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Abstract. Cubic pyrochlore of the composition Bi2Co0.5Cr0.5Nb2O9+∆ (sp. gr. Fd-3m, a = 10.4838(8)
Å) was synthesized in several stages using a solid-phase reaction from oxide precursors at a final temper-
ature of 1050 ◦С. Using NEXAFS spectroscopy data, the electronic state of cobalt and chromium ions
during the synthesis process was studied. It has been established that before the formation of phase-
pure pyrochlore, Cr(III) ions are converted to Cr(VI), and then again to Cr(III); Cobalt ions Co(III)
are reduced to Co(II). NEXAFS Cr2p spectra of ceramics synthesized at 650 ◦С, according to the main
characteristics of the spectrum, coincide with the spectrum of K2Cr2O7 and indicate the chromium
content in the oxide ceramics in the form of tetrahedral CrO2−

4 ions, and according to the nature of
the Co2p spectrum, cobalt ions are in the Co(II) state and Co(III). In the composition of pyrochlore
Bi2Co0.5Cr0.5Nb2O9+∆, synthesized at 1050 ◦С, cobalt and chromium appear predominantly in the form
of Co(II) and Cr(III) ions. Analysis of phase transformations showed that changes in the oxidation state
of transition element ions and the color of ceramics are associated with the formation of intermediate
synthesis products.
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Introduction

Currently, pyrochlores based on bismuth niobate are being actively studied due to their
promising dielectric properties [1,2]. Exhibiting low values of dielectric losses and high dielectric
constant, tunable temperature coefficient of capacitance, chemical inertness with respect to low-
melting conductors, materials based on oxide pyrochlores are promising as multilayer ceramic
capacitors and tunable microwave dielectric components [3]. The crystal structure of pyrochlores
A2B2O6О’ is formed by two interpenetrating cationic sublattices A2O’ and B2O6 [4]. Octahedral
positions B are occupied by relatively small cations (Nb+5), larger ions (Bi+3) are distributed in
eight-coordinated positions A. A feature of bismuth-containing pyrochlores is the partial vacancy
of the bismuth sublattice and the distribution of dopants - ions of transition 3d elements (Co,
Cu, Zn , Mn) in both cation sublattices of bismuth and niobium, causing relaxation processes
in ceramics [5,6]. New studies of pyrochlores based on bismuth niobate doped with transition
3d ions (Cr, Mn, Fe, Co, Ni, Cu, Zn) [5–11] have shown that low-porosity ceramics with low
dielectric losses and high values of dielectric constant are formed. The possibility of solid-phase
synthesis of multielement pyrochlores containing various combinations of atoms of 3d elements
was shown in [12]. A study of the phase formation of a representative of mixed pyrochlores
Bi2Co0.5Cr0.5Nb2O9+∆ showed [13] that during the synthesis (at 650 ◦С) the color of the ceramics
strikingly and reversibly changes from green to brown, and the synthesis of phase-pure pyrochlore
occurs at a temperature not lower than 1050 ◦С. It has been established that the formation of the
pyrochlore phase occurs through the reaction of solid-phase interaction of orthorhombic bismuth
niobate (α-BiNbO4) with oxides of transition elements. In the presented work, based on X-ray
spectroscopy data, the oxidation states of cobalt and chromium ions in ceramics are analyzed
and the reason for the change in the color of ceramics is established. The phase composition of
Bi2Co0.5Cr0.5Nb2O9+∆ ceramics at intermediate stages of solid-phase synthesis was studied in
detail. The data obtained contribute to a deep understanding of the processes occurring during
high-temperature processing of materials.

1. Materials and methods
For the solid-phase synthesis of the Bi2Co0.5Cr0.5Nb2O9+∆ sample, oxides of bismuth (III),

niobium (V), chromium (III) and cobalt (II,III) of analytical grade taken in stoichiometric quan-
tities were used. The stoichiometric mixture of oxides was thoroughly homogenized in an agate
mortar for one hour, then pressed into disk shapes. The main stages of pyrochlore phase forma-
tion were studied using X-ray phase analysis of samples sequentially calcined at temperatures
of 650, 850, 950, 1000 and 1050 ◦С for 15 hours at each stage of heat treatment. After each
calcination step, the sample was carefully homogenized and pressed back into disk shape to
ensure tight contact of the ceramic grains. X-ray data were obtained using a Shimadzu 6000
X-ray diffractometer (CuKα radiation; 2θ = 10 – 80◦; scanning speed 2.0 ◦/min). The study of
the microstructure and elemental mapping of the surface of the samples was carried out using
scanning electron microscopy and energy-dispersive X-ray spectroscopy (Tescan VEGA 3LMN
scanning electron microscope, INCA Energy 450 energy-dispersive spectrometer). The unit cell
parameters of pyrochlores were calculated using the CSD software package [14]. Research using
NEXAFS spectroscopy was carried out at the NanoFES station of the KISI synchrotron source
at the Kurchatov Institute (Moscow). NEXAFS spectra were obtained by recording the total
electron yield (TEY) with an energy resolution of 0.5 eV and 0.7 eV in the region of the Cr2p
and Co2p absorption edges, respectively.
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2. Results and discussion

As a review of the literature shows [12,13,15], the solid-phase synthesis of mixed pyrochlores
based on bismuth niobate is a multi-step process, which is associated with the low reactivity of
niobium (V) oxides and some transition elements, which include CoO, NiO [12,16]. In addition,
the features of the solid-phase synthesis method are the duration of calcination and the multi-
stage heat treatment process with intermediate remixing of the reaction mixture, which are
necessary to accelerate the reaction and obtain a homogeneous synthesis product [17]. It was
previously established that a sample of the composition Bi2Co0.5Cr0.5Nb2O9+∆ during ceramic
synthesis reversibly changes its color in the temperature range of 500–650 ◦С from green to
brown. In order to investigate the unusual thermal behavior of the complex oxide, the charge
state of transition element ions in ceramics was studied using NEXAFS spectroscopy and the
phase composition of samples calcined at 650, 850, 950, 1000 and 1050 ◦С. According to X-ray
phase analysis of a sample calcined at 650 ◦С, the X-ray diffraction pattern shows reflections
of intermediate products of the interaction of bismuth (III) oxide with chromium (III) and
niobium (V) oxides - bismuth chromate Bi6Cr2O15 (sp.gr. Ccc2), bismuth niobates Bi5Nb3O15

(sp.gr. P4/mmm) and BiNbO4 (sp.gr. Pnna), monoclinic β-Nb2O5 (sp.gr. P2/m) and pyrochlore
(sp.gr. Fd-3m) [5, 18–23]. Noteworthy is the formation of bismuth chromate, which has its own
intense red-orange color due to electronic transitions with charge transfer [20, 21]. The fact
is that chromium (III) oxide does not oxidize under these synthesis conditions; this requires an
oxygen atmosphere, a long duration and temperature of calcination. Meanwhile, the formation of
chromium (VI) compounds can be indirectly indicated by the orange-brown color of the ceramics
(Fig. 2) synthesized at 650 ◦С.

In order to establish or refute the presence of chromium (VI) ions in the sample, NEXAFS
studies of the charge state of the ions were carried out. NEXAFS spectra of chromium ions in the
composition of Bi2Co0.5Cr0.5Nb2O9+∆ ceramics synthesized at 650 ◦С are presented in Fig. 1.
As the figure shows, the spectra have a rich structure; in particular, absorption bands at 578,
580.5 and 589 eV can be clearly distinguished in the Cr2p3/2 and Cr2p1/2 spectra of the sample.
Comparison of the spectra of the samples with the spectra of the oxides CrO3, CrO2, Cr2O3

and potassium dichromate K2Cr2O7 [24–27] shows that the low-energy bands in the spectrum
coincide in the energy position of the peaks with the spectra of CrO3 and K2Cr2O7, which
indicates that chromium ions in the composition of the samples have charge state of Cr(VI)
and are in a tetrahedral environment in the form of CrO2−

4 ions, similar to K2Cr2O7, which is
consistent with the results of X-ray phase analysis. It is interesting to note that the spectra
of chromium change significantly with increasing temperature: in the low-temperature sample
(650 ◦С) they practically coincide with the NEXAFS Cr2p spectrum of K2Cr2O7, and those
calcined at high temperature (1050 ◦С) — with the spectra of Cr2O3.

Indeed, signals appear at 577 eV and 578 eV, and in the region of 586-588 eV, characteristic
of Cr(III) ions in an octahedral environment [27]. This allows us to assert that the charge state
of chromium ions changes with increasing temperature of heat treatment of the sample from
Cr(VI) to Cr(III). As X-ray phase analysis shows, the reason for the change in the charge state
of chromium ions is the formation of an intermediate synthesis product — bismuth (VI) chromate,
which is stable in a given temperature range and gives the ceramic a brown color. Apparently,
with an increase in the synthesis temperature, bismuth chromate thermally dissociates with the
formation of oxygen and oxide compounds of chromium (III), as evidenced by the disappearance
of its reflections in the X-ray diffraction pattern of the sample synthesized at a temperature
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Fig. 1. NEXAFS Cr2p-spectra (a) and Co2p-spectra (b) of the Bi2Co0.5Cr0.5Nb2O9+∆, synthe-
sized at 650 and 1050 ◦С, oxides Cr2O3, CrO2, CrO3, CoO, Co3O4 and potassium dichromate
K2Cr2O7

of 850 ◦C. The dissociation products interact with precursors to form a pyrochlore phase at
1050 ◦C, in which chromium ions are predominantly in the form of Cr(III) ions, as evidenced by
NEXAFS data. According to X-ray diffraction data, active interaction of precursors is detected
at temperatures above 650 ◦C. Reflections of niobium (V) oxide are not detected in the X-ray
diffraction patterns of samples synthesized at 850 ◦C and above; bismuth chromate Bi6Cr2O15 is
practically not detected at 750 ◦C, and Bi5Nb3O15 — at 900 ◦C. The pyrochlore phase appears
in noticeable quantities in samples obtained at a temperature of 750 ◦C. At this temperature,
the concentrations of Nb2O5 and Bi6Cr2O15 decrease significantly. Apparently, low-temperature
synthesis of pyrochlore is difficult due to the chemical inertness of Nb2O5. It is interesting to
note that the intermediate phase in the synthesis of pyrochlore is Bi5Nb3O15, while the analogue
in the synthesis of pyrochlores based on bismuth tantalate is Bi3TaO7 (sp.gr. Fm-3m) [28]. This
is partly due to the fact that the compound Bi5Ta3O15 is unknown.

For other reasons, it can be assumed that the reactivity of chromium (III) oxide is higher than
that of niobium (V), so bismuth oxide reacts with Cr2O3 first and in significant quantities. Its
maximum relative content is recorded at 750 ◦С, then its share in the sample rapidly decreases.

– 562 –



Ksenia A. Badanina . . . Conversion of Cr(III) and Co(III) During the Synthesis . . .

Fig. 2. X-ray diffraction patterns and photographs of Bi2Co0.5Cr0.5Nb2O9+∆ samples sequen-
tially calcined at temperatures of 650, 850, 950, 1000 and 1050 ◦С

Bi5Nb3O15 is replaced by α-BiNbO4, which, interacting with oxides of transition elements, forms
a pyrochlore phase of a given composition. In the temperature range of 900–1000 ◦С, reflections
of the pyrochlore and α-BiNbO4 phases are clearly observed.

The precursors oxides Cr2O3 and Co3O4 do not appear on the X-ray diffraction patterns of
the samples due to their low content in the initial charge and the high reactivity of chromium
(III) oxide. It is interesting to note that, according to NEXAFS spectroscopy, cobalt (II,III)
oxide in ceramics synthesized at 650 ◦C is present as an independent impurity phase. Indeed, as
the NEXAFS Co2p spectra of the sample show, the spectrum of the composite in terms of the
shape of the spectrum and the energy position of the spectral details is similar to the spectrum
of Co3O4 oxide, in which cobalt ions are found in the form of octahedrally coordinated Co(II)
and Co(III) ions [29]. Meanwhile, as the heat treatment temperature of the sample increases, the
charge state of cobalt changes and cobalt ions are detected in ceramics synthesized at 1050 ◦С,
mainly in the form of Co(II) ions. Taking into account that a temperature of 1050 ◦С corresponds

– 563 –



Ksenia A. Badanina . . . Conversion of Cr(III) and Co(III) During the Synthesis . . .

Fig. 3. Element maps of Bi2Co0.5Cr0.5Nb2O9+∆ samples synthesized at 650 ◦С and 1050 ◦С

to the production of phase-pure pyrochlore, it can be stated that cobalt ions in the composition of
pyrochlore are mainly in the Co(II) state, which is confirmed in the work devoted to the study of
cobalt-containing pyrochlores in the ternary system Bi2O3-Nb2O5-CoO [30]. The change in the
oxidation state of cobalt during high-temperature treatment of the sample may be associated
with the process of thermal dissociation of Co3O4 at a temperature of 920 ◦С into CoO and
oxygen [31].

As shown by elemental mapping of a sample (Fig. 4) synthesized at temperatures below
1050 ◦С, cobalt atoms are unevenly distributed on the surface of the sample, which indicates
that cobalt atoms are not part of the pyrochlore, but represent an impurity phase, which may
be Co3O4 oxide, which was subsequently subjected to thermal decomposition. Thus, cobalt
enters into a high-temperature reaction with bismuth orthoniobate in the form of CoO oxide.
This may be the reason that cobalt ions in pyrochlore are predominantly in the Co(II) state.

Microphotographs of the surface of the synthesized samples at temperatures of 650, 850, 950,
1000 and 1050 ◦С are shown in Fig. 4. A heterogeneous microstructure with heterogeneous
grains and inclusions of impurity phases is characteristic of samples calcined at a temperature
of 650-1000 ◦С. A low-porosity, dense microstructure was formed in the sample synthesized
at a temperature of 1050 ◦С. On the surface of the ceramic, both individual small grains and
partially fused grains with the formation of large agglomerates are observed, which contributes to
the formation of a monolithic microstructure. The average crystallite size determined by X-ray
diffraction using the Scherrer formula is ∼58 nm (1050 ◦С), while larger crystallites in the range of
2-10 µm (1050 ◦С) were determined using a scanning electron microscope (SEM). Apparently, the
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Fig. 4. Microphotographs of the surface of Bi2Co0.5Cr0.5Nb2O9+∆ samples synthesized at tem-
peratures of 650, 850, 950, 1000 and 1050 ◦С

crystallites in the micrographs are aggregated ceramic grains of much smaller sizes. Full-profile
analysis by the Rietveld method showed that the Bi2Co0.5Cr0.5Nb2O9+∆ sample synthesized at
1050 ◦С is single-phase [13].

