in A having a root in some extension of A has already a root in A.

Definition 1.2. An MV-algebra A of the class of MV-algebras is strongly algebraically closed
in the class if for every extension B of A in the class and for any system of equations with
parameters taken from A, if the system has a solution in B, then it also has a solution in A.

In [15], Lacava proved an MV-algebra is an algebraically closed if and only if it is regular and
divisible. Also, following Schmid [23], if we replace "any system" by "any finite system", then
we obtain the concept of an algebraically closed algebra A in the class, which this two definitions
are the same. Consequently, we will have that two definition above are same. Now, we provide
a new axiomatization of strongly algebraically closed MV-algebras.

Lemma 1.3. An MV-algebra A is strongly algebraically closed algebra in variety of MV-algebras
in V if it is an absolute retract in V .

Proof. By [5], let A be strongly algebraically closed in V and B ∈ V be an extension of A.
We need to show the existence of a retraction f : B → A. We can assume that A is a proper
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subalgebra of B, because the identity map of B would obviously be a retraction B → A if A = B.
For each element b of B\A, we take an unknown xb and we define x¬b ≈ ¬xb. For each pair
(a, b) ∈ B × B of elements such that at least one of a and b is element of B\A, we define an
equation E⊕(a, b) according to the following six rules:
(1) – If a is element of A, b is element of B\A, and a ⊕ b is element of A, then E⊕(a, b) is
a⊕ xb ≈ a⊕ b.
(2) – If a is element of B\A, b is element of A, and a ∨ b is element of A, then E⊕(a, b) is
xa ⊕ b ≈ a⊕ b.
(3) – If a and b are elements of B\A and a⊕ b is element of A,
then E⊕(a, b) is xa ⊕ xb ≈ a⊕ b.
(4) – If a is element of A, b and a⊕ b are elements of B\A, then E⊕(a, b) is a⊕ xb ≈ xa⊕b.
(5) – If a and a⊕ b are elements of B\A and b is element of A, then E⊕(a, b) is xa ⊕ b ≈ xa⊕b.
(6) – If a, b, and a⊕ b are all elements of B\A, then E⊕(a, b) is xa ⊕ xb ≈ xa⊕b.

Let Ê be the system of all equations we have defined so far. Clearly, Ê has a solution in B.
Indeed, we can let xa := a for all elements b of B\A to obtain a solution of Ê. Since we have
assumed that A is strongly algebraically closed in V and Ê also has a solution in A. This allows
us to fix a solution of Ê in A. That is, we can choose an element ub ∈ A for each element b of A
such that the equations (1)–(6) turn into true equalities when the unknowns xb, for b ∈ B \ A,
are replaced by the elements ub.

Next, consider the map

f : B → A, defined by c 7→

{
c if c is an element of A,
uc if c is a element of B\A.

We claim that f is a retraction. Clearly, f acts identically on A. So we need only to show that
f is a MV-homomorphism or f(0) = 0, f(x ⊕ y) = f(x) ⊕ f(y) and f(¬x) = ¬f(x), for every
x, y ∈ A. It suffices to verify that f commutes with ⊕. If a, b ∈ A, then a⊕ b is also in A, and we
have that f(a)⊕ f(b) = a⊕ b = f(a⊕ b), as required. If, say, a, a⊕ b ∈ A and b ∈ B \A, then (1)
applies and we obtain that f(a)⊕ f(b) = a⊕ ub = a⊕ b = f(a⊕ b), as required. If a, b, a⊕ b are
all elements of A, then we can use (6) to obtain that f(a)⊕ f(b) = ua⊕ub = ua⊕b = f(a⊕ b), as
required. The rest of the cases follow similarly from (3)–(5). Thus, we conclude that f commutes
with ⊕. Therefor, f is a retraction and A is an absolute retract in V .

Now, we are in the position to state the main theorem of the paper.

Theorem 1.4. An MV-algebra A is strongly algebraically closed algebra if and only if it is
algebraically closed and equationally compact.

Proof. Suppose that A is strongly algebraically closed MV-algebra. By Lemma 2.4, A is an
absolute retract. Now, we prove that A is regular, divisible, and equationally compact. Notice
that Banaschewski–Nelson in [2] and Weglorz in [26] proved that the MV-algebraA is equationally
compact if and only if every pure embedding A ↪→ B has a left inverse, see [21]. Since any absolute
retract is a pure absolute retract, and here A is equationally compact. Now, to prove that A
is regular and divisible it suffices to show that A is algebraically closed MV-algebra. Suppose
i : A ↪→ B is an arbitrary extension of A and we prove that i is pure. To do this, for any system
Σ(x) of equations with parameters taken from A, if Σ(b) is a solution in extension B of A, then
we give p : B −→ A, where p a retraction (left inverse) of i and Σ(p(x)) a solution in A.

Conversely, suppose A is algebraically closed and equationally compact. We know that A is
regular and divisible. If i : A ↪→ B is an arbitrary extension of A, then i is pure. On the other
hand, A is a pure absolute retract and thus i has a left inverse. Consequently, A is an absolute
retract in V .
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Now, we have that A ∈ V is an absolute retract and B ∈ V is an extension of A, and a system
Ĝ of equations with constants taken from A has a solution in B.

Let x, y, z, . . . denote the unknowns occurring in Ĝ (possibly, infinitely many), and let
bx, by, bz, · · · ∈ B form a solution of Ĝ. Since we have assumed that A is an absolute retract for
V , we can take a retraction f : B → A. We define

dx := f(bx), dy := f(by), dz := f(bz), . . . ;

they are elements of A. Let

p(a1, . . . , ak, x, y, z, . . . ) = q(a1, . . . , ak, x, y, z, . . . )

be one of the equations of Ĝ; here p and q are MV-algebra terms, the constants a1, . . . , ak are
in A, and only finitely many unknowns occur in this equation. Using that f commutes with
MV-algebra terms and, at =∗, using also that bx, by, bz, . . . form a solution of the equation in
question, we obtain that

p(a1, . . . , ak, dx, dy, dz, . . . ) = p(f(a1), . . . , f(ak), f(bx), f(by), f(bz), . . . ) =

= f(p(a1, . . . , ak, bx, by, bz, . . . )) =∗ f(q(a1, . . . , ak, bx, by, bz, . . . )) =

q(f(a1), . . . , f(ak), f(bx), f(by), f(bz), . . . ) = q(a1, . . . , ak, dx, dy, dz, . . . ).

This shows that dx, dy, dz, · · · ∈ A form a solution of Ĝ in A. Therefore, A is strongly alge-
braically closed in V .

We recall from [9] that the ordinary polynomials in the language of MV-algebras are called
MV-polynomials and built from variables and function symbols of the language. And as usual,
the value of a polynomial is calculated inductively from the value of its variables. In [13], MV-
polynomials generalized to DMV-polynomials, which are built from MV-algebra symbols plus
a unary function symbol δn for every positive integer n and DMV-polynomials have a value in
every divisible MV-algebra (not in every MV-algebra, however) and x and y are finite vectors
of variables. By [9], for every MV-polynomial f(x, y) there is a single DMV-polynomial gf (y)
such that [0, 1] verifies the following formula:

φf : ∀y, (∃x, f(x,y) = 0 ⇐⇒ gf (y) = 0).

Now, we can state the following theorem:

Theorem 1.5. An MV-algebra A is an algebraically closed MV-algebra if and only if
1. A is divisible;
2. for every MV-polynomial f , A verifies the formula φf ;
3. A equationally compact.

Proof. By [22] and Theorem 7 from [8], since A is strongly algebraically closed, is divisible and
for every MV-polynomial f , A verifies the formula φf . Using Theorem 2.5, A is equationally
compact.
Conversely, suppose that A is divisible and A models the formula φf . By [8], Theorem 7], A is an
algebraically closed algebra. On the other hand, if A is equationally compact and algebraically
closed, then A is an absolute retract in V . By Theorem 2.5, we conclude that A is an strongly
algebraically closed MV-algebra.
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2. Representation of orbit algebras
We recall that a Boolean algebra (B,∧, ∨, ¬, 0, 1) with a countable dense subset is called

separable, where a subset A of a Boolean algebra B is dense in B if and only if every element of
B is a join of a subset of A. Suppose B is a separable Boolean algebra and a, b ∈ B. We define
a ∼ b if b = g(a) for some g ∈ G of group of automorphisms of B. Furthermore, for g ∈ Aut(B)
and a ∈ B, we denote by g⌈a a the restriction of g to the interval [0, a]. We define a→ b = ¬a∨b
for a, b ∈ B. We furthermore write a ⊥ b if there are no non-zero a0 6 a and b0 6 b such that
a0 ∼ b0. In a Boolean algebra B with a countable dense subset if G is a group of automorphisms
of B, then we call the pair (B, G) a Boolean ambiguity algebra.