The unit cell parameter of the Bi2Co0.5Cr0.5Nb2O9+∆ sample is 10.4838(8) Å and exceeds
the cell constant of chromium-containing pyrochlore Bi2CrNb2O9+y (a = 10.459(2)) [32], which
is explained by the large radius of Co(II) ions compared to Cr(III) ions (R(Cr(III)) = 0.615 Å,
R(Co(II))c.n.-6 = 0.745 Å) [33]. Since the radii of Ta(V) and Nb(V) ions (R( Nb(V)/Ta(V))c.n.-6
= 0.064 nm) are equal, the lattice constants for pyrochlores based on bismuth niobate
and bismuth tantalate can be comparable. Indeed, the unit cell parameter Bi2CrTa2O9+∆

(a = 10.45523(3) Å) [34] which is due to the closeness of the ionic radii (R(Mg(II)) = 0.72 Å,
R(Co(II))c.n.-6 = 0.745 Å). Unit cell parameter for cobalt-containing pyrochlores based on
bismuth tantalate Bi1.49Сo0.8Ta1.6O7.0 a = 10.54051(3) Å and for Bi1.6Co0.8Ta1.6O7±∆ a =
10.5526 (2) Å significantly exceeds the parameter of chromium-cobalt-containing pyrochlore,
which is associated with a significant difference in the radii of chromium (III) and cobalt (II)
ions ( R(Cr(III)) = 0.615 Å, R(Co(II))c.n. 6 = 0.745 Å) [36, 37]. Local chemical analysis
using energy-dispersive spectroscopy showed that the chemical composition of the synthesized
Bi2Co0.51Cr0.52Nb2.05O9+∆ sample is close to the nominal composition. Thus, the atypical ther-
mal behavior of the Bi2Co0.5Cr0.5Nb2O9+∆ sample is associated with the formation of an impu-
rity phase of bismuth chromate, as shown by X-ray phase analysis and NEXAFS spectroscopy.

Conclusions

Using NEXAFS spectroscopy and X-ray phase analysis, it was determined that the
change in the oxidation state of cobalt and chromium ions during the synthesis of the
Bi2Co0.5Cr0.5Nb2O9+∆ sample is associated with the peculiarities of obtaining pyrochlore by
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the solid-phase method. It has been established that before the formation of phase-pure py-
rochlore, Cr(III) ions are converted to Cr(VI) in the composition of bismuth chromate as an
intermediate product of the synthesis, and then again to Cr(III) during the decomposition of bis-
muth chromate and the formation of pyrochlore; Cobalt ions Co(III) are reduced to Co(II) as a
result of thermal dissociation of Co3O4. In the composition of pyrochlore Bi2Co0.5Cr0.5Nb2O9+∆,
synthesized at 1050 ◦С, cobalt and chromium appear predominantly in the form of Co(II) and
Cr(III) ions. The process of phase formation of pyrochlore is a series of sequential solid-phase
reactions involving precursors. A strategically important intermediate product of the synthesis
is bismuth orthoniobate α-BiNbO4 due to the fact that doping bismuth orthoniobate with atoms
of transition elements leads to the formation of the pyrochlore phase.

The NEXAFS study was carried out within the framework of the topic 122040400069-8, as
well as with the financial support of the Ministry of Science and Higher Education of Russia
under agreement No. 075-15-2021-1351.
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Конверсия Cr(III) и Co(III) в процессе синтеза кобальт-
хромсодержащего пирохлора на основе ниобата висмута
по данным NEXAFS

Ксения А. Баданина
Сыктывкарский государственный университет имени Питирима Сорокина

Сыктывкар, Российская Федерация
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Аннотация. Кубический пирохлор состава Bi2Co0.5Cr0.5Nb2O9+∆ (пр.гр. Fd-3m, а = 10.4838(8) Å)
синтезировали в несколько этапов методом твердофазной реакции из оксидных прекурсоров при
финальной температуре 1050 ◦С. По данным NEXAFS-спектроскопии исследовано электронное со-
стояние ионов кобальта и хрома в процессе синтеза. Установлено, что до формирования фазовочи-
стого пирохлора ионы Cr(III) превращаются в Сr(VI), а затем снова в Cr(III); ионы кобальта Co(III)
восстанавливаются до Сo(II). NEXAFS Cr2p-спектры керамики, синтезированной при 650 ◦С, по
основным характеристикам спектра совпадают cо спектром K2Cr2O7 и свидетельствуют о содержа-
нии хрома в оксидной керамике в виде тетраэдрических ионов CrO2−

4 , а по характеру Co2p-спектра
ионы кобальта находятся в состоянии Co(II) и Сo(III). В составе пирохлора Bi2Co0.5Cr0.5Nb2O9+∆,
синтезированного при 1050 ◦С, кобальт и хром проявляются преимущественно в виде ионов Co(II)
и Сr(III). Анализ фазовых превращений показал, что изменение степени окисления ионов переход-
ных элементов и цвета керамики связано с образованием промежуточных продуктов синтеза.

Ключевые слова: пирохлор, ниобат висмута, NEXAFS, кобальт.
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Introduction
It is well known that symmetries play a crucial role in finding solutions of differential equa-

tions. The theory of point symmetries is well described in numerous monographs and text-
books [1–3]. A large number of examples of invariant and partially invariant solutions were
presented [4,5]. One can say that theory of point transformations is well developed. Some gener-
alizations of the Lie theory have been proposed.The most successful advances include the theory
of higher symmetries of nonlinear equations and operator symmetries of linear equations [2,6–8].
However, the use of higher symmetry operators is complicated because transformations con-
structed using these operators act in infinite-dimensional spaces and they are represented by
formal series [2]. As a result, it is difficult to determine analogs of invariant solutions with
respect to such transformations.

Modified definitions of admitted operators and operator symmetries for linear systems of
partial differential equations are introduced in this paper. It is easily verified that operator sym-
metries form an associative algebra with respect to ordinary multiplication and a Lie algebra
with commutator multiplication. It is proved that some admitted operator corresponds to each
operator symmetry. It turns out that symmetries of linear equations can be transformed into
symmetries of nonlinear equations in some cases. Here, as an example, a system of two equa-
tions that describes plane, steady, irrotational gas flows is considered [9, 10]. Using hodograph
transformation, a linear system is obtained. The admitted operators of this system give rise to
an infinite series of symmetries of nonlinear gas dynamics equations.

1. Symmetries
Let us consider the matrix differential operator

L =

k∑
|α|>0

Aα(x)
∂|α|

∂xα1
1 · · · ∂xαn

n
, (1)

∗kaptsov@icm.krasn.ru
c⃝ Siberian Federal University. All rights reserved
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where α = (α1, . . . , αn), Aα are m ×m matrices depending on x = (x1, . . . , xn). The operator
defines a system of linear partial differential equations

Lu = 0, (2)

where u = (u1, . . . , um) is a set of unknown with respect to x functions.
Further, the operator of total derivative [1, 2] with respect to xi (i = 1, . . . , n) is denoted by

Dxi
. The expression Dα means the product of operators Dα1

x1
· · ·Dαn

xn
.

Definition 1. System (2) admits the operator in canonical form

X =

m∑
j=1

ηj
∂

∂uj
+

∑
16j6m
α∈Nn

Dαηj
∂

∂ujα
, (3)

if there is a matrix differential operator M such that the equality

Lη =MLu, (4)

is true, where u = (u1, . . . , um) is a set of arbitrary smooth functions of x, and η = (η1, . . . , ηm).
Relation (4) is called the defining equation.

The above definition differs from the standard one [2,3]. Obviously, condition (4) is sufficient
for the classical invariance of system (2). One can shown that it is necessary condition but it is
not needed here.

Remark. If system of partial differential equations L(u) = 0 is nonlinear system then condition
(4) must be replaced by the following condition

XL(u) =ML(u)

.
It follows from (4) that if u is a solution of system (2) then ũ = η is also solution of this

system. Thus the transformation x −→ x, u −→ η acts on solutions of system (2). Such
transformations are called L-symmetries.

Proposition 1. If η1, . . . , ηp are solutions of the defining equations

Lηk =MkLu, k = 1, . . . p, (5)

then

x −→ x, u −→
p∑

k=1

ckη
k, ck ∈ R (6)

is the L-symmetry of equation (2).

Indeed, since functions ηk satisfy (5) then the equality

L(

p∑
k=1

ckη
k) = (

p∑
k=1

ckMk)Lu.

is true due to linearity of the operators. This means that transformation (6) is L-symmetry.

Proposition 2. The set of L-symmetries of system (2) forms a monoid with the composition
operation.

– 571 –



Oleg V. Kaptsov Symmetries of Linear and Nonlinear Partial Differential Equations . . .

This immediately follows from the fact that symmetries act on solutions of the system and,
therefore, the composition of two L-symmetries of system (2) is an L-symmetry. Moreover, the
identity transformation is also a symmetry.

The second method of introducing symmetries of linear equations is described in [7,8]. Some
modified versions of definitions are provided below.

Definition 2. Let differential operator (1) be given. The differential operator S is called the
operator symmetry of equation (2) if there is a differential operator D such that

LS = DL. (7)

It is assumed that S is not a polynomial in L.

Obviously the operator symmetry S acts on solutions of equation (2), i.e., transforms solutions
into solutions.

Proposition 3. Let S1,S2 be two operator symmetries of system (2). Then

b1S1 + b2S2, S1S2, S1S2 − S2S1,

also operator symmetries for any b1, b2 ∈ R.

Proof. By condition the equalities

LS1 = D1L, LS2 = D2L.

are true. It follows that

L(b1S1 + b2S2) = b1LS1 + b2LS2 = b1D1L+ b2D2L = (b1D1 + b2D2)L,

LS1S2 = D1LS2 = D1D2L,

L(S1S2 − S2S1) = D1D2L−D2D1L = (D1D2 −D2D1)L. 2

Remark. If the commutator of operators S1,S2 is introduced according to the well-known formula
[S1,S2] = S1S2 − S2S1 then the last expression in the proof is rewritten as

L[S1,S2] = [D1,D2]L.

Corollary. The set of operator symmetries of system (2) forms an associative algebra over R with
respect to ordinary multiplication and a Lie algebra with respect to commutator multiplication.

Proposition 4. If S is an operator symmetry of equation (2), and u = (u1, . . . , um) is a set of
smooth functions then η = Su is a solution to the defining equation that generates L-symmetry.

By assumption, there exists an operator D that satisfies equality (7). Applying to u the
operators on the left and right sides of (7), equality (4) is obtained in which η = Su and M = D.

2. Symmetries of stationary gas dynamics equations
The L-symmetries introduced above can be applied to some nonlinear equations. As an

example, let us consider the well-known system of stationary equations

uy − vx = 0, (u2 − c2)ux + 2uvuy + (v2 − c2)vy = 0, (8)

that describes flat steady irrotational flows of compressible fluid [9,10]. Here u, v are components
of the velocity vector, c is the speed of sound, expressed from the Bernoulli integral

u2 + v2 + I(c2) = const.
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Writing equations (8) in terms of hodograph variables, system of linear equations [9]

xv − yu = 0, (u2 − c2)yv − 2uvxv + (v2 − c2)xu = 0, (9)

is obtained for two unknown functions x, y that depend on u, v. It is not difficult to see [9] that
both systems admit the following rotation, scaling and translation operators:

−v ∂
∂u

+ u
∂

∂v
− y

∂

∂x
+ x

∂

∂y
, x

∂

∂x
+ y

∂

∂y
,

∂

∂x
,

∂

∂y
.

The rotation operator admitted by the system (9) in canonical form has the form

(−y + vxu − uxv)
∂

∂x
+ (x+ vyu − uyv)

∂

∂y
.

Therefore, according to Proposition 1, the transformation

ũ = u , ṽ = v , x̃ = −y + vxu − uxv , ỹ = x+ vyu − uyv

acts on solutions of linear system (9) and it is an L-symmetry of this system. Using three other
symmetry operators, L-symmetry of the form

ũ = u, ṽ = v (10)
x̃ = c1(−y + vxu − uxv) + c2x+ c3, ỹ = c1(x+ vyu − uyv) + c2y + c4, (11)

is obtained, where ci are arbitrary constants.
In order to obtain symmetries of gas dynamics equations (8), it is necessary to express the

derivatives xu, xv, yu, yv in terms of the derivatives ux, uy, vx, vy. Using the hodograph transfor-
mation, it is easy to find these derivatives [9]

xu = vy/J, xv = −uy/J, yu = −vx/J, yv = ux/J,

where J =
∂(u, v)

∂(x, y)
is the Jacobian of functions u, v. Thus, the formulas of transformations (10),

(11) have the following form

ũ = u, ṽ = v (12)

x̃ = c1

(
−y + vvy + uuy

J

)
+ c2x+ c3, ỹ = c1

(
x− vvx + uux

J

)
+ c2y + c4. (13)

The last expressions determine the transformation of solutions of system (8) back into solutions
of this system.

Combination of 10), (11) and

û = ũ, v̂ = ṽ

x̂ = b1(−ỹ + ṽx̃u − ũx̃v) + b2x̃+ b3, ŷ = c1(x̃+ ṽỹu − ũỹv) + b2ỹ + b4,

gives a new second-order symmetry of system (9).
One can obtain symmetries of system (9) of arbitrary order by means of compositions. Thus,

an infinite series of symmetries of the system in the hodograph variables arises. An infinite series
of symmetries of the gas dynamics equations (8) are obtained by recalculating the corresponding
derivatives.
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Conclusion
Using the found symmetries, it is possible to construct solutions from known ones. For exam-

ple, if scale-invariant solutions [9] of system (8) are taken then new solutions can be generated
using formulas (12), (13). The first works devoted to new types of symmetries have appeared
recently [11,12]. This approach requires further development and construction of new examples.
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Симметрии линейных и нелинейных уравнений
с частными производными

Олег В. Капцов
Институт вычислительного моделирования СО РАН

Красноярск, Российская Федерация

Аннотация. Рассматриваются операторы высших и операторных симметрий линейных уравнений
с частными производными. Операторы высших симметрий образуют алгебру Ли, а операторные -
ассоциативную алгебру. Устанавливается связь между этими симметриями. Найдены новые сим-
метрии двумерных стационарных уравнений газовой динамики.