We recall from [25] that (B, G) is a Boolean ambiguity algebra. Assume that the following
infima and suprema exists for all a, b ∈ B:

[a] ⊙ [b] = inf{[a′ ∧ b′] : a′ ∼ a, b′ ∼ b},

[a] → [b] = inf{[a′ → b′] : a′ ∼ a, b′ ∼ b},

where [a] and [b] are equivalence classes with respect to ∼. Following [25] we call the structure
(O(B, G), 6, ⊙, →, 0, 1) the orbit algebra of (B, G), where O(B, G) is the quotient by equiva-
lence relation ∼. Also, we have ¬[a] = [a] → 0 for a ∈ B.
A Wajsberg algebra is a structure (W, ⇁, ∗, 1), where ⇁ is a binary operation, ∗ is a unary
operation and 1 is a constant such that the following identities hold:
1. 1 ⇁ a = a;
2. (a ⇁ b) ⇁ ((b ⇁ c) ⇁ (a ⇁ c)) = 1;
3. (a ⇁ b) ⇁ b = (b ⇁ a) ⇁ a;
4. (a∗ ⇁ b∗) ⇁ (b ⇁ a) = 1,
for all a, b, c ∈W .
This leads us to state the following theorem.

Theorem 2.1. Let (B, G) be a complete Boolean ambiguity algebra and (O(B,G), ⊕, ¬, o) be the
orbit algebra. Then (O(B,G), ⇁, ∗, 1) is a strongly algebraically closed algebra if it is algebraically
closed and equationally compact, where ∗ is an unary operation and the implication ⇁ is defined
by x ⇁ y = x⊕ y and 1 = 0∗, for all x, y ∈ O(B,G).

Proof. First we prove that (O(B,G),6, ⊕, 1) is an ordered monoid. If we suppose that a′ ∼ a
and b′ ∼ b such that [a] ⊕ [b] = [a′ ∧ b′], for all a, b, c ∈ B then we will have

([a] ⊕ [b]) ⊕ [c] = min{[d∧ c′] : d ∼ a′ ∧ b′, c′ ∼ c} = min{[a′′ ∧ b′′ ∧ c′] : a′′ ∼ a, b′′ ∼ b, c′ ∼ c},

whence associativity of ⊕ follows. Obviously, ⊕ is in both arguments isotone. On the other
hand, [a] ⊕ [b] 6 [c] if and only if [a] 6 [b] → [c]. Now, for any a, b ∈ B, we can obtain ab′ ∼ b
such that [a ∧ b′] = [a] ∧ [b] and [a ∨ b′] = [a] ∨ [b]. On the other hand, ¬(a′ → b′) 6 a′ and then
[a] → [b] = [a′ → b′]. Finally, [a] ⊕ ([a] → [b]) = [a′] ⊕ [a′ → b′] = [a ∧ (a′ → b′)] = [a′ ∧ b′] =
[a] ∧ [b]. Therefore, it is divisible and ¬[a] = [¬a] for any a ∈ B; so ¬ is involutive. Therefor,
(O(B,G), ⊕, →, 0) is an MV-algebra. Using Theorem 1.4, completes the poof.

By [1], we have that if (O(B,G), ⊕, →, 0) is an MV-algebra, then

(O(B,G), ⇁, ∗, 1)

is a Wajsberg algebra, where a ⇁ b = ¬a ⊕ b, for any a, b ∈ O(B,G) and 1 = 0∗. Thus we will
have the following corollary:

Corollary 2.2. Let (B, G) be a complete Boolean ambiguity algebra and (O(B,G), ⊕, ¬, o) be
the orbit algebra. Then (O(B,G), ⇁, ∗, 1) is a Wajsberg algebra.
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We recall from [14], a BE-algebra we shall mean an algebra (X, ∗, 1) of type (2, 0) satisfying
the following axioms:
1. x ∗ x = 1;
2. 1 ∗ x = x;
3. x ∗ (y ∗ z) = y ∗ (x ∗ z);
4. x ∗ 1 = 1,
for all x, y, z ∈ X.

A BE-algebra (X, ∗, 1) is called bounded if there exists the smallest element 0 of X (i.e.
0 ∗ x = 1, for all x ∈ X). Recall that Imai and Iski (1966) introduced two classes of abstract
algebras: BCK-algebras and BCI-algebras. A BCI-algebra is a non-empty set X endowed with
a binary operation ∗ and a constant 0 satisfies the following axioms, for all x, y, z ∈ X:
1. ((x ∗ y) ∗ (x ∗ z)) ∗ (z ∗ y) = 0;
2. x ∗ 0 = x;
3. x ∗ y = 0 and y ∗ x = 0 imply that x = y.
Every BCI-algebra satisfying 0 ∗ x = 0 for all x ∈ X is a BCK-algebra. We recall from [27] that
an algebra (X, ∗, 1) of type (2, 0) is called a dual BCK-algebra (or briefly, DBCK-algebra) if
1. x ∗ x = 1;
2. x ∗ 1 = 1;
3. x ∗ y = y ∗ x =⇒ x = y;
4. (x ∗ y) ∗ ((y ∗ z) ∗ (x ∗ z)) = 1;
5. x ∗ ((x ∗ y) ∗ y) = 1 for all x, y, z ∈ X.

We now study the relations between BE-algebras and  Lukasiewicz semirings.

Theorem 2.3. Let (B, G) be a complete Boolean ambiguity algebra and (O(B,G), ⊙, ¬, o) be the
orbit algebra. Then (O(B,G), ∗, 1, 0) is a bounded commutative BE-algebra, where x∗y = ¬x⊙y,
for all x, y ∈ B and 1 = ¬0.

Proof. We claim the structure (O(B,G), ⊙, ¬, o) is equivalent to a bounded commutative BE-
algebra. By [27], an MV-algebra (O(B,G), ⊙, ¬, o) is a bounded commutative dual BCK-algebra
(O(B,G),

∗, 1, 0) with the operation ∗ and the top element 1 defined as follows:
x ∗ y = ¬x ⊙ y, 1 = ¬0, for x, y ∈ O(B,G). [14], any DBCK-algebra is a bounded commutative
BE-algebra.

BL-algebras were introduced by Hajek [12] as algebraic structures of basic logic, where a
BL-algebra is an algebra (A, ∧, ∨, ⊙, →, 0, 1) such that:
(i) (A, ∨, ∧, 0, 1)is a bounded lattice;
(ii) (A, ⊙, 1) is a commutative monoid;
(iii) the following statements hold for every x, y, z ∈ A:
(a) z 6 x→ y iff x⊙ z 6 y;
(b) x ∧ y = x⊙ (x→ y);
(c) (x→ y) ∨ (y → x) = 1.

Recall that from [24] and [9] that a BL-algebra A to be an RS-BL-algebra if, for all elements
a ∈ A holds

{x ∈ A, a −→ x = x} = {x ∈ A |x −→ a = a}.

Theorem 2.4. If O(B,G) is a RS-BL-algebra, then (O(B,G), ⇁, ∗, 0) is a Wajsberg algebra.

Proof. Since MV-algebras are such BL-algebras that (a → x) → x = (x → a) → a holds for all
x, a ∈ O(B,G), it is an easy task to show that MV-algebras are RS-BLalgebras. To show that
MV-algebras re the only BL-algebras that are RS-BL-algebras, observe first that the following
holds in all RS-BL-algebras if x∗ = 0, then x = 1, where x∗ = x → 0. Consequently, by [24]
and [19] RS-BL-algebras are equivalent to MV-algebras. By Theorem 2.1, this completes the
proof.
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We recall from [8] that a semiring (R, +, 0, ·, 1) is an algebraic structure where 0 and 1 are
distinct elements of R, + and · are binary operations on R satisfying:
(i) (R, +) is a commutative monoid with identity 0;
(ii) (R, ·) is a monoid with identity 1;
(iii) Multiplication distributes over addition;
(iv) 0 · r = r · 0 = 0, for every r ∈ R.

Also, by [8], a semiring (R, +, 0, ·, 1) is called lattice-ordered semiring iff it has the structure
of a lattice such that for all a, b ∈ R:
(i) a+ b = a ∨ b;
(ii) a · b 6 a ∧ b.
Groupoids were introduced by Brandt in his 1926 paper [3] and semilattices can be equivalently
presented as ordered sets as well as groupoids. An algebra is a structure (A, F ) where A is an
arbitrary non-empty set and F is a system of operations. A type of algebra is a mapping from
F to N (natural numbers including zero) which maps any f ∈ F to its arity. An algebra (S, ·)
of type ⟨2⟩ is called a groupoid.
In closing this section, we mention that the  Lukasiewicz semirings are also closely related with
the lattice ordered semirings. We recall from [1] that a near semiring is an algebra (R, +, ·, 0, 1)
of type (2, 2, 0, 0) such that:
(i) (R, +, 0) is a commutative monoid;
(ii) (R, ·, 1) is a groupoid satisfying x · 1 = x = 1 · x (a unital groupoid);
(iii) (x+ y) · z = (x · z) + (y · z);
(iv) x · 0 = 0 · x = 0;
for all x, y, z ∈ R.

In [1] a near semiring is called a semiring if (R, ·, 1) is a monoid and satisfies left distributivity:
x · (y + z) = (x · y) + (x · z), for all x, y, z ∈ R.

A near semiring R is called idempotent if it satisfies x+ x = x, for all x ∈ R. It is clear that
in this case (R, +) is a semilattice. In particular, (R, +) can be considered as a join-semilattice,
where the induced order is defined as x 6 y iff x + y = y and the constant 0 is the least
element [1, Remark 1].

Following [1], a map α of an idempotent near semiring, with 6 the induced order,
(R, +, ·, 0, 1) to (R, +, ·, 0, 1) is called an involution on R if it satisfies the following condi-
tions, for each x, y ∈ R:
(1) α(α(x)) = x;
(2) if x 6 y then α(y) 6 α(x).

As is defined in [1], an involutive near semiring R is said a  Lukasiewicz near semiring if it
satisfies the following additional identity:

α(x · α(y)) · α(y) = α(y · α(x)) · α(x).

A  Lukasiewicz semiring A is a  Lukasiewicz near semiring such that the reduct (A, ·, 1) is a
monoid.

Recall that if (B, G) is a complete Boolean ambiguity algebra, then (O(B,G), ⊙, ⊖, ¬, 0) is
an MV-algebra. On the other hand, the reducts (O(B,G), ∨, 0, ⊖, 1) is an lc-semiring, where
x ∨ y = x ⊙ (¬x ⊖ y), for every x, y ∈ O(B,G). In following corollaries we shall use the name
lc-semiring for lattice ordered commutative semiring:

Corollary 2.5. Let (B, G) be a complete Boolean ambiguity algebra and (O(B,G), ⊙, ⊖, ¬, o)
be the orbit algebra. Then (O(B,G), ⇁, ∗, 1) and (O(B,G), ∨, 0, ⊖, 1) are MV-algebra and lc-
semiring, where ∗ is an unary operation and the implication ⇁ is defined by x ⇁ y = x ⊕ y,
x ∨ y = x⊙ (¬x⊖ y), and 1 = 0∗, for all x, y ∈ O(B,G).
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Corollary 2.6. Let (B, G) be a complete Boolean ambiguity algebra and (O(B,G), ⊙, ⊖, ¬, o)
be the orbit algebra. Then (O(B,G), ⇁, ∗, 1) and (O(B,G), ∨, 0, ⊖, 1) are strongly algebraically
closed algebra if they are algebraically closed and equationally compact, where ∗ is an unary
operation and the implication ⇁ is defined by x ⇁ y = x⊕ y, x ∨ y = x⊙ (¬x⊖ y), and 1 = 0∗,
for all x, y ∈ O(B,G).

Example 2.7. Let R denote the set of real numbers and let Q denote the set of rational numbers.
For any n ∈ ω, n > 1 we define Ln+1 = {0, 1/n, . . . , (n−1)/n, 1}. If a and b are real numbers we
define a⊙b = min(a+b, 1), and ¬a = 1−a. Suppose A is (Q∩[0, 1], ⊙, ¬, 0) or (Ln+1, ⊙, ¬, 0),
where they are MV-algebras. If B(A) denotes its R-generated Boolean algebra and G(A) is a
subgroup of the automorphism group of B(A), it turns out that (B(A), G(A)) forms an MV-
pair. Independently, a similar study of certain type of (B, G)-pairs which yield an MV-algebra,
so called ambiguity algebras.

Conclusions
Lacava in [16] proved that an MV-algebra is algebraically closed if and only if it is regular

and divisible. So, gathering up the theorems in Section 1, we obtain a representation of strongly
algebraically closed MV-algebras as regular, divisible, and equationally compact. Therefore our
results give further tools which can be suitable for  Lukasiewicz logic and this can be the starting
point to develop a sort of Algebraic Geometry based on MV-algebras.
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Сильно алгебраически замкнутые MV -алгебры
Али Молхаси
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Тегеран, Иран

Аннотация. Цель этой статьи — полностью охарактеризовать сильно алгебраические замкнутые
MV-алгебры, обобщая результат Лакавы. Кроме того, мы приводим некоторые вычисления, связан-
ные с алгебрами орбит, алгебрами Вайсберга и полукольцами (Лукашевич). Ключевые слова:

MV-алгебра, сильно алгебраически замкнутая, алгебра орбит.
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Abstract. In this paper, we are interested in solving an optimization nonlinear programming problem
using a logarithmic barrier interior point method, in which the penalty term is taken as a vector r ∈ Rn

+.
The descent direction has been calculated using a classical Newton method, however the step size has
been calculated with a new technique of majorant functions and a secant technique. The numerical
simulations show us the efficiency of our approach compared to the classical line search method.
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1. Introduction and preliminaries
In this paper, we are interested in the barrier logarithmic penalty method when using a new

majorant function technique instead of the classical line search method to determine the step
size ( [1, 2, 4]).

1.1. The problem formulation
The problem to be studied in this paper is as follows:{

min g(x)
x ∈ K ⊆ Rn . (P1)

In which: K = {x ∈ Rn : Bx = c, x > 0} is the set of feasible solution of (P1).

1.1.1. Assumptions

A1 g is nonlinear, convex, twice continuously differentiable function on K.

A2 B ∈ Rm×n is a full rank matrix, c ∈ Rm (m < n).

A3 There exists x0 > 0 such that Bx0 = c.
∗boutheina.fellahi@univ-setif.dz
†bmerikhi@univ-setif.dz

c⃝ Siberian Federal University. All rights reserved
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A4 The set of optimal solutions of (P1) is nonempty and bounded.

For x∗ be an optimal solution in the problem (P1), there exists two Lagrange multipliers u∗ ∈
Rm, v∗ ∈ Rn+ such as: 

∇g(x∗) +Btu∗ − v∗ = 0

Bx∗ = c

< v∗, x∗ >= 0

. (1)

We can write g∗ = g∗(x∗) = minx∈B∗ g(x) .
In the following, we replace the nonlinear constrained problem (P1) with a perturbed problem.

What is new in our work is that the term of penalty is taken as a vector r ∈ Rn+.

1.2. The perturbed problem
In this section, we firstly define the function ψ : Rn+×Rn → R∪{+∞} which is convex, lower

semicountinuous and proper function.
ψ defined as follows:

ψ(r, x) =


n∑
i=1

ri ln(ri) −
n∑
i=1

ri ln(xi) if x, r > 0

0 if r = 0, x > 0

+∞ if not

. (2)

Now, the convex, lower semicountinuous and proper function
ϕ : Rn+ × Rn → R ∪ {+∞} is defined by:

ϕr(x) = Φ(r, x) =

 g(x) +

n∑
i=1

ri ln(ri) −
n∑
i=1

ri ln(xi) if Bx = c; x, r > 0

+∞ if not
. (3)

Finally, the convex function m is defined by:

m(r) = inf
x
{ϕr(x); x ∈ Rn} (P2)

m is clearly convex since of the convexity of ϕr.

We notice that the two problems (P1) and (P2) are coincided when ∥ r ∥→ 0, then g∗ = m(0).