Ключевые слова: высшие симметрии, операторные симметрии, уравнения газовой динамики.
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1. Introduction and preliminaries

In 1922, S. Banach [4] introduced the notion of Banach contraction principle. It was extended
by Nadler [13] for multivalued mappings and some results related with generalization of various
directions (see [1–18]).

Very recently, in 2016 Mutlu and Gürdal [11] introduced the notion of Bipolar metric spaces,
which is one of generalizations metric spaces. Also they investigated some fixed point and coupled
fixed point results on this space, see [11,12].
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In this paper, we proved some coupled fixed point theorems for multivalued maps. Also we
provide examples, which supports our main results.

First we recall some basic definitions and results.

Definition 1.1 ( [11]). Let Γ and Θ be a two non-empty sets. Suppose that d : Γ×Θ → [0,+∞)
be a mapping satisfying the following properties :

(π0) If d(σ, τ) = 0 then σ = τ for all (σ, τ) ∈ Γ×Θ,

(π1) If σ = τ then d(σ, τ) = 0 for all (σ, τ) ∈ Γ×Θ,

(π2) If d(σ, τ) = d(τ, σ) for all σ, τ ∈ Γ ∩Θ.

(π3) If d(σ1, τ2) 6 d(σ1, τ1) + d(σ2, τ1) + d(σ2, τ2) for all σ1, τ2 ∈ Γ, τ1, τ2 ∈ Θ.

Then the mapping d is called a Bipolar-metric on the pair (Γ,Θ) and the triple (Γ,Θ, d) is called
a Bipolar-metric space.

Definition 1.2 ( [11]). Assume (Γ1,Θ1) and (Γ2,Θ2) as two pairs of sets and a function as
Ψ : Γ1 ∪ Θ1 ⇒ Γ2 ∪ Θ2 is said to be a covariant map. If Ψ(Γ1) ⊆ Γ2 and Ψ(Θ1) ⊆ Θ2, and
denote this with Ψ : (Γ1,Θ1) ⇒ (Γ2,Θ2). And the mapping Ψ : Γ1 ∪Θ1 ⇒ Γ2 ∪Θ2 is said to be
a contravariant map. If Ψ(Γ1) ⊆ Θ2 and Ψ(Θ1) ⊆ Γ2, and write Ψ : (Γ1,Θ1) � (Γ2,Θ2). In
particular, if d1 and d2 are bipolar metric on (Γ1,Θ1) and (Γ2,Θ2), respectively, we some time
use the notation Ψ : (Γ1,Θ1, d1) ⇒ (Γ2,Θ2, d2) and Ψ : (Γ1,Θ1, d1) � (Γ2,Θ2, d2).

Definition 1.3 ([11]). Assume (Γ,Θ, d) be a bipolar metric space. A point ξ ∈ Γ∪Θ is termed as
a left point if ξ ∈ Γ, a right point if ξ ∈ Θ and a central point if both. Similarly, a sequence {σn}
on the set Γ and a sequence {τn} on the set Θ are called a left and right sequence respectively.
In a bipolar metric space, sequence is the simple term for a left or right sequence. A sequence
{ξn} as considered convergent to a point ξ, if and only if {ξn} is a left sequence, ξ is a right
point and lim

n→+∞
d(ξn, ξ) = 0; or {ξn} is a right sequence, ξ is a left point and lim

n→+∞
d(ξ, ξn) = 0.

A bisequence ({σn}, {τn}) on (Γ,Θ, d) is sequence on the set Γ × Θ. If the sequence {σn} and
{τn} are convergent, then the bisequence ({σn}, {τn}) is said to be convergent. ({σn}, {τn}) is
Cauchy sequence, if lim

n,m→+∞
d(σn, τm) = 0. In a bipolar metric space, every convergent Cauchy

bisequence is biconvergent. A bipolar metric space is called complete, if every Cauchy bisequence
is convergent, hence biconvergent.

2. Methods / Experimental Section

2.1. Coupled Fixed Point Theorems via ∆-symmetric covariant mapping

Definition 2.1. Let Ψ : (Γ×Θ)∪ (Θ× Γ) → CL(Γ∪Θ) be a given covariant mapping. We say
that Ψ is a ∆-symmetric covariant mapping if and only if (σ, τ) ∈ ∆ implies Ψ(σ, τ)ℜΨ(τ, σ)

Definition 2.2. Let (Γ,Θ, d) be a bipolar metric spaces, σ ∈ Γ, τ ∈ Θ and
Ψ : (Γ×Θ,Θ×Γ) ⇒ CL(Γ,Θ) be a covariant mapping. An element (σ, τ) is said to be a coupled
fixed point of Ψ : (Γ×Θ) ∪ (Θ× Γ) → CL(Γ ∪Θ) if σ ∈ Ψ(σ, τ) and τ ∈ Ψ(τ, σ).

Theorem 2.3. Let (Γ,Θ, d) be an complete bipolar metric space endowed with a partial order ≼.
Suppose that ∆ is non empty, that is there exists (σ, ρ) ∈ ∆. Let F : (Γ×Θ,Θ×Γ) ⇒ CL(Γ,Θ)
be a ∆-symmetric covariant mapping and consider that f : Γ×Θ → [0,+∞) as

f(σ, ρ) = D(σ, F (ϱ, τ)) +D(F (τ, ϱ), ρ) for all σ, τ ∈ Γ and ρ, ϱ ∈ Θ (2.1)
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is lower semi-continuous and there exists a mapping ψ : [0,+∞) → (0, 1) satisfying

lim
r→t+

supψ(r) < 1 for each t ∈ [0,+∞). (2.2)

Assume that for any (σ, ρ) ∈ ∆ there exist x ∈ F (σ, ρ) and y ∈ F (ρ, σ) satisfying√
ψ(f(σ, ρ))[d(σ, y) + d(x, ρ)] 6 f(σ, ρ) (2.3)

such that
f(x, y) 6 ψ(f(σ, ρ))[d(σ, y) + d(x, ρ)]. (2.4)

Then F : (Γ × Θ) ∪ (Θ × Γ) → CL(Γ ∪ Θ) has a coupled fixed point. That is there exists
(α, β) ∈ (Γ×Θ) ∪ (Θ× Γ) such that α ∈ F (α, β) and β ∈ F (β, α).

Proof. Since by the definitions of ψ we have ψ(f(σ, ρ)) < 1 and ψ(f(τ, ϱ)) < 1 for each σ, τ ∈ Γ,
ρ, ϱ ∈ Θ, it follows that for any (σ, ρ), (τ, ϱ) ∈ Γ × Θ, there exist u ∈ F (σ, ρ), v ∈ F (ρ, σ),
l ∈ F (τ, ϱ) and m ∈ F (ϱ, τ) such that√

ψ(f(σ, ρ))d(σ,m) 6 D(σ, F (ϱ, τ)) and
√
ψ(f(τ, ϱ))d(τ, v) 6 D(τ, F (ρ, σ))√

ψ(f(σ, ρ))d(l, ρ) 6 D(F (τ, ϱ), ρ) and
√
ψ(f(τ, ϱ))d(u, ϱ) 6 D(F (σ, ρ), ϱ).

Therefore, for each (σ, ρ), (τ, ϱ) ∈ Γ×Θ, there exist u ∈ F (σ, ρ), v ∈ F (ρ, σ),

l ∈ F (τ, ϱ) and m ∈ F (ϱ, τ) satisfying (2.3).
Let (σ0, ρ0), (τ0, ϱ0) ∈ ∆ be an arbitrary and fixed. By our assumptions (2.3) and (2.4), choose
σ1 ∈ F (σ0, ρ0), ρ1 ∈ F (ρ0, σ0) and τ1 ∈ F (τ0, ϱ0), ϱ1 ∈ F (ϱ0, τ0) such that√

ψ(f(σ0, ρ0))(d(σ0, ϱ1) + d(τ1, ρ0)) 6 f(σ0, ρ0) (2.5)√
ψ(f(τ0, ϱ0))(d(τ0, ρ1) + d(σ1, ϱ0)) 6 f(τ0, ϱ0) (2.6)

and
f(σ1, ρ1) 6 ψ(f(σ0, ρ0))(d(σ0, ϱ1) + d(τ1, ρ0)) (2.7)

f(τ1, ϱ1) 6 ψ(f(τ0, ϱ0))(d(τ0, ρ1) + d(σ1, ϱ0)). (2.8)

From (2.5) and (2.7) we obtain that

f(σ1, ρ1) 6 ψ(f(σ0, ρ0))(d(σ0, ϱ1) + d(τ1, ρ0)) 6
6

√
ψ(f(σ0, ρ0))

√
ψ(f(σ0, ρ0))(d(σ0, ϱ1) + d(τ1, ρ0)) 6

6
√
ψ(f(σ0, ρ0))f(σ0, ρ0). (2.9)

From (2.6) and (2.8) we obtain that

f(τ1, ϱ1) 6 ψ(f(τ0, ϱ0))(d(τ0, ρ1) + d(σ1, ϱ0)) 6
6

√
ψ(f(τ0, ϱ0))

√
ψ(f(τ0, ϱ0))(d(τ0, ρ1) + d(σ1, ϱ0)) 6

6
√
ψ(f(b0, q0))f(b0, q0). (2.10)

Since F is a ∆-symmetric covariant mapping and (σ0, ρ0), (τ0, ϱ0) ∈ ∆, we have
F (σ0, ρ0)ℜF (ρ0, σ0) ⇒ (σ1, ρ1) ∈ ∆ and F (τ0, ϱ0)ℜF (ϱ0, τ0) ⇒ (τ1, ϱ1) ∈ ∆.
By our assumptions (2.3) and (2.4), choose σ2 ∈ F (σ1, ρ1), ρ2 ∈ F (ρ1, σ1) and τ2 ∈ F (τ1, ϱ1),
ϱ2 ∈ F (ϱ1, τ1) such that√

ψ(f(σ1, ρ1))(d(σ1, ϱ2) + d(τ2, ρ1)) 6 f(σ1, ρ1) (2.11)
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√
ψ(f(τ1, ϱ1))(d(τ1, ρ2) + d(σ2, ϱ1)) 6 f(τ1, ϱ1) (2.12)

and
f(σ2, ρ2) 6 ψ(f(σ1, ρ1))(d(σ1, ϱ2) + d(τ2, ρ1)) (2.13)

f(τ2, ϱ2) 6 ψ(f(τ1, ϱ1))(d(τ1, ρ2) + d(σ2, ϱ1)). (2.14)

From (2.11) and (2.13) we obtain that

f(σ2, ρ2) 6 ψ(f(σ1, ρ1))(d(σ1, ϱ2) + d(τ2, ρ1)) 6
6

√
ψ(f(σ1, ϱ1))

√
ψ(f(σ1, ϱ1))(d(σ1, ϱ2) + d(τ2, ρ1)) 6

6
√
ψ(f(σ1, ρ1))f(σ1, ρ1). (2.15)

From (2.12) and (2.14) we obtain that

f(τ2, ϱ2) 6 ψ(f(τ1, ϱ1))(d(τ1, ρ2) + d(σ2, ϱ1)) 6
6

√
ψ(f(τ1, ϱ1))

√
ψ(f(τ1, ϱ1))(d(τ1, ρ2) + d(σ2, ϱ1)) 6

6
√
ψ(f(τ1, ϱ1))f(τ1, ϱ1) (2.16)

with (σ2, ρ2), (τ2, ϱ2) ∈ ∆. Continue in this way, we get bisequence (σn, ρn), (τn, ϱn) with
(σn, ρn), (τn, ϱn)∈∆, σn+1∈F (σn, ρn), ρn+1∈F (ρn, σn) and τn+1∈F (τn, ϱn), ϱn+1∈F (ϱn, τn)
such that for all n ∈ N , we have√

ψ(f(σn, ρn))(d(σn, ϱn+1) + d(τn+1, ρn)) 6 f(σn, ρn) (2.17)√
ψ(f(τn, ϱn))(d(τn, ρn+1) + d(σn+1, ϱn)) 6 f(τn, ϱn) (2.18)

and
f(σn+1, ρn+1) 6 ψ(f(σn, ρn))(d(σn, ϱn+1) + d(τn+1, ρn)) (2.19)

f(τn+1, ϱn+1) 6 ψ(f(τn, ϱn))(d(τn, ρn+1) + d(σn+1, ϱn)). (2.20)

From (2.17) and (2.19) we obtain that

f(σn+1, ρn+1) 6 ψ(f(σn, ρn))(d(σn, ϱn+1) + d(τn+1, ρn)) 6

6
√
ψ(f(σn, ρn))

√
ψ(f(σn, ρn))(d(σn, ϱn+1) + d(τn+1, ρn)) 6

6
√
ψ(f(σn, ρn))f(σn, ρn). (2.21)

From (2.18) and (2.20) we obtain

f(τn+1, ϱn+1) 6 ψ(f(τn, ϱn))(d(τn, ρn+1) + d(σn+1, ϱn)) 6

6
√
ψ(f(τn, ϱn))

√
ψ(f(τn, ϱn))(d(τn, ρn+1) + d(σn+1, ϱn)) 6

6
√
ψ(f(τn, ϱn))f(τn, ϱn). (2.22)

Therefore, we get

f(σn+1, ρn+1) + f(τn+1, ϱn+1) 6
√
ψ(f(σn, ρn))f(σn, ρn) +

√
ψ(f(τn, ϱn))f(τn, ϱn). (2.23)

On the other hand

f(σn+1, ρn) +f(τn+1, ϱn) 6
√
ψ(f(σn, ρn−1))f(σn, ρn−1) +

√
ψ(f(τn, ϱn−1))f(τn, ϱn−1) (2.24)
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and

f(σn, ρn+1) +f(τn, ϱn+1) 6
√
ψ(f(σn−1, ρn))f(σn−1, ρn) +

√
ψ(f(τn−1, ϱn))f(τn−1, ϱn). (2.25)

Now we prove f(σn, ρn) + f(τn, ϱn) → 0 as n→ +∞. Suppose that
f(σn, ρn) + f(τn, ϱn) > 0 for all n ∈ N , since if f(σn, ρn) + f(τn, ϱn) = 0 for some n ∈ N . Then
we obtain
(D(σn, F (ϱn, τn)) +D(F (τn, ϱn), ρn) + (D(τn, F (ρn, σn)) +D(F (σn, ρn), ϱn)) = 0

D(σn, F (ϱn, τn)) = 0 implies that σn ∈ F (ϱn, τn) = F (ϱn, τn)

D(F (τn, ϱn), ρn) = 0 implies that ρn ∈ F (τn, ϱn) = F (τn, ϱn)

D(τn, F (ρn, σn)) = 0 implies that τn ∈ F (ρn, σn) = F (ρn, σn)

D(F (σn, ρn), ϱn) = 0 implies that ϱn ∈ F (σn, ρn) = F (σn, ρn)

also, we have

0 6 infϱn∈F (σn,ρn) d(σn, ϱn) =

= D(σn, F (σn, ρn)) 6
6 D(σn, F (ϱn, τn)) +D(ρn, F (ϱn, τn)) +D(ρn, F (σn, ρn)) 6
6 f(σn, ρn) + infρn∈F (τn,ϱn) d(ρn, ρn) 6
6 lim

n→+∞
f(σn, ρn) = 0.