Our idea is to develop a new approach, which consist to determine the step size using a
majorant function technique. We begin by studying the existence and the uniqueness of the
optimal solution of the perturbed problem (P2) followed by the convergence study. The resolution
of the perturbed problem is based on the Newton descent direction and the majorant function
technique to determine the step size.

1.2.1. Existence and uniqueness of optimal solution of perturbed problem

In order to prove that (P2) admits one unique optimal solution, suffice it to prove that the
cone of recession of ϕr is reduced to zero.

Proof. According to the fourth assumption, (P1) admits one unique optimal solution then the
cone of recession Cg of g is reduced to zero, we have:

Cg = {d ∈ Rn : [g]∞(d) 6 0, Bd = 0, d > 0} = {0}
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[g]∞(d) is the asymptotic function of b, which define by:

[g]∞(d) = lim
t→+∞

b(x0 + td) − b(x0)

t
.

We have:

[ϕr]∞ =

{
g∞(d) if Bd = 0, d > 0

+∞ if not
.

Then we deduce that: {d ∈ Rn; [ϕr]∞ 6 0} = {0}, wich means that Cϕ = {0}.
By taking into account that ϕr is strictly convex, we come to conclusion that the perturbed

problem (P2) admits one unique optimal solution which is denoted by x(r) ∈ K, the set of
strictly feasible solution of (P2), in which

K = {x ∈ Rn : Bx = c, x > 0}.

1.2.2. Convergence of perturbed problem

According to the necessary and sufficient optimality conditions, there exists λ(r) ∈ Rm (as-
sumption 2) verify: {

∇g(x(r)) − rX−1
r +Btλ(r) = 0

Bx(r) − c = 0
. (4)

In which X is the diagonal matrix with diagonal entries Xii = xi ∀i = 1, n.
We impose that

F (x(r), λ(r)) =

(
∇g(x(r)) − rX−1

r +Btλ(r)

Bx(r) − c

)
= 0.

The two functions r → x(r) and r → λ(r) are differentiable on Rn+, by using the implicit
function theorem, we get(

∇2g(x(r)) +RX−2
r Bt

B 0

)(
∇x(r)
∇λ(r)

)
=

(
X−1
r

0

)
, (5)

where R is the diagonal matrix with diagonal entries Rii = ri ∀i = 1, n. And

∇x(r) =



∂x1
∂r1

∂x1
∂r2

· · · ∂x1
∂rn

∂x2
∂r1

∂x2
∂r2

· · · ∂x2
∂rn

...
...

. . .
...

∂xn
∂r1

∂xn
∂r2

· · · ∂xn
∂rn


, ∇λ(r) =



∂λ1
∂r1

∂λ1
∂r2

· · · ∂λ1
∂rn

∂λ2
∂r1

∂λ2
∂r2

· · · ∂λ2
∂rn

...
...

. . .
...

∂λm
∂r1

∂λm
∂r2

· · · ∂λm
∂rn


.

Remember that the function m wich is differentiable on Rn+ is define by:

m(r) = g(x(r)) +

n∑
i=1

ri ln(ri) −
n∑
i=1

ri ln(xi(r)).
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We have
∇m(r) = (∇x(r))t

(
∇g(x(r)) −X−1

r r
)

+ (e+ z1 − z2).

In which e = (1, 1, . . . , 1)t, z1 = (ln r1, ln r2, . . . , ln rn)t and z2 = (lnx1, lnx2, . . . , lnxn)t.
According to (4) and (5), we get

∇m(r) = −(∇x(r))tBtλ(r) + (e+ z1 − z2) =

= −(B∇x(r))tλ(r) + (e+ z1 − z2) =

= e+ z1 − z2.

For x(r) ∈ K and since of the convexity of m, we get:

m(0) > m(r) − rt∇m(r) >

> g(x(r)) +

n∑
i=1

ri ln ri −
n∑
i=1

ri lnxi(r) − rt(e+ z1 − z2) >

> g(x(r)) +

n∑
i=1

ri ln ri −
n∑
i=1

ri lnxi(r) −
n∑
i=1

ri −
n∑
i=1

ri ln ri +

n∑
i=1

ri lnxi(r) >

> g(x(r)) −
n∑
i=1

ri.

Taking into account that: g∗ = m(0) = minx g(x(r)).

Then, we come conclusion g∗ 6 g(x(r)) 6 g∗ +
n∑
i=1

ri.

For the rest, we are interesting on the trajectory of x(r) when ∥ r ∥ tends to zero.

a) The case in which g is only convex.
This case is a little complicated, we impose that ∥r∥∞ 6 1, and for that we note

x(r) ∈ {x; Bx = c, x > 0, g(x) 6 n+ g∗} .

This set is convex, bounded and non empty, its cone of recession is reduced to zero.
It follows that each accumulation point of xr is an optimal solution of (P1) only if ∥r∥ → 0.

b) The case in which g is strongly convex with coefficient γ strictly positif.
We have

n∑
i=1

ri > g(x(r)) − g(x∗) > < ∇g(x∗), x(r) − x∗ > +
γ

2
∥ x(r) − x∗ ∥2 .

Using (1), we obtain
n∑
i=1

ri > < v∗, x(r) > > 0.

Then

∥ x(r) − x∗ ∥ 6
(

2

γ

n∑
i=1

ri

) 1
2

.

We come to conclusion that the convergence of x(r) to x∗ is of order
1

2
.

Remark 1.1. If the problem (P1) or the perturbed problem (P2) will have an optimal solution
and the values of their objective functions are equal and finite, the other problem has an optimal
solution.
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The general prototype of our method is as follows:

0 Starting by (r0, x0) ∈ Rn+ ×K.

1 Find an approximate solution of (P2) has been noted by xk+1 such that:

ϕ(rk, xk+1) 6 ϕ(rk, xk).

2 Take: ∥rk+1∥∞ 6 ∥rk∥∞.

The iterations continue until we obtained the approximate solution.

2. Some useful inequalities
Taking into consideration the statistical serie of n real numbers {z1, . . . , zn}, we define their

arithmetic mean z and their standard deviation σz. These quantities are defined as follows:

z =
1

n

n∑
i=1

zi, σ2
z =

1

n

n∑
i=1

z2i − z2 =
1

n

n∑
i=1

(zi − z)2.

For the following result see [3, 6]

Proposition 2.1.
z − σz

√
n− 1 6 min

i
zi 6 z − σz√

n− 1
,

z +
σz√
n− 1

6 max
i
zi 6 z + σz

√
n− 1 .

In the case where zi are all positifs, we deduce that:

ln
(
z − σz

√
n− 1

)
6

n∑
i=1

ln(xi) 6 ln
(
z + σz

√
n− 1

)
.

Theorem 2.1 ( [2]). Assume that zi > 0 for all i = 1, n, then:

A1 6
n∑
i=1

ln(zi) 6 A2,

with:
A1 = (n− 1) ln

(
z +

σz√
n− 1

)
+ ln

(
z − σz

√
n− 1

)
,

A2 = ln
(
z + σz

√
n− 1

)
+ (n− 1) ln

(
z − σz√

n− 1

)
.

3. Solving the perturbed problem
Consider the following perturbed problem defined as follows:

m(r) = min
x

{
ϕr(x) = g(x) +

n∑
i=1

ψ(ri, xi) : Bx = c, x > 0

}
.

In this section we are interested in the numerical solution of the problem (P1), we begin our
work by calculate the descent direction and the step size in which we use a new technique of
majorant functions.
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3.1. The descent direction and line search function

A descent direction d can be computed by various methods, in this task we choose the
Newton’s method and therefore d is given by solving the following quadratic convex minimization
problem: {

mind

(1

2
< ∇2ϕr(x)d, d > + < ∇ϕr(x), d >

)
Bd = 0

.

According to the necessary and sufficient optimality conditions, there exists µ ∈ Rm such
that: {

∇2ϕr(x)d+ ∇ϕr(x) +Btµ = 0
Bd = 0

.

Which is equivalent to(
∇2g(x) +RX−2 Bt

B 0

)(
d
µ

)
=

(
X−1r −∇g(x)

0

)
.

From which we get

(
dt 0

)(∇2g(x) +RX−2 Bt

B 0

)(
d
µ

)
=
(
dt 0

)(X−1r −∇g(x)
0

)
.

Then

< ∇2g(x)d, d > + < ∇g(x), d >=< r,X−1d > − < RX−1d,X−1d > . (6)

This system is equivalent to(
X∇2g(x)X +R XBt

BX 0

)(
X−1d
µ

)
=

(
r −X∇g(x)

0

)
. (7)

The Newton descent direction being calculated.