Therefore, σn = ϱn and similarly, we shows that τn = ρn. Then
(σn, ρn) ∈ (Γ×Θ) ∩ (Θ× Γ) is coupled fixed point of F . Hence theorem is proved. �

Using (2.23)–(2.25) and ψ(t) < 1, we conclude that {f(σn, ρn)} and {f(τn, ϱn)} are strictly
decreasing bisequence of non-negative real numbers. Thus there exist δ > 0 and λ > 0 such that
lim

n→+∞
f(σn, ρn) = δ and lim

n→+∞
f(τn, ϱn) = λ.

Now we will prove δ = λ = 0. Suppose that δ > 0 and λ > 0. Letting n→ +∞ in (2.23)–(2.25),
we obtain

δ + λ 6 lim
f(σn+1,ρn+1)→δ+

sup
√
ψ(f(σn+1, ρn+1)δ + lim

f(τn+1,ϱn+1)→λ+
sup

√
ψ(f(τn+1, ϱn+1)λ <

< δ + λ

and

δ + λ 6 lim
f(σn+1,ρn)→δ+

sup
√
ψ(f(σn+1, ρn)δ + lim

f(τn+1,ϱn)→λ+
sup

√
ψ(f(τn+1, ϱn)λ <

< δ + λ

also

δ + λ 6 lim
f(σn,ρn+1)→δ+

sup
√
ψ(f(σn, ρn+1)δ + lim

f(τn,ϱn+1)→λ+
sup

√
ψ(f(τn, ϱn+1)λ <

< δ + λ.

In any case which is contradiction. Hence δ = λ = 0, that is
lim

n→+∞
f(σn, ρn) = lim

n→+∞
f(τn, ϱn) = 0.

Now we shows that (σn, ρn) and (τn, ϱn) are Cauchy bisequences in (Γ,Θ, d).
Suppose that
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δ = lim
f(σn+1,ρn+1)→0+

sup
√
ψ(f(σn+1, ρn+1)

and λ = lim
f(τn+1,ϱn+1)→0+

sup
√
ψ(f(τn+1, ϱn+1). Then by our assumption (2.2), we have δ < 1,

λ < 1. Let ξ and ζ be such that δ < ξ < 1 and λ < ζ < 1 then there is some n0 ∈ N such that√
ψ(f(σn+1, ρn+1) < ξ,

√
ψ(f(τn+1, ϱn+1) < ζ, for each n > n0. Thus, from (2.23), we obtain

f(σn+1, ρn+1) + f(τn+1, ϱn+1) 6 ξf(σn, ρn) + ζf(τn, ϱn) 6
6 ξ2f(σn−1, ρn−1) + ζ2f(τn−1, ϱn−1) 6
...

6 ξn+1−n0f(σn0
, ρn0

) + ζn+1−n0f(τn0
, ϱn0

).

(2.26)

Since ψ(t) > b > 0 for all t > 0, from (2.17), (2.18) and (2.26), we get

(d(σn, ϱn+1) + d(τn+1, ρn)) + (d(τn, ρn+1) + d(σn+1, ϱn)) 6

6 1√
b
(ξn−n0f(σn0

, ρn0
) + ζn−n0f(τn0

, ϱn0
)).

(2.27)

On the other hands from (2.24) and (2.25)

f(σn+1, ρn) + f(τn+1, ϱn) 6 ξf(σn, ρn−1) + ζf(τn, ϱn−1) 6
6 ξ2f(σn−1, ρn−2) + ζ2f(τn−1, ϱn−2)
...
6 ξn+1f(σ1, ρ0) + ζn+1f(τ1, ϱ0)

(2.28)

and

(d(σn, ϱn) + d(τn+1, ρn−1)) + (d(τn, ρn) + d(σn+1, ϱn−1)) 6

6 1√
b
(ξn−n0f(σn1

, ρn0
) + ζn−n0f(τn1

, ϱn0
))

(2.29)

also

f(σn, ρn+1) + f(τn, ϱn+1) 6 ξf(σn−1, ρn) + ζf(τn−1, ϱn) 6

6 ξ2f(σn−2, ρn−1) + ζ2f(τn−2, ϱn−1)

...

6 ξn+1f(σ0, ρ1) + ζn+1f(τ0, ϱ1)

(2.30)

and

(d(σn−1, ϱn+1) + d(τn, ρn)) + (d(τn−1, ρn+1) + d(σn, ϱn)) 6

6 1√
b
(ξn−n0f(σn0

, ρn1
) + ζn−n0f(τn0

, ϱn1
)).

(2.31)

For each n,m ∈ N with n < m, we have (27), (29) and (31)
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d(σn, ϱm) + d(τm, ρn) + d(σm, ϱn) + d(τn, ρm) 6
6 (d(σn, ϱn+1) + d(τn+1, ρn)) + d(σn+1, ϱn) + d(τn, ρn+1))+

+2(d(σn+1, ϱn+1) + d(τn+1, ρn+1)) + · · ·+ 2(d(σm−1, ϱm−1) + d(τm−1, ρm−1))+

+(d(σm−1, ϱm) + d(τm, ρm−1)) + (d(σm, ϱm−1) + d(τm−1, ρm)) 6
6 1√

b
(ξn−n0f(σn0

, ρn0
) + ζn−n0f(τn0

, ϱn0
)) +

2√
b
(ξn+1−n0f(σn1

, ρn0
)+

+ζn+1−n0f(τn1
, ϱn0

)) + · · ·+ 2√
b
(ξm+1−n0f(σn1

, ρn0
)+

+ζm+1−n0f(τn1 , ϱn0)) +
1√
b
(ξm−n0f(σn0 , ρn1) + ζn−n0f(τn0 , ϱn1)).

→ 0 as n,m→ +∞.

Hence, (σn, ρn) and (τn, ϱn) are Cauchy bi-sequences in (Γ,Θ, d). Since (Γ,Θ, d) is complete,
there exist α, β ∈ Γ and γ, η ∈ Θ such that

lim
n→+∞

σn = η, lim
n→+∞

τn = γ, lim
n→+∞

ρn = β, lim
n→+∞

ϱn = α. (2.32)

By our assumption f is lower semi continuous. Then we have

0 6 f(α, γ) = D(α, F (η, β)) +D(F (β, η), γ) 6 lim
n→+∞

inf f(τn, ϱn) = 0.

Hence D(α, F (η, β)) = 0 and D(F (β, η), γ) = 0 which implies that α ∈ F (η, β) and γ ∈ F (β, η).
And similarly we can prove that β ∈ F (γ, α) and η ∈ F (α, γ).
Again from (2.32), we get

d(α, η) = d( lim
n→+∞

ϱn, lim
n→+∞

σn) = lim
n→+∞

d(σn, ϱn) = 0

and
d(β, γ) = d( lim

n→+∞
ρn, lim

n→+∞
τn) = lim

n→+∞
d(τn, ρn) = 0.

Therefore, α = η and β = γ. Then α ∈ F (α, β) and β ∈ F (β, α), that is
(α, β) ∈ (Γ × Θ) ∩ (Θ × Γ) is a coupled fixed point of F . Now we prove the uniqueness, let
(α∗, β∗) ∈ (Γ×Θ)∪ (Θ×Γ) be another coupled fixed point of F . If (α∗, β∗) ∈ (Γ×Θ), then we
obtain

0 6 f(α∗, β∗) = D(α∗, F (α, β)) +D(F (β, α), β∗) 6 lim
n→+∞

inf f(σn, ρn) = 0.

Therefore, D(α∗, F (α, β)) = 0 and D(F (β, α), β∗) = 0 implies α∗ ∈ F (α, β) and β∗ ∈ F (β, α).
So, we get α = α∗ and β = β∗.
Similarly, if (α∗, β∗) ∈ (Θ× Γ), we have α = α∗ and β = β∗.
Then (α, β) is a unique coupled fixed point of F .

Example 2.4. Let Γ = {Um(R)/Um(R) is upper triangular matrices overR} and
Θ = {Lm(R)/Lm(R) is lower triangular matrices over R} with the bipolar metric

d (Φ,Ω) =

m∑
i,j=1

|ϕij − ωij |

for all Φ = (ϕij)m×m ∈ Um(R) and Ω = (ωij)m×m ∈ Lm(R). On the set (Γ,Θ), we consider the
following relation :

Φ,Ω ∈ Γ ∪Θ,Φ ≼ Ω ⇔ ϕij 6 ωij

– 581 –



G. N. V. Kishore . . . Multivalued ∆-symmetric Covariant Results in Bipolar . . .

where 6 is usual ordering. Then clearly, (Γ,Θ, d) is a complete bipolar metric space and
(Γ,Θ,≼) is a partially ordered set. And (Γ,Θ) has the property as in Theorem (2.3). Let
F : (Γ×Θ,Θ× Γ) ⇒ CL(Γ,Θ) be defined as

F (Φ,Ω) = (ϕij)m×mIm×m ∀ (Φ = (ϕij)m×m, Ω = (ωij)m×m) ∈ (Γ×Θ) ∪ (Θ× Γ).

Then

f(Φ,Ω) = D(Φ, F (Ω,Φ)) +D(F (Φ,Ω),Ω) =

= inf {d(Φ, Y ) : Y ∈ (ωij)m×mIm×m}+ inf {d(X,Ω) : X ∈ (ϕij)m×mIm×m} =

= d(Φ,Ω) + d(Φ,Ω) = 2d(Φ,Ω) = 2

m∑
i,j=1

|ϕij − ωij |.

Also, let ψ : [0,+∞) → (0, 1) by ψ(t) =
t

1 + t
then obviously, lim

r→t+
supψ(r) < 1 for each t ∈

[0,+∞) with out loss of generality we may assume that

O = (oij)m×m = Y = (yij)m×m ≼ Φ = (ϕij)m×m

and
O = (oij)m×m = X = (xij)m×m ≼ Ω = (ωij)m×m.

It is obviously, √
ψ(f(Φ,Ω))[d(Φ, Y ) + d(X,Ω)] 6 f(Φ,Ω)

such that
f(X,Y ) 6 ψ(f(Φ,Ω))[d(Φ, Y ) + d(X,Ω)].

Hence all assertions of Theorem (2.3) are satisfied and (Om×m, Om×m) is the coupled fixed point
of F .

Theorem 2.5. Let (Γ,Θ, d) be an complete bipolar metric space endowed with a partial order ≼.
Suppose that ∆ is non empty, that is there exists (σ, ρ) ∈ ∆. Let F : (Γ×Θ,Θ×Γ) ⇒ CL(Γ,Θ)
be a ∆- symmetric covariant mapping and consider that f : Γ×Θ → [0,+∞) as

f(σ, ρ) = D(σ, F (ϱ, τ)) +D(F (τ, ϱ), ρ) for all σ, τ ∈ Γ and ρ, ϱ ∈ Θ (2.33)

is lower semi-continuous and there exists a mapping ψ : [0,+∞) → (0, 1) satisfying

lim
r→t+

supψ(r) < 1 for each t ∈ [0,+∞). (2.34)

Assume that for any (σ, ρ) ∈ ∆ there exist x ∈ F (σ, ρ) and y ∈ F (ρ, σ) satisfying√
ψ(d(σ, y) + d(x, ρ))[d(σ, y) + d(x, ρ)] 6 D(σ, F (ϱ, τ)) +D(F (τ, ϱ), ρ) (2.35)

such that
D(x, F (v, u)) +D(F (u, v), y) 6 ψ(d(σ, y) + d(x, ρ))[d(σ, y) + d(x, ρ)] (2.36)

for some v ∈ F (ϱ, τ) and u ∈ F (τ, ϱ). Then F : (Γ×Θ) ∪ (Θ× Γ) → CL(Γ ∪Θ) has a coupled
fixed point. That is there exists (α, β) ∈ (Γ×Θ)∪(Θ×Γ) such that α ∈ F (α, β) and β ∈ F (β, α).

Example 2.6. Let Γ = {Um(R)/Um(R) is upper triangular matrices over R} and Θ =
{Lm(R)/Lm(R) is lower triangular matrices over R} with the bipolar metric

d (Φ,Ω) =

m∑
i,j=1

|ϕij − ωij |
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for all Φ = (ϕij)m×m ∈ Um(R) and Ω = (ωij)m×m ∈ Lm(R). On the set (Γ,Θ), we consider the
following relation :

Φ,Ω ∈ Γ ∪Θ, Φ ≼ Ω ⇔ ϕij 6 ωij

where 6 is usual ordering. Then clearly, (Γ,Θ, d) is a complete bipolar metric space and (Γ,Θ,≼)
is a partially ordered set. Let F : (Γ×Θ,Θ× Γ) ⇒ CL(Γ,Θ) be defined as

F (Φ,Ω) =
(ϕij)m×m

3
∀ (Φ = (ϕij)m×m, Ω = (ωij)m×m) ∈ (Γ×Θ) ∪ (Θ× Γ)

define ψ : [0,+∞) → (0, 1) by ψ(t) =
1

5
. First we shall prove that F (Φ,Ω) satisfies all the con-

ditions of Theorem (2.5). In fact it is easy to see that the mapping f(Φ,Ω) =
4

15

m∑
i,j=1

|ϕij − ωij |

is lower semi continuous. Thus for all

(Φ,Ω) ∈ (Γ×Θ) ∪ (Θ× Γ), there exist X ∈ F (Φ,Ω) =
(ϕij)m×m

3
and

Y ∈ F (Ω,Φ) =
(ωij)m×m

3
such that

D(Φ, F (Ω,Φ)) +D(F (Φ,Ω), Q) =
4

15

 m∑
i,j=1

|ϕij − ωij |

 =

=
1

5

 m∑
i,j=1

|4
3
ϕij −

4

3
ωij |

 =

=
1

5

 m∑
i,j=1

|(ϕij −
1

3
ωij) + (

1

3
ϕij − ωij)|

 6

6 1

5

 m∑
i,j=1

|ϕij −
1

3
ωij |+

m∑
i,j=1

|1
3
ϕij − ωij |

 6

6 ψ(d(Φ, Y ) + d(X,Ω))[d(Φ, Y ) + d(X,Ω)].

It is obviously,√
ψ(d(Φ, Y ) + d(X,Ω))[d(Φ, Y ) + d(X,Ω)] 6 D(Φ, F (Ω,Φ)) +D(F (Φ,Ω),Ω)

such that

D(X,F (Y,X)) +D(F (X,Y ), Y ) 6 ψ(d(Φ, Y ) + d(X,Ω))[d(Φ, Y ) + d(X,Ω)].

Hence all assertions of Theorem (2.5) are satisfied and (Om×m, Om×m) is the coupled fixed point
of F .
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Аннотация. В этой статье мы докаываем некоторые теоремы о парных фиксированных точках
для гибридных пар в отображениях, использующих ∆-симметрические ковариантные отображения
в биполярных метрических пространствах. Мы также даем некоторые примеры, которые основаны
на наших результатах.

Ключевые слова: ∆-симметричное ковариантное отображение, гибридная пара отображений,
связанная неподвижная точка, биполярные метрические пространства.
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Abstract. The problem of bending of a thin orthotropic rectangular plate clamped at the edges is
considered in the paper. The solution is obtained using the Legendre and Chebyshev polynomials of the
first kind. The function that approximates the solution of the biharmonic equation for an orthotropic
plate is presented in the form of a double series expansion in these polynomials. Matrix transformations
and properties of the Legendre and Chebyshev polynomials are also used. Roots of these polynomials
are used as collocation points, and boundary value problem is reduced to a system of linear algebraic
equations with respect to coefficients of the expansion. The problem of bending of a plate caused by the
action of a distributed transverse load of constant intensity that corresponds to hydrostatic pressure is
considered. This boundary value problem has analytical solution. The results of calculations for various
ratios of the lengths of sides of the plate are presented. The values of deviation of solutions constructed
using Legendre and Chebyshev polynomials from the analytical solution of the problem are presented in
terms of the infinite norm and the finite norm in the space of square-integrable functions.

Keywords: bending a thin orthotropic plate, collocation method, Chebyshev polynomials of the first
kind, Legendre polynomials.
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Study of bending of a thin rectangular plate is essential in modeling thin-walled spatial struc-
tures. Structures made of orthotropic materials unlike structures made of isotropic materials have
high load-bearing capacity. Then one can reduce their weight with an increase in their strength.
In this regard, the development of methods for modelling of such plates under the action of vari-
ous types of loads is one of the main tasks of mechanics of thin-walled structures. Solution of the
problem of bending the median plane of a square orthotropic plate pinched on all sides is con-
structed [1]. The method of initial functions using an exponential series with unknown coefficients
was employed. Distributions of bending moments and shearing forces were found. The results of
calculation of bending of a rectangular plate based on integral transformations under the action
of constant intensity load, hydrostatic pressure and point load concentrated in the center of the
plate were presented [2], [3]. Bending of the orthotropic plate under various boundary conditions
was studied [4]. Numerical solution of the problem of bending of a rectangular plate consisting
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of orthotropic layers arbitrarily oriented in the plane of the plate which are rigidly fixed to each
other was obtained by the method of collocation and least residuals [5]. Equilibrium models of
plates with rigid inclusions were considered [6]. A dynamic stiffness matrix was constructed for
plane vibrations of a free orthotropic plate [7]. The results of analysis of frequencies of these
vibrations were presented [8]. Deflections of a structural element representing a plate with a
contour attachment the points of which are located on a rigid base when an acceleration pulse
is transmitted in the direction perpendicular to the plane of the plate were calculated [9]. Study
was conducted on bending of rectangular orthotropic thin plates with rotationally fixed edges
under the action of arbitrary transverse loads [10]. The procedure for obtaining the stress distri-
bution over the plate thickness for a strongly orthotropic material for three approximate models
was described [11]. The first approximate model is the classical Kirchhoff-Love theory. The
second model allows one to find transverse shear deformations and stresses. The third approxi-
mation is the Ambartsumian theory. It allows one to find transverse shear and normal stresses.
In the presented work, to construct a solution of the problem of bending of a thin rectangular
orthotropic plate with pinched edges systems of Legendre and Chebyshev polynomials of the
first kind orthogonal on the segment [−1, 1] are used. They play an important role both in the
general theory of special functions and in the theory of orthogonal polynomials. Function that
approximates the solution of the biharmonic equation for an orthotropic plate is represented as a
double series expansion over these polynomials in combination with matrix transformations. In
this case, the boundary value problem is written in dimensionless form. To find the coefficients
in this decomposition approach proposed in [12] is used. It is based on the properties of Leg-
endre and Chebyshev polynomials. The problem of bending of the plate due to the action of a
distributed transverse load of constant intensity that corresponds to hydrostatic pressure is con-
sidered. This problem has analytical solution. The results of numerical solution of the problem
are presented. Following [13], the obtained values of deviation of the constructed solutions using
Legendre and Chebyshev polynomials from the analytical solution of the problem are given in
terms of the infinite norm [14] and the finite norm in the space of functions integrable with the
square [14,15]. To discretize the integral norm the decomposition of the integrand function into
the Chebyshev series is used. Coefficients of this decomposition can be found using values of
this function calculated in the roots of Chebyshev polynomials. The importance of sampling by
function values at points is emphasized in [16]. Verification of the obtained values of the integral
norm was carried out using algorithm from [17] in the Maple computer algebra system.

1. Derivation of basic equations

Let us consider a thin orthotropic rectangular plate (06x6 d1, 06 y6 d2, −h/26 z6h/2)
which is under the action of a transverse load of intensity q(x, y). Let us take the median
plane of the undeformed plate for the xy plane, and z axis is directed towards the unloaded
outer plane. Volumetric forces are neglected. In this case, the partial differential equation to
determine bending of the plate has the form [18]:

Dx
∂4ω

∂x4
+ 2H

∂4ω

∂x2∂y2
+Dy

∂4ω

∂y4
= q, (1)

where ω(x, y) is the bending of the median surface of the plate, Dx = E′
xh

3/12, Dy = E′
yh

3/12,
H = D1 + 2Dxy, D1 = E”h3/12, Dxy = Gh3/12, G is the shear modulus, h is the thickness of
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the plate. Bending stiffnesses Dx and Dy are [19]

Dx =
Exh

3

12(1− ν1ν2)
, Dy =

Eyh
3

12(1− ν1ν2)
, D1 = ν1Dy = ν2Dx, (2)

where Ex and Ey are Young’s modules for the main directions of elasticity, ν1, ν2 are Poisson’s
coefficients.

For a plate clamped along the contour, i.e., for x = 0, d1 and y = 0, d2, boundary conditions
have the form [18]

ω = 0,
∂ω

∂x
= 0, x = 0, d1, (3)

ω = 0,
∂ω

∂y
= 0, y = 0, d2. (4)

Let us rewrite equation (1) and boundary conditions (3) and (4) in new dimensionless variables
x∗ = x/d1 and y∗ = y/d1:

∂4ω∗

∂x∗4
+

2H

Dx

∂4ω∗

∂x∗2∂y∗2
+
Dy

Dx

∂4ω∗

∂y∗4
= q∗, (5)

ω∗ = 0,
∂ω∗

∂x∗
= 0, x∗ = 0, 1, (6)

ω∗ = 0,
∂ω∗

∂y∗
= 0, y∗ = 0, d∗2; d∗2 =

d2
d1
, (7)

where q = q0q
∗, ω =

ω∗q0d
4
1

Dx
, q0 is the intensity of some constant load.

Let us construct a solution of boundary value problem (5)–(7) by the collocation method
using Chebyshev polynomials of the first kind and the roots of these polynomials as collocation
points.

2. Construction of a solution of boundary value problem
using Chebyshev polynomials of the first kind

Let us present function ω∗ as a double Chebyshev series. For this purpose, let x1 = 2x∗ − 1,
x2 = 2y∗/d∗2−1, where x1, x2 ∈ [−1, 1] since Chebyshev polynomials of the first kind are defined
on the segment [−1, 1]. In this case, problem (5)–(7) has the following form in variables x1 and
x2

κ1
∂4ω∗

∂x41
+ κ2

∂4ω∗

∂x21∂x
2
2

+ κ3
∂4ω∗

∂x42
= q∗, (8)

ω∗ = 0, κ4
∂ω∗

∂x1
= 0, x1 = −1, 1, (9)

ω∗ = 0, κ5
∂ω∗

∂x2
= 0, x2 = −1, 1, (10)

where κ1 = 16, κ2 =
32H

Dxd∗22
, κ3 =

16Dy

Dxd∗42
, κ4 = 2, κ5 =

2

d∗2
.
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Limiting the expansion of ω∗ to the terms of the series with numbers ki 6 ni for xi (i = 1, 2),
one can write

ω∗(x1, x2) =

ni∑
ki=0
i=1,2

ak1k2Tk1(x1)Tk2(x2) = T1(x1)⊗T2(x2)A, (11)

where Ti(xi) = (T0(xi)T1(xi) . . . Tni−1(xi)Tni(xi)) is a matrix of size 1×n′i (n′i = ni+1, i = 1, 2),
the elements of which are Chebyshev polynomials of the first kind Tji(xi) = cos(ji arccosxi)

(ji = 0, ni, i = 1, 2) [20], A is the matrix with size n′1n
′
2 × 1 with elements ak1k2

: A =

(a00 a01 . . . an1n2−1 an1n2
)
T . The sign ⊗ in (11) is used to denote the Kronecker tensor product

of two matrices [21]. The elements of the matrix are found by collocation. Let us choose the
roots of polynomials Tn1+1 and Tn2+1 as collocation points in (8) for x1 и x2:

xi,ki
= cos

(
π(2ni − 2ki + 1)

2(ni + 1)

)
, ki = 0, ni, i = 1, 2. (12)

Then
Tji(xi,ki

) = cos

(
πji(2ni − 2ki + 1)

2(ni + 1)

)
, ji, ki = 0, ni, i = 1, 2. (13)

Moreover, if ni is odd then xi,mi
= −xi,ni−mi

and Tji(xi,mi
) = (−1)jiTji(xi,ni−mi

),
(mi = 0, (ni − 1)/2; ji = 0, ni; i = 1, 2). If ni is even then xi,ni/2 = 0, xi,mi = −xi,ni−mi

and Tji(xi,mi
) = (−1)jiTji(xi,ni−mi

), (mi = 0, ni/2− 1; ji = 0, ni; i = 1, 2). The value of Tji(0)
is found using the following representation [20]

Tji(xi) =

[ji/2]∑
k=0

ςkx
ji−2k
i , ςk =

(−1)k2ji−2k−1ji(ji − k − 1)!

(ji − 2k)!k!
,

where [ji/2] is the integer part of the number ji/2. If ji is even then Tji(0) = ςji/2 = (−1)ji/2,
otherwise Tji(0) = 0 (i = 1, 2).

The derivative of Ti(xi) with respect to xi is represented as a product of TiJi as follows [22]

dTji
dxi

= ji

ji−1∑
ki=0

ji+ki−nech.

ckiTki(xi), ji > 1,

where c0 = 1 and cki
= 2 (ki > 0), and Ji is an upper-triangular matrix with nonzero elements

Ji,0 ji = ji (ji is odd, ji = 1, ni) and Ji,ki ji = 2ji (ji − ki > 0 and ji + ki – odd, ji, ki = 1, ni,
i = 1, 2). Here and below, numbering of rows and columns in matrices is started from scratch.

For the second and fourth derivatives of Ti(xi) with respect to xi one can write

djTi

dxji
= TiJi

j , j = 2, 4; i = 1, 2. (14)

Substituting collocation points (12) into equation (8), a system of linear algebraic equations
is obtained. Then equations at points xi = xi,0 and xi = xi,ni are excluded, and equations
corresponding to boundary conditions ω∗(±1, x2,k2

) = 0 and ω∗(x1,k1
,±1) = 0 are introduced:

T1(−1)⊗T2(x2,k2
)A = 0, T1(1)⊗T2(x2,k2

)A = 0, k2 = 0, n2, (15)

T1(x1,k1)⊗T2(−1)A = 0, T1(x1,k1)⊗T2(1)A = 0, k1 = 1, n1 − 1. (16)
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At points xi = xi,1 and xi = xi,ni−1 equations satisfying conditions
∂ω∗

∂xi

∣∣∣∣
xi=±1

= 0 (i = 1, 2)

are written

T1(−1)J1 ⊗T2(x2,k2)A = 0, T1(1)J1 ⊗T2(x2,k2)A = 0, k2 = 0, n2, (17)

T1(x1,k1)⊗ (T2(−1)J2)A = 0, T1(x1,k1)⊗ (T2(1)J2)A = 0, k1 = 1, n1 − 1. (18)

As a result, using (11), (14)-(18), one can obtain

BA = F, B =

5∑
m=1

Bm, (19)

where F = (f00 f01 . . . fn1 n2
)T with elements fk1 k2

= q∗(x1,k1
, x2,k2

), (ki = 2, ni − 2, i = 1, 2),
square matrices Bm (m = 1, 5) of size n′1n′2 × n′1n

′
2 defined as

B1 = κ1G
′′
1J1

4 ⊗G′′
2, B2 = κ2G

′′
1J1

2 ⊗
(
G′′

2J2
2
)
, B3 = κ3G

′′
1 ⊗

(
G′′

2J2
4
)

B4 = G3 ⊗G2 +G′′
1 ⊗G4, B5 = κ4G5J1 ⊗G2 + κ5G

′′
1 ⊗ (G6J2) .