3.2. Computation of the step size

Generally, the most used methods in the search line are the classical itterative methods as
Armijo–Goldstein, Wolfe, Fibonnaci, . . . , but the computational cost in there becomes high when
n is very large.

In this part, we are interested to avoid this difficulty. The method that we use bellow is simple
and more effective than the first, it consists on the use of majorant function of the function θ.
The choice of the step size t∗ > 0 must give us a significant decrease of the convex function θ,
we have:

θ0(t) = ϕr(x+ td) − ϕr(x) =

= g(x+ td) − g(x) −
n∑
i=1

riln(1 + tyi), y = X−1d.

According to Proposition 2.1, we have: ρ 6 mini ri 6 ri ∀i = 1, n.
In which ρ = r − σr

√
n− 1.

Then, we obtain

θ(t) =
θ0(t)

ρ
6 θ1(t) =

1

ρ
(g(x+ td) − g(x)) −

n∑
i=1

ln(1 + tyi).
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We have

θ
′
(t) =

1

ρ

(
< ∇g(x+ td), d > −

n∑
i=1

ri
yi

1 + tyi

)
,

θ
′′
(t) =

1

ρ

(
< ∇2g(x+ td)d, d > +

n∑
i=1

ri
y2i

(1 + tyi)2

)
.

And

θ
′

1(t) =
1

ρ
< ∇g(x+ td), d > −

n∑
i=1

yi
1 + tyi

,

θ
′′

1 (t) =
1

ρ
< ∇2g(x+ td)d, d > +

n∑
i=1

y2i
(1 + tyi)2

.

We deduce from (6), that θ
′
(0)+θ

′′
(0) = 0, and we have θ

′′
(0) > 0 wich give us that θ

′
(0) 6 0.

Now it must to prove that θ
′

1(0) 6 0, we have:

a If yi > 0, it is clearly that θ
′

1(0) 6 0.

b If yi < 0, we deduce from (6) that θ
′

1(0) + θ
′′

1 (0) 6 0 and as θ
′′

1 (0) > 0 we come conclusion
that θ

′

1(0) 6 0.

What is prove the significant decrease of θ1.

3.3. The first majorant function
The choice of t∗ in which θ

′
(t∗) = θ

′
(topt) = 0 consists of some numerical complications, so

generally we can’t obtain t∗ directly. To solve this problem, we propose to find an approximation
function of θ.

This method is based on the use of a majorant function θ2 of the function θ.
In the following, we take: xi = 1 + tyi, x = 1 + ty, and σx = tσy.

Applying the inequality
n∑
i=1

ln(xi) > A1 (Theorem 2.2), we get that θ1(t) 6 θ2(t) such that

θ2(t) =
1

ρ
(g(x+ td) − g(x)) − (n− 1)ln(1 + tα) − ln(1 + tβ).

In which
α = y +

σy√
n− 1

, β = y − σy
√
n− 1.

We have

θ
′

2(t) =
1

ρ
< ∇g(x+ td), d > −(n− 1)

α

1 + tα
− β

1 + tβ
,

θ
′′

2 (t) =
1

ρ
< ∇2g(x+ td)d, d > +(n− 1)

α2

(1 + tα)2
+

β2

(1 + tβ)2
.

The domains of θ2 is H2 =]0, T [ in which T = max{t : 1 + tβ > 0}, this domain is content
in the domain of the line search function θ.

We notice that : θ(0) = θ1(0) = θ2(0) = 0, θ
′

1(0) = θ
′

2(0) < 0 and θ
′′

1 (0) = θ
′′

2 (0) > 0.
We prove that the strictly convex function θ2 is a good approximation of θ1 in a neighbourhood

of 0, hence the unique minimum t∗ of θ2 guarantee a significant decrease of the function θ1, and
we have the follows inequalities:

θ(t∗) 6 θ1(t∗) 6 θ2(t∗) < 0 .
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3.4. Case when g is linear
We impose that g(x) = ctx, x, c ∈ Rn, the auxiliary function ω is given by the following

form:
ω(t) = nηt− (n− 1)ln(1 + tα) − ln(1 + tβ)

in which: η =
ctd

n
.

ω have the same properties as θ2, the unique root of ω
′
(t) = 0 is the minimum of θ2. The

unique t that we have guarantee a significant decrease of the function ϕr along the newton descent
direction d.

3.5. Case when g is only convex
In this case, the equation θ

′

2(t) = 0 is no longer reduces to an equation of second degree, we
thought to look at another function greater than θ2, for this we use the secant technique. Given
t ∈]0, T [ for all t ∈]0, t], we have

g(x+ td) − g(x)

ρ
6 g(x+ td) − g(x)

ρt
t.

Then the auxiliary function ω is define as follows:

ω(t) = nηt− (n− 1)ln(1 + tα) − ln(1 + tβ).

Such as, we take

η =
g(x+ td) − g(x)

nρt
,

and we calculate t∗ the root of the equation ω
′
(t) = 0.

1. If t = 1 and T > 1 then t is the optimal solution.

2. If t ̸= 1, then

a If t∗ 6 t, in this case we have θ(t∗) 6 θ1(t∗) 6 θ2(t∗) 6 ω(t∗), which means that we
assure a significant decrease of the function ϕr along the direction d.

b If t∗ > t, we must to choose another t ∈]t∗, T [ and calculate t∗ for the new auxiliary
function and repeat this until we have that t∗ 6 t, for example we choose

t = t∗ + ζ(T − t∗); ζ ∈ [0, 1].

3.6. Minimization of the auxiliary function ω

We have
ω(t) = nηt− (n− 1)ln(1 + tα) − ln(1 + tβ).

It is easy to calculate

ω
′
(t) = nη − (n− 1)

α

1 + tα
− β

1 + tβ
,

ω
′′
(t) = (n− 1)

α2

(1 + tα)2
+

β2

(1 + tβ)2
.

Then: ω(0) = 0, ω
′
(0) = n(η − y), ω

′′
(0) = n(y2 + σ2

x) =∥ y ∥2.
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We impose that ω
′
(0) 6 0 and ω

′′
(O) > 0.

For getting t∗, we need to calculate the root of the equation ω
′
(t) = 0 :

Equivalent to
ηαβt2 + (η(α+ β) − αβ)t+ η − y = 0

1. if η = 0, t∗ =
−y
αβ

,

2. if α = 0, t∗ =
y − η

ηβ
,

3. if β = 0, t∗ =
y − η

ηα
,

4. if ηαβ ̸= 0, in this case we have two roots of the equation of the second degree but there
is just only root t∗ which belongs to the domain of definition of ω, both roots are:

t∗1 =
1

2

(
1

η
− 1

α
− 1

β
−
√

∆

)
, t∗2 =

1

2

(
1

η
− 1

α
− 1

β
+

√
∆

)
.

In which

∆ =
1

η2
+

1

α2
+

1

β2
− 2

αβ
−
(

2n− 4

nη

)(
1

α
− 1

β

)
.

3.7. The second majorant function

Here, we thought to find another approximation of θ1 simpler than θ2 and has one logarithm.
Remember that:

θ1(t) =
1

ρ
(g(x+ td) − g(x)) −

n∑
i=1

ln(1 + tyi); ρ = r − σr
√
n− 1.

Using the inequality:

n∑
i=1

ln(1 + tyi) > (∥ y ∥ +ny)t+ ln(1 − t ∥ y ∥).

Then, we get a second majorant function of θ noting by θ3 such that:

θ3(t) =
1

ρ
(g(x+ td) − g(x)) − (∥ y ∥ +ny)t− ln(1 − t ∥ y ∥)

and
θ
′

3(t) =
1

ρ
< ∇g(x+ td), d > − ∥ y ∥ −ny +

∥ y ∥
1 − t ∥ y ∥

,

θ
′′

3 (t) =
1

ρ
< ∇g(x+ td)d, d > +

∥ y ∥2

(1 − t ∥ y ∥)2
.

The domains of θ3 is H3 = [0, T3[, with T3 = max{t; 1 − t ∥ y ∥> 0}.
We remark that:

• θ3(0) = θ1(0) = 0,

• θ
′

3(0) =
1

ρ
< ∇g(x), d > −ny = θ

′

1(0) < 0,
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• θ
′′

3 (0) =
1

ρ
< ∇2g(x)d, d > + ∥ y ∥2= θ

′′

1 (0) > 0.