Here Gi, G”i, G3+i and G4+i are square matrices with sizes n′i × n′i (i = 1, 2):

Gi =



Ti(xi,0)

Ti(xi,1)

Ti(xi,2)

. . .

Ti(xi,ni−2)

Ti(xi,ni−1)

Ti(xi,ni
)


, G′′

i =



0

0

Ti(xi,2)

. . .

Ti(xi,ni−2)

0

0


, G2+i =



Ti(−1)

0

0

. . .

0

0

Ti(1)


, G4+i =



0

Ti(−1)

0

. . .

0

Ti(1)

0


.

To find values Ti(−1) and Ti(1) relations Ti,ji(−1)=(−1)ji , Ti,ji(1)=1, (ji = 0, ni, i = 1, 2)
are used citebibGer3.

The elements of matrix A are obtained from equation (19). Function ω∗ is restored the using
(11).

3. Constructing a solution of boundary value problem
using Legendre polynomials

Let us represent function ω∗ as a finite sum of a double Legendre series:

ω∗(x1, x2) =

ni∑
ki=0
i=1,2

ak1k2
Pk1

(x1)Pk2
(x2) = P1(x1)⊗P2(x2)A, (20)

where Pi(xi) = (P0(xi)P1(xi) . . . Pni−1(xi)Pni
(xi)) (i = 1, 2), and Legendre polynomials Pji(xi)

are defined as follows

P0(xi) = 1, P1(xi) = xi, (ji + 1)Pji+1(xi) = (2ji + 1)xiPji(xi)− jiPji−1(xi), j > 1.

As collocation points xi,ki
for xi in equation (8) the roots of polynomial Pni+1 (i = 1, 2)

are used. According to [22], these roots xi,ki are eigenvalues of a symmetric matrix Li of size
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n′i × n′i with nonzero elements Li,ki+1 ki = Li,ki ki+1 = (ki + 1)/
√

4(ki + 1)2 − 1 (ki = 0, ni − 1,
i = 1, 2). Moreover, if ni is odd then xi,mi

= −xi,ni−mi
and Pji(xi,mi

) = (−1)jiPji(xi,ni−mi
),

(mi = 0, (ni − 1)/2; ji = 0, ni; i = 1, 2). If ni is even then xi,ni/2 = 0, xi,mi
= −xi,ni−mi

and
Pji(xi,mi

) = (−1)jiPji(xi,ni−mi
), (mi = 0, ni/2− 1; ji = 0, ni; i = 1, 2). The value Pji(0) is

found using the following representation [22]

Pji(xi) =

[ji/2]∑
k=0

ςkx
ji−2k
i , ςk =

(−1)k(2ji − 2k)!

2ji(ji − 2k)!(ji − k)!k!
.

Thus, if ji is even then

Pji(0) = ςji/2 =
(−1)ji/2ji!

2ji
(
ji
2

)
!2
,

otherwise, Pji(0) = 0 (i = 1, 2).
The derivative of Pi(xi) with respect to xi is represented as a product of PiJi using [22]

dPji

dxi
=

ji−1∑
ki=0

ji+ki−nech.

(2ki + 1)Pki(xi), ji > 1,

where Ji is an upper-triangular matrix of size n′i × n′i with nonzero elements Ji,ki ji = 2ki + 1

(ji − ki > 0 and ji + ki – odd, ji, ki = 0, ni, i = 1, 2 For the second and fourth derivatives of
Pi(xi) with respect to xi one can write

djPi

dxji
= PiJi

j , j = 2, 4; i = 1, 2. (21)

Using the selected collocation points for equation (8), equalities (20) and (21)and taking into
account boundary conditions (9) and (10), system of equations (19) is obtained, where matrices
Gi, G”i, G3+i, G4+i and G”i are defined by Pi (i = 1, 2). In this case, the values Pi(−1) and
Pi(1) are found using as follows Pi,ji(−1) = (−1)ji , Pi,ji(1) = 1, (ji = 0, ni, i = 1, 2). Restoring
elements of matrix A from (19), one can obtain function (ω∗(x1, x2) from (20).

4. Numerical results and their analysis

As an example, let us consider the problem of bending of a rectangular orthotropic plate
under the action of a transverse load which is defined as

q∗(x∗, y∗) = cos(π(2x∗ − 1))

(
1 + cos

(
π

(
2y∗

d∗2
− 1

)))
+

+ cos

(
π

(
2y∗

d∗2
− 1

))(
2H

Dxd∗22
cos(π(2x∗ − 1)) +

ν2
ν1d∗42

(1 + cos(π(2x∗ − 1)))

)
. (22)

In this case, the analytical solution of boundary value problem (5)–(7) has the form

ω∗
a(x

∗, y∗) =
1

16π4
(1 + cos(π(2x∗ − 1)))

(
1 + cos

(
π

(
2y∗

d∗2
− 1

)))
. (23)

The values of the physical parameters from [1] and [18] are used in calculations: E′
x =

131 · 107 kg/m2, E′
y = 42 · 107 kg/m2, E′ = 5.1 · 107 kg/m2, G = 11.1 · 107 kg/m2. Deviations
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of constructed solutions (11) and (20) from analytical solution (23) are found by the infinite
norm [14]:

∥ω∗ − ω∗
a∥∞ = max

(x∗,y∗)∈Ω
|ω∗(x∗, y∗)− ω∗

a(x
∗, y∗)|, (24)

where Ω = [0, 1] × [0, d∗2], and the finite norm in the space of square integrable functions [14]
and [15]:

∥ω∗ − ω∗
a∥2 =

(∫ 1

0

∫ d∗
2

0

(ω∗(x∗, y∗)− ω∗
a(x

∗, y∗))2dx∗dy∗

)1/2

. (25)

Evaluation of expression (24) is carried out in term of the infinite norm of the difference
between vectors W and Wa with elements equal to the values of functions ω∗ and ω∗

a at uniformly
distributed points (x∗k1

, y∗k2
) from Ω domain:

e∞ = ∥W −Wa∥∞ = max
06ki6mi

i=1,2

|ω∗(x∗k1
, y∗k2

)− ω∗
a(x

∗
k1
, y∗k2

)|,

where W = (w00 w01 . . . wm1 m2
)T , wk1k2

= ω∗(x∗k1
, y∗k2

), Wa = (wa,00 wa,01 . . . wa,m1 m2
)T and

wa,k1k2 = ω∗
a(x

∗
k1
, y∗k2

) (ki = 0,mi, i = 1, 2). The obtained values of the deviation estimate for

the infinite norm e∞ are presented in the Tab. 1 for n1 = n2 = n and m1 = m2 = 100 for d∗2 =
d2
d1

from [2,3] and [23]. The notation eT,∞ is used in the case of Chebyshev polynomials, and notation
eP,∞ is used for Legendre polynomials. The degree of 10 is indicated in parentheses. For values
d∗2 shown in Tab. 1 the maximum deflection value in the center of the plate is 0.002566496 10−9.
The third and sixth columns of this table present estimates of the deviations of solutions (11)
and (20) between successive iterations of n− 1 and n according to the infinite norm

en,∞ = max
06ki6mi

i=1,2

|ω∗
n(x

∗
k1
, y∗k2

)− ω∗
n−1(x

∗
k1
, y∗k2

)|,

where m1 = m2 =100. The fourth column of Tab. 1 contains the values of the infinite norm ẽT,∞
of the difference between Wa and the vector with elements obtained as a result of interpolation of
function (23) by Chebyshev polynomials. The corresponding values of the norm ẽP,∞ in the case
of Legendre polynomials are given in the seventh column of this table. It can be seen from the
results presented in Tab. 1 that solutions obtained using Legendre and Chebyshev polynomials
of the first kind coincide with the analytical solution with high accuracy (23) for relatively small
values of n. The obtained values of deviation for the infinite norm eT,∞ and eP,∞ of these
solutions approach the corresponding values of deviation norms ẽT,∞ and ẽP,∞ for polynomial
interpolations of function (23). It indicates good approximation properties of the method. The
values of eT,n,∞ and eP,n,∞ can be used as an estimate of the error of the constructed solutions.

To discretize norm (25), integrand function (ω∗(x∗, y∗) − ω∗
a(x

∗, y∗))2 is represented the in
the form of a partial sum of a double series according to Chebyshev polynomials

(ω∗(x1, x2)− ω∗
a(x1, x2))

2 =

qi∑
ki=0
i=1,2

aq,k1k2
Tk1

(x1)Tk2
(x2) = T1,q(x1)⊗T2,q(x2)Aq, (26)

where Tq,i(xi) = (T0(xi)T1(xi) . . . Tqi−1(xi)Tqi(xi)). Matrix elements Aq =

(aq,00 aq,01 . . . aq,q1q2−1 aq1q2)
T are determined using roots xi,ki

of polynomials Tqi+1 (i = 1, 2):

A = G1,q
−1 ⊗G2,q

−1Sq, (27)
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Table 1. Values of deviations in term of the infinite norm e∞, en,∞ and ẽ∞ versus n for q∗(x∗, y∗)
given in (22)

n eT,∞ eT,n,∞ ẽT,∞ eP,∞ eP,n,∞ ẽP,∞
d∗2 = 0.5

9 5.5(–6) 7.2(-6) 1.1(–7) 8.1(–6) 9.1(–6) 1.4(–7)
12 7.9(–9) 1.8(–8) 2.7(–11) 1.3(–8) 2.9(–7) 8.9(–11)
15 5.2(–11) 6.2(–11) 3.0(–13) 9.5(–11) 1.1(–10) 5.1(–13)
18 1.0(–14) 5.7(–13) 2.7(–17) 2.0(–14) 1.1(–12) 6.1(–17)

d∗2 = 1.0
9 5.4(–6) 7.1(–6) 1.1(–7) 7.9(–6) 8.9(–6) 1.4(–7)
12 7.8(–9) 1.8(–8) 2.7(–11) 1.3(–8) 2.9(–7) 8.9(–11)
15 5.1(–11) 6.1(–11) 3.0(–13) 9.3(–11) 1.0(–10) 5.1(–13)
18 1.0(–14) 5.6(–13) 2.7(–17) 2.0(–14) 1.1(–12) 6.1(–17)

d∗2 = 1.5
9 5.8(–6) 7.7(–6) 1.1(–7) 8.6(–6) 9.6(–6) 1.4(–7)
12 8.4(–9) 1.9(–7) 2.7(–11) 1.4(-8) 3.1(-7) 8.9(-11)
15 5.5(–11) 6.5(–11) 3.0(–13) 1.0(–10) 1.1(–10) 5.1(–13)
18 1.0(–14) 6.0(–13) 3.1(–17) 2.2(–14) 1.2(–12) 6.1(–17)

where Sq = (s00 s01 . . . sq1 q2)
T with elements: sk1 k2

= (ω∗(x1,k1
, x2,k2

) − ω∗
a(x1,k1

, x2,k2
))2,

(ki = 0, qi, i = 1, 2), square matrix Gi,q has size (qi + 1)× (qi + 1) and it is defined similarly to
Gi (i = 1, 2). The inverse to Gi,q matrix Gi,q

−1 is obtained by transposing Gi,q then multiplying
Gi,q

T by 2/(qi+1) and dividing elements of the first row of this matrix by 2 (i = 1, 2). It follows
from the equality [20]

2

qi + 1

qi∑
ki=0

Tj1(xi,ki
)Tj2(xi,ki

) = γT,j1δj1,j2 ,

where δj1,j2 is the Kronecker symbol, γT,0 = 2, γT,j1 = 1 (j1 > 0, i = 1, 2).
Using representation (26), one can obtain for the double integral in (25)

e22 =

∫ 1

0

∫ d∗
2

0

(ω∗(x∗, y∗)−ω∗
a(x

∗, y∗))2dx∗dy∗ =
d∗2
4

∫ 1

−1

∫ 1

−1

(ω∗(x1, x2)−ω∗
a(x1, x2))

2dx1dx2 =

=
d∗2
4

∫ 1

−1

T1,q(x1)dx1 ⊗
∫ 1

−1

T2,q(x2)dx2Aq. (28)

According to [20], there is the following relation for ji = 0 and even ji∫ 1

−1

Tji(xi)dxi =
2

1− j2i
, ji > 0, i = 1, 2,

otherwise, the value of the integral is zero.
Then ∫ 1

−1

Ti,q(xi)dxi = Ri, (29)

where Ri is a matrix of size 1× (qi +1) with elements Ri,0 ji = 2/(1− j2i ) (ji — even, ji = 0, qi,
i = 1, 2).

Substituting (27) and (29) into (28), one can obtain

– 593 –



Oksana V. Germide, Vasily N. Popov On Calculation of Bending of a Thin Orthotropic . . .

e22 =
d∗2
4
R1 ⊗Ri

(
G1,q

−1 ⊗G2,q
−1Sq

)
. (30)

The Tab. 2 shows the values of deviations eT,2 and eP,2 of constructed solutions (11) and
(20) from the analytical solution of problem (23) in term of the norm (25) based on (30) at
q1 = q2 = 10. The degree of 10 is indicated in parentheses.