The strictly convex function θ3 is a good approximation of θ1 in a neighbourhood of 0, the unique
minimum t∗ of θ3 guarantee a significant decrease of the function θ1, and we have:

θ1(t∗) 6 θ2(t∗) 6 θ3(t∗).

3.7.1. Minimization of an auxiliary function

Let us define the convex function ω2, where it’s minimum is reached at t∗.

ω2(t) = nηt− (∥ y ∥ +ny)t− ln(1 − t ∥ y ∥).

It is easy to calculate

ω
′

2(t) = nη− ∥ y ∥ −ny +
∥ y ∥

1 − t ∥ y ∥
,

ω
′′

2 (t) =
∥ y ∥2

(1 − t ∥ y ∥)2
.

Then: ω2(0) = 0, ω
′

2(0) = n(η − y), ω
′′

2 (0) =∥ y ∥2.
We impose that ω

′

2(0) 6 0 and ω
′′

2 (O) > 0.
For getting t∗, we need to calculate the root of the equation ω

′

2(t) = 0.

4. Description of the algorithm
In this part, we present the algorithm which resume our study to obtain the optimal solution

x∗ of the problem (P1).

4.1. Algorithm
1. Input ϵ > 0, rs > 0 , x0 ∈ K, X with X(i, i) = x0(i), r ∈ Rn+, δ ∈ [0, 1]n.

2. Iteration

* Calculate d and y = X−1d

(a) If ∥ y ∥> ϵ do

a1 Calculate η, α, β and solve the equation ω
′
(t) = 0 for obtain t∗.

a2 Calculate x = x+ t∗d, and return to (∗).

(b) If ∥ y ∥6 ϵ, we obtained a good approximation of m(r).
i If ∥r∥ > rs, r = δ × r and return to (∗).

With δ × r = (δ1 × r1, . . . , δn × rn).
ii If ∥r∥ 6 rs, Stop. We have a good approximation of the optimal solution.

5. Numerical tests
In the tables bellow, Iter represents the number of iterations to obtain x∗, Min represents

the minimum and T(s) represents the time in seconds. Method 1 corresponds to the method of
majorant function introduced in this work, method 2 corresponds to the method of majorant
function introduced in [1] and method 3 corresponds to the classical line search method.
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5.1. Examples with variable size

Example 1. Quadratic case [4]
We consider the following quadratic problem with n = m+ 2

g∗ = min{b(x) : Bx = c, x > 0}.

In which:
g(x) =

1

2
< x,Qx > .

With

Q[i, j] =


2 if i = j = 1 or i = j = m
4 if i = j and i ̸= {1,m}
2 if i = j − 1 or i = j + 1
0 otherwise

, B[i, j] =


1 if i = j
2 if i = j − 1
3 if i = j − 2
0 otherwise

.

gi = 1 ∀i = 1, n, ∀j = 1,m.
We test this example for different value of n.

Example 2. Erikson’s problem [5]
Consider the following convex problem:

g∗ = min[g(x) : Bx = c, x > 0].

Where g(x) =
n∑
i=1

xi ln
(xi
ai

)
, ai, bi ∈ R are fixed, and

B[i, j] =

{
1 if i = j or j = i+m
0 if not .

We test this example for different values of n, ai and bi.

6. Tables

Table 1. Numerical simulations for Example 1

Method 1 Method 2 Method 3
n Min Iter T(s) Min Iter T(s) Min Iter T(s)
4 0.285 8 0.0061 0.285 9 0.007 0.285 14 0.019
50 5.37 6 0.019 5.372 7 0.021 5.374 14 0.053
100 10.924 6 0.065 10.927 7 0.08 10.93 14 0.188
500 55.3722 8 14.5 55.372 7 13.8 55.374 14 29.815

Table 2. The case where ai = 1 and bi = 6,∀i = 1.n (Example 2)

Method 1 Method 2 Method 3
n Min Iter T(s) Min Iter T(s) Min Iter T(s)
10 32.94 3 0.0038 32.95 3 0.004 32.95 4 0.018
50 164.79 4 0.026 164.79 4 0.025 164.79 6 0.082
500 329.57 5 0.1 329.58 5 0.076 329.58 6 0.23
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Table 3. The case where ai = 2 and bi = 5,∀i = 1.n (Example 2)

Method 1 Method 2 Method 3
n Min Iter T(s) Min Iter T(s) Min Iter T(s)
10 0.62 × 10−8 2 0.0021 0.66 × 10−7 2 0.002 9.09 × 10−6 3 0.01
50 0.1 × 10−7 3 0.0028 0.11 × 10−8 3 0.003 1.86 × 10−4 4 0.07
500 0.75 × 10−7 3 0.0045 0.76 × 10−7 3 0.04 1.03 × 10−4 5 0.22

Conclusion
The effective numerical simulations show that our approach is a very important alternative

and gives an encouraging results compared to the classical line search method. However, it
competes with the method introduced in [1] where r ∈ R.
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Логарифмический барьерный подход с использованием
мажорантной функции для нелинейного
программирования
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Лаборатория фундаментальной и вычислительной математики
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Сетиф 1, Сетиф, Алжир

Аннотация. В данной статье нас интересует решение оптимизационной задачи нелинейного про-
граммирования с использованием метода внутренних точек с логарифмическим барьером, в кото-
ром штрафной член берется в виде вектора r ∈ Rn

+ . Направление спуска было рассчитано с ис-
пользованием классического метода Ньютона, однако размер шага был рассчитан с использованием
новой техники мажорантных функций и техники секущих. Численное моделирование показывает
нам эффективность нашего подхода по сравнению с классическим методом линейного поиска.

Ключевые слова: нелинейное выпуклое программирование, метод логарифмических штрафов,
линейный поиск, мажорантная функция, метод секущих.
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1. Introduction and preliminaries
Hypergeometric functions were studied in the 19th century by many famous mathematicians

such as L. Euler, C. F.Gauss, E.Kummer, B. Riemann. Most of the researches were on one vari-
able series. At the end of 19th and the first half of 20th century the hypergeometric functions
were widespread considered, including several variables cases. Among them are the functions
studied by G. Lauricella [11], J. Horn [8], P.Appell [3] (see also the books [4, 5]). The hyper-
geometric functions are still attractive recently (see [2, 6, 13, 14]). According to Horn [8] the
series

H(x1, . . . , xN ) =
∑
α∈NN

cαx
α (1)

is called hypergeometric if the relations of neighboring coefficients

hi(α) =
cα+ei
cα

, i = 1, . . . , N, (2)

(where the set of ei composes the standard basis in ZN ), are rational functions in variables
α = (α1, . . . , αN ). Limit values of functions hi along fixed directions s = (s1, . . . , sN ) ∈ RN \{0}

Pi(s) := lim
k→∞

hi(ks)

play an important role. We call the vector limit

1

P(s)
=

(
1

P1(s)
, . . . ,

1

PN (s)

)
the Horn parameterization or Horn uniformization for the hpereometric series (1). These vectors
define the conjugative radii of convergence for the series (1) (about the conception of these radii
see [16, Sec. 7, ch. 1]).

∗phquangkhanh@gmail.com
c⃝ Siberian Federal University. All rights reserved
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In this paper we study the hypergeometric type series. Roughly speaking, these series satisfy
the following conditions: there is a sublattice L ⊂ ZN of rank N such that the restriction of H
on the shifts of L are hypergeometric. The details about the hypergeometric type series refer to
the Section 3.

We are interested in the hypergeometric type series in order to investigate the solutions to
universal systems of polynomial equations. In particular, we intend to apply the discriminant
apparatus considered here to the calculation of the convergence domain of these series.

Consider a general system of n polynomial equations with n unknowns y1, . . . , yn:

Pi :=
∑
λ∈A(i)

a
(i)
λ yλ = 0, i = 1, . . . , n, (3)

where A(i) are the finite subsets of Zn and yλ = yλ1
1 . . . yλnn . We assume that all coefficients a(i)λ

are independent, and call (3) an universal algebraic system. Applying the Stepanenko’s formula
(see [10]) we get the hypergeometric type series presenting the monomials with positive integer
exponents of the principal solution to the system (4).