Table 2. Values of deviations in term of the integral norm e2, en,2 and ẽ2 versus n for q∗(x∗, y∗)
given in (22)

n eT,2 eT,n,2 ẽT,2 eP,2 eP,n,2 ẽP,2

d∗2 = 0.5
9 2.0(–6) 2.5(–6) 2.6(–8) 3.1(–6) 2.8(–6) 2.5(–8)
12 2.9(–9) 6.6(–8) 8.2(–12) 4.7(–9) 1.0(–7) 6.3(–12)
15 1.9(–11) 2.3(–11) 6.4(–14) 3.4(–11) 3.8(–11) 5.4(–14)
18 3.8(–15) 2.1(-13) 7.6(-18) 7.5(–15) 4.1(–13) 8.2(–18)

d∗2 = 1.0
9 2.8(–6) 3.5(–6) 3.7(–8) 4.1(–6) 4.4(–6) 3.6(–8)
12 4.1(–9) 9.2(–8) 1.1(–11) 6.6(–9) 1.5(–7) 8.9(–12)
15 2.7(–11) 6.2(–11) 9.0(–14) 4.9(–11) 5.4(–11) 7.6(–14)
18 5.3(–15) 3.0(–13) 1.1(–17) 1.1(–14) 5.8(–13) 1.1(–17)

d∗2 = 1.5
9 3.5(–6) 4.4(–6) 4.5(–8) 5.1(–6) 5.5(–6) 4.4(–8)
12 5.0(–9) 1.1(–7) 1.4(–11) 8.2(–9) 1.8(–7) 1.1(–11)
15 3.3(–11) 4.0(–11) 1.1(–13) 6.1(–11) 6.7(–11) 9.3(–14)
18 6.7(–15) 3.7(–13) 1.5(–17) 1.3(–14) 7.1(–13) 1.5(–17)

Verification of the obtained values of eT,2 and eP,2 was carried out using algorithm from [17]
in the Maple computer algebra system. The third and sixth columns of Tab. 2 show the values
of deviations of obtained solutions (11) and (20) between successive iterations of n− 1 and n in
term of the integral norm calculated similarly to (30). The fourth column of this table shows the
values of norm ẽT,2 in the case of interpolation of function (23) by Chebyshev polynomials. The
corresponding values of norm ẽP,2 when using Legendre polynomials are given in the seventh
column of this table.

Tables 3 and 4 show the values of ω∗(x∗, y∗) in the center of the plate, as well as the norms
en,∞ and en,2 versus n for q∗(x∗, y∗) = 1 and q∗(x∗, y∗) = x∗, respectively. For the square
orthotropic plate (d∗2 = 1) under the action of a load with dimensionless intensity q∗(x∗, y∗) = 1,
comparison with the results obtained in [1] is presented. The maximum bending value in the
center of the plate ω∗(x∗, y∗) is equal to 0.00225757 for n = 12, and the value of 0.002257679 is
reached for n = 44, where n is the number of members of the exponential series [1]. The results
presented in Tables 1–4 show that solutions obtained using Legendre and Chebyshev polynomials
of the first kind have sufficiently fast convergence, and the obtained norm estimates can be used
as an estimate of the error of the constructed solutions in the corresponding function spaces.

Conclusion

Solution of the bending problem of a thin orthotropic rectangular plate clamped along the
contour is constructed using the collocation method in the matrix implementation. Chebyshev
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Table 3. Values of ω∗(x∗, y∗) in the center of the plate and the norms en,∞ and en,2 versus n for
q∗(x∗, y∗) = 1

n ω∗
T

(
1
2 ,

d∗
2

2

)
eT,n,∞ ω∗

P

(
1
2 ,

d∗
2

2

)
eP,n,∞ eT,n,2 eP,n,2

d∗2 = 0.5
9 0.000485168 6.4(–7) 0.000485279 7.2(–7) 1.9(–7) 2.2(–7)
12 0.000484932 4.2(–8) 0.000484931 5.5(–8) 1.1(–8) 1.5(–8)
15 0.000484933 2.1(–9) 0.000484933 2.7(–9) 2.7(–10) 3.6(–10)
18 0.000484933 8.2(-10) 0.000484933 1.1(–9) 6.6(–11) 1.1(–10)

d∗2 = 1
9 0.002258721 1.8(–6) 0.002259184 2.1(–6) 8.5(–7) 9.9(–7)
12 0.002257672 1.5(–7) 0.002257670 2.1(–7) 4.7(–8) 6.6(–8)
15 0.002257679 6.7(–9) 0.002257678 8.2(–9) 1.1(–9) 1.4(–9)
18 0.002257679 2.7(–9) 0.002257679 3.5(–9) 2.8(–10) 4.0(–10)

d∗2 = 1.5
9 0.002710060 7.4(–6) 0.002710432 7.5(–6) 3.0(–6) 3.1(–6)
12 0.002709799 1.2(–6) 0.002709800 1.9(–6) 5.4(–7) 8.1(–7)
15 0.002709801 4.6(–8) 0.002709801 6.3(–8) 1.3(–8) 1.8(–8)
18 0.002709802 1.3(–8) 0.002709803 1.9(–8) 2.7(–9) 4.3(–9)

Table 4. Values of ω∗(x∗, y∗) in the center of the plate and the norms en,∞ and en,2 versus n for
q∗(x∗, y∗) = x∗

n ω∗
T

(
1
2 ,

d∗
2

2

)
eT,n,∞ ω∗

P

(
1
2 ,

d∗
2

2

)
eP,n,∞ eT,n,2 eP,n,2

d∗2 = 0.5
9 0.000242584 6.0(–7) 0.000242640 6.6(–7) 1.1(–7) 1.3(–7)
12 0.000242466 3.4(–8) 0.000242466 4.3(–8) 5.7(–9) 8.1(–9)
15 0.000242466 3.6(–9) 0.000242466 5.1(–9) 4.5(-10) 6.8(–10)
18 0.000242466 6.1(-10) 0.000242466 8.5(–10) 4.2(–11) 6.6(–11)

d∗2 = 1
9 0.001129361 9.1(-7) 0.001129592 1.1(–6) 4.4(–7) 5.1(–7)
12 0.001128836 1.5(–7) 0.001128835 2.1(–7) 3.6(–8) 5.2(–8)
15 0.001128839 8.9(–9) 0.001128839 1.2(–8) 1.2(-9) 1.7(-9)
18 0.001128840 2.2(–9) 0.001128840 3.2(–9) 2.9(–10) 4.7(–10)

d∗2 = 1.5
9 0.001355030 4.1(–6) 0.001355215 4.2(–6) 1.7(–6) 1.7(–6)
12 0.001354899 7.8(–7) 0.001354900 1.1(–6) 2.9(–7) 4.2(–7)
15 0.001354901 5.0(–8) 0.001354900 6.6(–8) 9.3(–9) 1.3(–8)
18 0.001354901 1.5(–8) 0.001354901 2.3(–8) 2.5(–9) 4.1(–9)

polynomials of the first kind and Legendre polynomials are used as the basic system of functions.
The results of modeling the bending of the median plane of the plate under consideration for
various ratios of the lengths of the sides of the plate and types of transverse load using the roots of
the Chebyshev and Legendre polynomials are presented. It is shown that the constructed solution
of the boundary value problem converges quickly enough to the analytical solution given in the
work. Estimates of the errors of the constructed solutions for the infinite norm and the finite
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norm in the space of functions integrable with the square are obtained.
The research was carried out at the expense of a grant from the Russian Science Foundation,

project no. 24-21-00381.
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Вычисление изгиба тонкой ортотропной пластины
с использованием многочленов Лежандра и Чебышева
первого рода

Оксана В. Гермидер
Василий Н. Попов

Северный (Арктический) федеральный университет имени М. В. Ломоносова
Архангельск, Российская Федерация
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Аннотация. В работе получено решение задачи об изгибе тонкой ортотропной прямоугольной
пластины, защемленной по краям, с использованием многочленов Лежандра и Чебышева первого
рода. Функция, аппроксимирующая решение бигармонического уравнения для ортотропной пла-
стины, представлена в виде разложения в двойной ряд по этим многочленам в комбинации с мат-
ричными преобразованиями и свойствами многочленов Лежандра и Чебышева. С использованием
корней этих многочленов в качестве точек коллокации краевая задача приведена к решению си-
стемы линейных алгебраических уравнений относительно коэффициентов в разложении искомой
функции по этим многочленам. Представлены результаты вычисления изгиба пластины, обуслов-
ленного действием распределенной поперечной нагрузки постоянной интенсивности, нагрузки ви-
да, допускающего аналитическое решение краевой задачи, и с интенсивностью, соответствующей
гидростатическому давлению, для различных отношений длин сторон пластины. Полученные зна-
чения отклонений построенных решений с использованием многочленов Лежандра и Чебышева от
аналитического решения задачи приведены по бесконечной норме и конечной норме в пространстве
интегрируемых с квадратом функций.

Ключевые слова: изгиб тонкой ортотропной пластины, метод коллокации, многочлены Чебыше-
ва первого рода, многочлены Лежандра.
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Abstract. In the present manuscript, we aim to present a new type of the generalized Voigt function,
and investigate its series representations. By using the series representations of our function, we also
point out some generating relations associated with the Kampé de Fériet function, Srivastava’s triple
hypergeometric series, confluent hypergeometric functions of one and two variables, and generalized
hypergeometric function. Furthermore, two interesting recurrence relations of our introduced Voigt
function are also indicated.
Keywords: Voigt function, Wright function, Kampé de Fériet function, Srivastava’s triple hypergeo-
metric series.
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1. Introduction and preliminaries
The well-known Voigt functions K(x1, x2) and L(x1, x2) have occurred in a wide variety

of problems in physics such as astrophysical spectroscopy, transfer of radiation in heated
atmosphere and also in the theory of neutron reactions.

The integral representations of these two functions (due to Reiche [11]) are given as follows:

K(x1, x2) =
1√
π

∫ ∞

0

exp

(
− x2t−

1

4
t2
)
cos(x1t)dt (1.1)

and
L(x1, x2) =

1√
π

∫ ∞

0

exp

(
− x2t−

1

4
t2
)
sin(x1t)dt (1.2)

(x1 ∈ ℜ;x2 ∈ R+).

Afterwards, Srivastava and Miller [13] presented the following interesting extension of these
Voigt functions:

Vµ,ν(x1, x2) =

√
x1
2

∫ ∞

0

tµ exp

(
− x2t−

1

4
t2
)
Jν(x1t)dt (1.3)
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(x1, x2 ∈ R+;ℜ(µ+ ν) > −1),

where Jν(x1) denotes the familiar Bessel function [12, p.109, eq.(3)].

It is well-known that J− 1
2
(x1) =

√
2

πx1
cosx1 and J 1

2
(x1) =

√
2

πx1
sinx1.

Thus, we have

K(x1, x2) = V 1
2 ,−

1
2
(x1, x2) and L(x1, x2) = V 1

2 ,
1
2
(x1, x2). (1.4)

In continuation of this study, Klusch [7] replaced the number
1

4
before t2 in (1.3) by a variable

to propose the following slightly more generalization of the function in (1.3):

Ωµ,ν(x1, x2, x3) =

√
x1
2

∫ ∞

0

tµ exp(−x2t− x3t
2)Jν(x1t)dt (1.5)

(x1, x2, x3 ∈ R+;ℜ(µ+ ν) > −1).

It is easy to see that

Ωµ,ν

(
x1, x2,

1

4

)
= Vµ,ν(x1, x2). (1.6)

Furthermore, various generalizations of the Voigt function have been introduced and
investigated by a number of authors (see for details, [15, 3, 9, 4] and the references cited therein).

The classical Wright function Wa,b(x1) is defined by (see [8], see also [6, 10])

Wa,b(x1) =
∑
n>0

1

Γ(b+ an)

(x1)
n

n!
, (1.7)

(b ∈ C, a > −1).

In 2015, EI-Shahed and Salem [2] introduced the following extension of above Wright function:

W c,d
a,b (x1) =

∑
n>0

(c)n
(d)n Γ(b+ an)

(x1)
n

n!
(1.8)

(a ∈ ℜ, b, c, d ∈ C, a > −1, d ̸= 0,−1,−2, · · · , with x1 ∈ C and |x1| < 1 with a = −1).

Clearly, on setting c = d in (1.8), we easily get the function given in (1.7).

Also, we have the following relation between the classical Bessel function and classical Wright
function (see [5]):

Jν(x1) =

(
x1
2

)ν

W1,ν+1

(
− x21

4

)
or

W1,ν+1

(
− x21

4

)
=

(
2

x1

)ν

Jν(x1). (1.9)

Hence, we can also define here the relation between generalized Wright function and classical
Bessel function as follows:

W c,c
1,ν+1

(
− x21

4

)
=

(
2

x1

)ν

Jν(x1) or W d,d
1,ν+1

(
− x21

4

)
=

(
2

x1

)ν

Jν(x1). (1.10)
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In this paper, we aim to introduce a new generalization of the Voigt function associated with
the generalized Wright function W c,d

a,b (x1) given in (1.8). Also, we investigate several properties of
this generalized Voigt function such as series representations, generating relations and recurrence
relations.

2. Generalized Voigt function and its series representations
In this section, we introduce a new type of the generalized Voigt function and its series

representations by making use of series manipulation and integral transform techniques.

Definition 2.1. Let x1, x2, x3 ∈ R+, a ∈ ℜ, b, c, d ∈ C, a > 1, d ̸= 0,−1,−2, · · · , and
ℜ(µ+ ν) > −1. Then the generalized Voigt function Υ

(a,b,c,d)
µ,ν (x1, x2, x3) is defined by

Υ(a,b,c,d)
µ,ν (x1, x2, x3) =

(
x1
2

)ν+ 1
2
∫ ∞

0

tµ+ν exp(−x2t− x3t
2) W c,d

a,b

(
− x21t

2

4

)
dt, (2.1)

where W c,d
a,b (z) is the generalized Wright function given in (1.8).