We will explicit the relation between the Horn parameterization
1

P(s)
for these series and

the parameterization Ψ of the discriminant locus ∇ of the system (4) (see more about Ψ and ∇
in Section 2.). According to result in [1], the parameterization Ψ is the inverse of the logarithmic
Gauss map for ∇. (The logarithmic Gauss map γ : ∇ ⊂ CN → CPN−1 for a hypersurface ∇,
defined by polynomial P , can be defined by the formula

(z1, . . . , zn) 7−→ (z1∂1P (z) : · · · : zn∂nP (z)),

where ∂j is the derivative ∂/∂zi (see [9, 12])).

According to Kapranov’s result in [9], the Horn parameterization
1

P
for the hypergeometric

series coincides with the parameterization Ψ = γ−1 of the discriminant locus ∇. The following
theorem gives an extension of the Kapranov’s result in [9] for the series of hypergeometric type
representing monomials of solutions to the reduced system (4).

Theorem 1. The Horn parameterization
1

P(s)
for the series (6) and the parameterization Ψ(s)

of discriminant set for the system (4) coincide:

Ψ =
1

P
.

2. Reduced systems and their discriminants
Following the paper [1] we consider the reduced system of the system (3) in the forms

y
mj
j +

∑
λ∈Λ(j)

x
(j)
λ yλ − 1 = 0, j = 1, . . . , n, (4)

where each mj is a positive integer and Λ(j) does not contain λ = 0 and λ = (0, . . . ,mj , . . . , 0).
Denote by ∇0 the set of all the coefficients for which the system (3) has multiple zeros in

the torus Tn = (C \ {0})n, i.e. the Jacobian of P equals zero. The discriminant locus ∇ of the
system (3) is the closure of the set ∇0 in the space of coefficients of polynomials P1, . . . , Pn.

Denote the matrix
Λ := (Λ(1), . . . ,Λ(n)) = (λ1, . . . , λN ),
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where λk = (λk1 , . . . , λ
k
n)T ∈ Λ(j) are column-vector of exponents in monomials of equations (4).

Also let ωm denote the n × n-diagonal matrix with values
1

mj
on the diagonal. Consider the

matrices
Φ := ωΛ, Φ̃ := Φ − χ,

where χ is the matrix, whose i-th row is assigned by the characteristic function of the subset
Λ(i) ⊂ Λ, i.e. elements of this row are 1 at the position λ ∈ Λ(i) and 0 at all positions λ ∈ Λ\Λ(i).
In addition, φk denotes the rows of Φ, and φ̃k denotes the rows of Φ̃. Their elements are
denoted by φkλ and φ̃kλ correspondingly. We can interpret each row φk as a sequence of vectors
φ
(1)
k , . . . , φ

(n)
k .

We will follow two copies of CN . The first one is CΛ
x with the coordinators x = (xλ), and

the second one is CΛ
s with the coordinators s = (sλ) constructed as a space with homogeneous

coordinators for CPN−1. Following the result of Antipova and Tsikh (see [1]), the map

Ψ : CPN−1
s → CNx = CΛ(1)

x(1) × · · · × CΛ(n)

x(n) ,

from a projective space to the space of coefficients x = (xλ) of the system (4), defined by

x
(j)
λ = −

s
(j)
λ

⟨φ̃j , s⟩

n∏
k=1

(
⟨φ̃k, s⟩
⟨φk, s⟩

)φkλ
, λ ∈ Λ(j), j = 1, . . . , n, (5)

gives the parameterization for the discriminant locus ∇.

3. Solutions to reduced systems of algebraic equations
For the solution y = (y1, . . . , yn) to (4), we consider the series representing the monomial

function yµ = yµ1

1 . . . yµn1
yµ =

∑
α∈NN

cαx
α. (6)

We focus on the so-called principal solution to system (4): they satisfy initial condition
y(0, . . . , 0) = (1, . . . , 1). When µj > 0 the Stepanenko’s result [10] claims that the coefficients cα
in (6) admit the following expression:

cα = (−1)α1+···+αN · Γα · Rα, (7)

where

Γα =

n∏
j=1

Γ
(µj+mj

mj
+ ⟨φj , α⟩

)
N∏
i=1

Γ(αi + 1)
n∏
j=1

Γ
(µj+mj

mj
+ ⟨φj , α⟩ −

∑
i∈Λ(j)

αi
) ,

Rα = det

(
δ
(j)
i − ⟨φ(j)

i , α(j)⟩
µj + ⟨φj , α⟩

)
(i,j)∈Pα×Pα

,

(8)

with Pα ⊂ {1, . . . , n}. We call Γα the gamma-part and Rα the rational-part of the coefficient cα.
Remark that according to expressions (7) and (8) cα admits the expression

cα = tα R(α)

M∏
j=1

Γ(⟨aj , α⟩ + bj),

where tα = tα1
1 . . . tαNN , ti, bi ∈ C, aj ∈ QN , and R(α) is a rational function. In the case

when aj ∈ ZN this expression presents the general coefficient Ore-Sato for hypergeometric series
(see [7, 15]).
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4. Horn parameterization for hypergeometric type series
Here we give more details for the definition of the series of hypergeometric type and construct

for them the analog of the Horn parameterization. Let e1, . . . , eN denote the standard basis of ZN ,
i.e. eλ = (0, . . . , 1, . . . , 0) with 1 being on λ-th position. For a given ν = (ν1, . . . , νN ) ∈ (N\{0})N

we consider the sublattice Lν ⊂ ZN generated by ν1e1, . . . , νNeN . For two vectors ν, s ∈ ZN we
define their product νs := (ν1s1, . . . , νNsN ).

Definition 1. We say that the power series∑
α∈NN

cαx
α (9)

is of hypergeometric type if there exists ν ∈ (N \ {0})N such that all subseries

Hl :=
∑

α∈l+Lν∩NN
cαx

α = t
l
ν

∑
s∈NN

c′st
s, l ∈ J,

are hypergeometric in variables tλ = xνλλ , where c′s = cl+νs and J is the sequence of all represen-
tatives for the factor ZN/Lν :

J = {(l1, . . . , lN ) ∈ Zn : 0 6 li 6 νi − 1, i = 1, . . . , N}.

The subseries Hl is hypergeometric iff all the relations

Rλ(s) :=
c′s+eλ
c′s

, λ = 1, . . . , N, (10)

are rational functions of variables s = (s1, . . . , sN ).

Proposition 1. The series (6) with the coefficient (7) is a hypergeometric type series.

Proof. For a vector ν ∈ (N \ {0})N we take ν = (τ, . . . , τ) where τ is the least common multiple
of m1, . . . ,mN .

According to (8), the relations (10) become

Rλ(s) =
cl+ν(s+eλ)

cl+νs
=

Γl+τs+τeλ
Γl+τs

(−1)τ Rl+τs+τeλ

Rl+τs
, λ = 1, . . . , N, l ∈ J, (11)

where J = {l = (l1, . . . , lN ) : 0 6 l1, . . . , lN 6 τ − 1}. The power of the exponent (−1)τ comes
from

(−1)|l+τ(s+eλ)|

(−1)|l+νs|
= (−1)|τeλ| = (−1)τ ,

where |α| := α1 + · · · + αN .
Here l+ τs denotes the restriction of α on the shifted lattice l+Lν (i.e. α =: l+ τs for some

l ∈ J). Thus Γl+τs and Rl+τs are correspondingly the restrictions of the gamma-part Γα and
the rational-part Rα of the series (6) on the such lattice. It is clear that the second ratio in (11),
the ratio for Rα, is a rational function in s.

Introduce denotations

Ak := φk = (φk1, . . . , φkN ), An+k := φ̃k = (φ̃k1, . . . , φ̃kN ), A2n+λ := eλ,

and rewrite (8) in such a way

Γα =

n∏
p=1

Γ(⟨Ap, α⟩ + ηp)

2n∏
p=n+1

Γ(⟨Ap, α⟩ + ηp)
2n+N∏
p=2n+1

Γ(⟨Ap, α⟩ + 1)

,
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where ηp are some constants independing on α. To compute the ratio of gamma-parts in (11)
we use the Pochhammer symbol

(z)k =
Γ(z + k)

Γ(z)
= z(z + 1) . . . (z + k − 1), k ∈ N \ {0}

and the denotation qλp := ⟨Ap, τeλ⟩. Then it leads to

Γα+τeλ
Γα

=

n∏
p=1

(⟨Ap, α⟩ + ηp − 1 + qλp )qλp

2n∏
p=n+1

(⟨Ap, α⟩ + ηp − 1 + qλp )qλp

2n+N∏
p=2n+1

(⟨Ap, α⟩ + qλp )qλp

.

With α = l + τs, we get the ratio of gamma-parts restricted on the shifted lattice l + Lν :

Γl+τs+τeλ
Γl+τs

=

n∏
p=1

(⟨τAp, s⟩ + η′p + qλp )qλp

2n∏
p=n+1

(⟨τAp, s⟩ + η′p + qλp )qλp

2n+N∏
p=2n+1

(τ⟨eλ, s⟩ + lλ + qλp )qλp

, (12)

where constants η′p are independent on s.
Since mj divide τ , the delation τAp in (12) is a vector with integer coordinators. Then its

turns out that the relation
Γl+τs+τeλ

Γl+τs
in (11) is a rational function of the variables s1, . . . , sN .

Thus the series (6) is of hypergeometric type.

According to Horn (see [8]) the convergence radii of hypergeometric series are defined by the
limits

lim
r→∞

hi(rs), i = 1, . . . , N,

where the rational functions hi are defined by (2). In the hypergeometric type case, the conver-
gence radii of the series (9) are defined by the limits

Pλ(s1, . . . , sN ) = lim
r→∞

(
Rλ(rs)

) 1
τ , λ = 1, . . . , N, (13)

where Rλ are rational relations (10) and τ is the least common multiple of ν1, . . . , νN ,
(s1 : · · · : sN ) ∈ RPN−1, si > 0. Indeed (s1, . . . , sN ) are homogeneous coordinates in CPN−1,
and the limits Pi are rational and homogeneous of degree zero. They depend only on the ratio
s = s1 : · · · : sN . The vector limit

1

P(s)
:=

(
1

P1(s)
, . . . ,

1

PN (s)

)
are called by Horn parameterization (or Horn uniformation) for hypergeometric type series since
Horn is the first person who considered such a limit for hypergeometric function (see [9]).

5. The proof of the Theorem 1

According to (12) we get the following formula for the limit values of relation (11) along
direction s := (s1, . . . , sN ) ∈ RN \ {0}.
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Proposition 2.

Pλ(s1, . . . , sN ) = −⟨φ̃j , s⟩
⟨eλ, s⟩

n∏
p=1

(
⟨φp, s⟩
⟨φ̃p, s⟩

)φpλ
. (14)

Proof. From the ratio (12) and the limits (13),

Pλ(s1, . . . , sN ) := lim
r→∞

[
cl+τrs+τeλ
cl+τrs

] 1
τ

= lim
k→∞

[
Γl+τrs+τeλ

Γl+τrs

(−1)τ Rl+τrs+τeλ

Rl+τrs

] 1
τ

=

=: − lim
r→∞

(
A ·B · C

) 1
τ

,

where

A :=

n∏
p=1

(⟨rAp, s⟩ + η′p +
qλp
τ )qλp

2n∏
p=n+1

(⟨rAp, s⟩ + η′p +
qλp
τ )qλp

2n+N∏
p=2n+1

(r⟨eλ, s⟩ + lλ
τ +

qλp
τ )qλp

,

B :=
τ q

λ
1 +···+qλn

τ q
λ
n+1+···+qλ2n · τ qλn+1+···+qλ2n+N

,

C :=

det
(
δ
(j)
i − ⟨φ(j)

i ,l(j)+τe
(j)
λ ⟩+⟨φ(j)

i ,τrs(j)⟩
µj+⟨φj ,l+τeλ⟩+⟨φj ,τrs⟩

)
(i,j)∈Pα×Pα

det
(
δ
(j)
i − ⟨φ(j)

i ,l(j)⟩+⟨φ(j)
i ,τrs(j)⟩

µj+⟨φj ,l⟩+⟨φj ,τrs⟩

)
(i,j)∈Pα×Pα

.

Recall that

Ak = (φk1, . . . , φkN ), An+k = (φ̃k1, . . . , φ̃kN ), A2n+λ = eλ,

qλp = ⟨Ap, τeλ⟩, p ∈ {1, . . . , 2n+N}.
(15)

Since τeλ = (0, . . . , τ, . . . , 0) with λ ∈ {1, . . . , N},

qλp =


τφpλ with 1 6 p 6 n,

τφ̃(p−n)λ with n+ 1 6 p 6 2n,

τ with p = 2n+ λ,

0 with p > 2n and p ̸= 2n+ λ.

(16)

Thus
qλ1 + · · · + qλn = (φ1λ + · · · + φnλ)τ, qλ2n+1 + · · · + qλ2n+N = τ, (17)

and with the notice that λ ∈ Λ(j) for some j,

qλn+1 + · · · + qλ2n = (φ̃1λ + · · · + φ̃nλ)τ = (φ1λ + · · · + φnλ − 1)τ. (18)

The sums in (17) and (18) lead to

B =
τ (φ1λ+···+φnλ)τ

τ (φ1λ+···+φnλ−1)τ · τ τ
= 1,

Let r tend to the infinity we obtain the limits:

lim
r→∞

A =

n∏
p=1

⟨Ap, s⟩q
λ
p

2n∏
p=n+1

⟨Ap, s⟩q
λ
p ⟨eλ, s⟩τ

,
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lim
r→∞

C =

det
(
δ
(j)
i − ⟨φ(j)

i ,τs(j)⟩
⟨φj ,τs⟩

)
(i,j)∈Pα×Pα

det
(
δ
(j)
i − ⟨φ(j)

i ,τs(j)⟩
⟨φj ,τs⟩

)
(i,j)∈Pα×Pα

= 1.

Thus

lim
r→∞

(
A ·B · C

) 1
τ

=


n∏
p=1

⟨Ap, s⟩q
λ
p

⟨eλ, s⟩τ
2n∏

p=n+1
⟨Ap, s⟩q

λ
p


1
τ

.

Substitute coordinators of the vectors Ap formulated in (15) and the value of qαp in (16), then

the limit lim
r→∞

(
A ·B · C

) 1
τ

equals


n∏
p=1

⟨φp, s⟩τφpλ

⟨eλ, s⟩τ
2n∏

p=n+1
⟨φ̃p−n, s⟩τφ̃(p−n)λ


1
τ

.

In the square brackets each factor is an exponentiation with the power τ . The radical
1

τ
applying

on the square brackets leads to a simpler expression for the limit:

n∏
p=1

⟨φp, s⟩φpλ

⟨eλ, s⟩
2n∏

p=n+1
⟨φ̃p−n, s⟩φ̃(p−n)λ

.

Rewrite the index for the production in the denominator of the last expression, it will become

⟨φ̃j , s⟩
n∏
p=1

⟨φp, s⟩φpλ

⟨eλ, s⟩
n∏
p=1

⟨φ̃p, s⟩φpλ
.

Combining the factors with the same index under the production signs in the numerator and in
the denominator of the last expression we will get the result:

⟨φ̃j , s⟩
⟨eλ, s⟩

n∏
p=1

(
⟨φp, s⟩
⟨φ̃p, s⟩

)φpλ
.

Consequently we get the formula for the limit Pλ:

Pλ(s1, . . . , sN ) = −⟨φ̃j , s⟩
⟨eλ, s⟩

n∏
p=1

(
⟨φp, s⟩
⟨φ̃p, s⟩

)φpλ
.

The proposition holds.

Now we are ready to prove the Theorem 1.
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Proof of theorem 1. From (5) and (14) it turns out that

x
(j)
λ =

1

Pλ
, λ ∈ Λ(j), j = 1, . . . , n.

Thus the parameterization Ψ(s) for the discriminant locus ∇ of the system (4) composed by the
coordinators x(j)λ coincides with the limit vector of the hypergeometeric type series (6) composed

by the coordinators
1

Pλ
. The theorem holds.
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Ряды гипергеометрического типа и дискриминанты
Куанг Хань Фан

Сибирский федеральный университет
Красноярск, Российская Федерация

Аннотация. Одночлен решений редуцированной системы алгебраических уравнений представля-
ет собой ряд гипергеометрического типа. Мы распространяем результат Хорна-Карпранова (для
гипергеометрических рядов) на случай рядов гипергеометрического типа.

Ключевые слова: ряды гипергеометрического типа, логарифмическое отображение Гаусса, дис-
криминантное множество, редуцированная система, сопряженные радиусы сходимости.
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