Remark 2.2. (i) If we set a = 1, b = ν + 1 and c = d in (2.1), and by using (1.10), we
easily get

Υ(1,ν+1,c,c)
µ,ν (x1, x2, x3) = Ωµ,ν(x1, x2, x3) or Υ(1,ν+1,d,d)

µ,ν (x1, x2, x3) = Ωµ,ν(x1, x2, x3). (2.2)

(ii) Further, on setting a = 1, b = ν + 1, c = d and x3 =
1

4
in (2.1), and by using (1.10), we

find that

Υ(1,ν+1,c,c)
µ,ν

(
x1, x2,

1

4

)
= Vµ,ν(x1, x2) or Υ

(1,ν+1,d,d)
µ,ν

(
x1, x2,

1

4

)
= Vµ,ν(x1, x2). (2.3)

(iii) It is easy to find from (2.2) and (2.3) that

Υ

(
1, 12 ,c,c

)
1
2 ,−

1
2

(
x1, x2,

1

4

)
= K(x1, x2) or Υ

(
1, 12 ,d,d

)
1
2 ,−

1
2

(
x1, x2,

1

4

)
= K(x1, x2), (2.4)

and

Υ

(
1, 32 ,c,c

)
1
2 ,

1
2

(
x1, x2,

1

4

)
= L(x1, x2) or Υ

(
1, 32 ,d,d

)
1
2 ,

1
2

(
x1, x2,

1

4

)
= L(x1, x2). (2.5)

Theorem 2.3. Let x1, x2, x3 ∈ R+; b, c, d ∈ C, a(> 1) ∈ ℜ, d ̸= 0,−1,−2, · · · , and
ℜ(µ+ ν) > −1. Then the generalized Voigt function in (2.1) has the following representation:

Υ(a,b,c,d)
µ,ν (x1, x2, x3) =

=
x
ν+ 1

2
1

2ν+
3
2xA3 Γ(b)

{
Γ(A)F 1:1;0

0:a+1;1

 A : c; ;

− : ∆(a; b), d; 1
2 ;

− x21
4aax3

,
x22
4x3

−

− x2√
x3

Γ

(
A+

1

2

)
F 1:1;0
0:a+1;1

 A+ 1
2 : c; −;

− : ∆(a; b), d; 3
2 ;

− x21
4aax3

,
x22
4x3

},
(2.6)

where A =
µ+ ν + 1

2
, ∆(a; b) abbreviates the array of ’a’ parameters

b

a
,
b+ 1

a
, · · · , b+ a− 1

a
,

and F p:q;r
g:h;k denotes the well-known Kampé de Fériet function (see [14, p.63, eq.(16)]).

– 601 –



Ulfat Ansari On Generalized Voigt Function and its Associated Properties

Proof. Expressing the exponential function exp(−x2t) and generalized Wright function

W c,d
a,b

(
− x21t

2

4

)
in their respective series on the right-hand side of (2.1), and interchanging the

order of summations and integration, which is guaranteed under the conditions, we get

Υ(a,b,c,d)
µ,ν (x1, x2, x3) =

=

(
x1
2

)ν+ 1
2 ∑
n>0

∑
m>0

(c)n
(d)n Γ(b+ an)

(
− x2

1

4

)n
n!

(−x2)m

m!

∫ ∞

0

tµ+ν+2n+m e−x3t
2

dt.
(2.7)

It is easy to see from the Euler’s Gamma function that∫ ∞

0

tλ e−x3t
2

dt =
1

2
x
−
(

λ+1
2

)
3 Γ

(
λ+ 1

2

)
(2.8)

(ℜ(x3) > 0;ℜ(λ) > −1).

Applying (2.8) to the integral in (2.7), we find that

Υ(a,b,c,d)
µ,ν (x1, x2, x3) =

x
ν+ 1

2
1

2ν+
3
2xA3

∑
n>0

∑
m>0

(c)n
(d)n Γ(b+ an)

(
− x2

1

4x3

)n
n!

(−x2)m

m!
Γ

(
A+n+

m

2

)
(x3)

−m
2 .

Now separating the m-series into its even and odd terms, and by using the result (see [14])

Γ(b+ an) = Γ(b) aan
(
b

a

)
n

(
b+ 1

a

)
n

(
b+ 2

a

)
n

· · ·
(
b+ a− 1

a

)
n

,

we arrive at

Υ(a,b,c,d)
µ,ν (x1, x2, x3) =

x
ν+ 1

2
1

2ν+
3
2xA3 Γ(b)

×

×

{
Γ(A)

∑
n>0

∑
m>0

(A)n+m (c)n(
b
a

)
n

(
b+1
a

)
n
· · ·
(
b+a−1

a

)
n
(d)n

(
1
2

)
m

(
− x2

1

4aax3

)n
n!

(
x2
2

4x3

)m
m!

−

− x2√
x3

Γ

(
A+

1

2

)∑
n>0

∑
m>0

(
A+ 1

2

)
n+m

(c)n(
b
a

)
n

(
b+1
a

)
n
· · ·
(
b+a−1

a

)
n
(d)n

(
3
2

)
m

(
− x2

1

4aax3

)n
n!

(
x2
2

4x3

)m
m!

}
,

(2.9)

which, upon using the definition of Kampé de Fériet function [14, p. 63, eq. (16)], yields our
claimed representation.

Theorem 2.4. Let q, w, x3, x3− s− t+
x1t

s
∈ R+; b, c, d ∈ C, a(> 1) ∈ ℜ, d ̸= 0,−1,−2, · · · ,

and ℜ(µ+ν) > −1. Then the generalized Voigt function in (2.1) with a slightly changed variable
has the following representation:

Υ(a,b,c,d)
µ,ν

(
q, w, x3 − s− t+

x1t

s

)
=

qν+
1
2

2ν+
3
2xA3 Γ(b)

∞∑
i=−∞

∞∑
j=0

(
s
x3

)i
i!

(
t
x3

)j
j!

{
Γ(A+ i+ j)× (2.10)

×F (3)

A+ i+ j :: −; −; − : c; −; −j;

− :: −; −; − : ∆(a; b), d; 1
2 ; i+ 1;

− q2

4aax3
,
w2

4x3
,
x1
x3

− w√
x3

Γ
(
A+i+j+

1

2

)
×
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×F (3)

 A+ i+ j + 1
2 :: −; −; − : c; −; −j;

− :: −; −; − : ∆(a; b), d; 3
2 ; i+ 1;

− q2

4aax3
,
w2

4x3
,
x1
x3

},
where A =

µ+ ν + 1

2
and F (3)[x1, x2, x3] denotes the well-known Srivastava’s triple hypergeo-

metric series (see [14, p. 69, eq. (39)]).

Proof. We begin by recalling the following known result given by Srivastava et al. [16,
p. 8, eq. (1.3)]:

exp

(
s+ t− x1t

s

)
=

∞∑
i=−∞

∑
j>0

si

i!

tj

j!
1F1[−j; i+ 1; x1], (2.11)

where 1F1[ α; β; x1] is the confluent hypergeometric function (see [12, p. 123, eq. (1)]).
On replacing s, t and x1 by sη2, tη2 and x1η2, respectively, and multiplying both sides of the

resulting identity by ηµ+ν exp(−wη − x3η
2) W c,d

a,b

(
− q2η2

4

)
, and integrating both sides of the

last resulting identity with respect to η from 0 to ∞, we obtain∫ ∞

0

ηµ+νexp

[
− wη −

(
x3 − s− t+

x1t

s

)
η2

]
W c,d

a,b

(
− q2η2

4

)
dη =

∞∑
i=−∞

∑
j>0

si

i!

tj

j!
×

×
∫ ∞

0

ηµ+ν+2i+2j exp(−wη − x3η
2) W c,d

a,b

(
− q2η2

4

)
1F1[ −j; i+ 1; x1η

2]dη.

(2.12)

On comparing (2.1) and (2.12), we get

Υ(a,b,c,d)
µ,ν

(
q, w, x3 − s− t+

x1t

s

)
=

(
q

2

)ν+ 1
2

∞∑
i=−∞

∑
j>0

si

i!

tj

j!
×

×
∫ ∞

0

ηµ+ν+2i+2j exp(−wη − x3η
2) W c,d

a,b

(
− q2η2

4

)
1F1[ −j; i+ 1; x1η

2]dη.

(2.13)

Now using the series representations of exponential function exp(−wη) and generalized Wright

function W c,d
a,b

(
− q2η2

4

)
and then by applying the following known results [1, p. 337, eq. (9)]:

∫ ∞

0

xs−1
1 e−αx2

1
1F1[a; b; βx

2
1]dx1 =

1

2
α− s

2Γ

(
s

2

)
2F1

[
a,

s

2
; b;

β

α

]
(ℜ(s) > 0;ℜ(α) > max{0,ℜ(β)}),

we arrive at

Υ(a,b,c,d)
µ,ν

(
q, w, x3 − s− t+

x1t

s

)
=

qν+
1
2

2ν+
3
2 xA3

∞∑
i=−∞

∑
j>0

(
s
x3

)i
i!

(
t
x3

)j
j!

∞∑
k=0

(−w)k

k!
× (2.14)

×
∞∑
l=0

(c)l
(d)lΓ(b+ al)

(
− q2

4x3

)l
l!

1

x
k
2
3

Γ

(
A+ i+ j + l +

k

2

)
2F1

[
− j, A+ i+ j + l +

k

2
; i+ 1;

x1
x3

]
.

Now expanding 2F1 in its defining series (see [14, p. 29, eq. (4)]), and separating the resulting
series into even and odd terms with respect to the summation index k, and arranging the last
resulting multiple series into the Srivastava’s triple hypergeometric series F (3)[x1, x2, x3], we
arrive at the right-hand side of (2.10). This completes the proof.
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3. Generating relations
Here, by using the results given in the previous section, we derive some interesting generating

relations.

Theorem 3.1. Let q, w, x3, x3 − s− t+ x1t
s ∈ R+; b, c, d ∈ C, a(> 1) ∈ ℜ, d ̸= 0,−1,−2, · · · ,

and ℜ(µ+ ν) > −1. Then the following generating relation holds true:(
x3
Z

)A
{
Γ(A)F 1:1;0

0:a+1;1

 A : c; −;

− : ∆(a; b), d; 1
2 ;

− q2

4aaZ
,
w2

4Z

− w√
Z
Γ

(
A+

1

2

)
× (3.1)

× F 1:1;0
0:a+1;1

 A+ 1
2 : c; −;

− : ∆(a; b), d; 3
2 ;

− q2

4aaZ
,
w2

4Z

} =

∞∑
i=−∞

∑
j>0

( s
x3
)i

i!

( t
x3
)j

j!
×

×

{
Γ(A+ i+ j)F (3)

 A+ i+ j :: −; −; − : c; −; −j;

− :: −; −; − : ∆(a; b), d; 1
2 ; i+1;

− q2

4aax3
,
w2

4x3
,
x1
x3

− w√
x3

×

× Γ

(
A+ i+ j +

1

2

)
F (3)

A+i+j + 1
2 :: −; −; − : c; −; −j;

− :: −; −; − : ∆(a; b), d; 3
2 ; i+1;

− q2

4aax3
,
w2

4x3
,
x1
x3

},
where Z = x3 − s − t +

x1t

s
, F p:q;r

g:h;k is the Kampé de Fériet function [14, p. 63, eq. (16)] and

F (3)[x1, x2, x3] is the Srivastava’s triple hypergeometric series [14, p. 69, eq. (39)].

Proof. Expanding the left-hand side of (2.10) with the aid of (2.6) is seen to prove the result
here.

Corollary 3.2. Let the conditions of Theorem 3.1 be satisfied. Then the following generating
relation holds true:(

x3
Z

)A
{
Γ(A) 1F1

[
A;

1

2
;
w2

4Z

]
− w√

Z
Γ

(
A+

1

2

)
1F1

[
A+

1

2
;
3

2
;
w2

4Z

]}
=

=

∞∑
i=−∞

∑
j>0

( s
x3
)i

i!

( t
x3
)j

j!

{
Γ(A+ i+ j) Ψ1

[
A+ i+ j, −j; i+ 1,

1

2
;
x1
x3
,
w2

4x3

]
−

− w√
x3

Γ

(
A+ i+ j +

1

2

)
Ψ1

[
A+ i+ j +

1

2
, −j; i+ 1,

3

2
;
x1
x3
,
w2

4x3

]}
,

(3.2)

where 1F1[α;β;x1] is the confluent hypergeometric function of one variable [12, p.123,eq.(1)] and
Ψ1[α, β; γ, δ;x1, x3] is the confluent hypergeometric function of two variables [14, p.59,eq.(41)].

Proof. Taking q → 0 in (3.1) is seen to yield the desired result (3.2).

Corollary 3.3. Let the condition of Theorem 3.1 be satisfied. Then the following generating
relation holds true:(

x3
Z

)A

2Fa+1

 A, c;

∆(a; b), d;
− q2

4aaZ

 =

∞∑
i=−∞

∑
j>0

( s
x3
)i

i!

( t
x3
)j

j!
(A)i+j ×

× F 1:1;1
0:a+1;1

 A+ i+ j : c; −j;

− : ∆(a; b), d; i+ 1;
− q2

4aax3
,
x1
x3

 ,
(3.3)
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where 2Fa+1 denotes the generalized hypergeometric function [14, p. 42, eq. (1)].

Proof. This corollary can be established with the help of (3.1) by putting w = 0.

Corollary 3.4. Let the condition of Theorem 3.1 be satisfied. Then we have:

(
x3
Z

)A

2Fa+1

 A, c;

∆(a; b), d;
− q2

4aaZ

 =

∞∑
i=−∞

∑
j>0

( s
x3
)i

i!

( t
x3
)j

j!
(A)i+j ×

× 2Fa+1

 A+ i+ j, c;

∆(a; b), d;
− q2

4aax3

 .
(3.4)

Proof. On setting x1 = 0 in (3.3), we easily get our claimed result(3.4).

4. Recurrence relations

In this section, we establish the following recurrence relations for our introduced Voigt func-
tion.

Theorem 4.1. The following recurrence relations for our generalized Voigt function
Υ

(a,b,c,d)
µ,ν (x1, x2, x3) holds true:

Υ(a,b,c,c+2)
µ,ν + c Υ(a,b,c+1,c+1)

µ,ν − (c+ 1) Υ(a,b,c,c+1)
µ,ν = 0 (4.1)

and
Υ(a,b−1,c,d)

µ,ν + (1− b) Υ(a,b,c,d)
µ,ν +

ac

4d
x21 Υ

(a,a+b,c+1,d+1)
µ+2,ν = 0. (4.2)

Proof. We have the following recurrence relation of the generalized Wright function (see [2,
p. 8, eq. (72)]):

W c,c+2
a,b (z) + c W c+1,c+1

a,b (z) = (c+ 1) W c,c+1
a,b (z). (4.3)

From above relation, we can easily arrive at(
x1
2

)ν+ 1
2
∫ ∞

0

tµ+ν exp(−x2t− x3t
2) W c,c+2

a,b

(
− x21t

2

4

)
dt+

+ c

(
x1
2

)ν+ 1
2
∫ ∞

0

tµ+ν exp(−x2t− x3t
2)×W c+1,c+1

a,b

(
− x21t

2

4

)
dt =

= (c+ 1)

(
x1
2

)ν+ 1
2
∫ ∞

0

tµ+ν exp(−x2t− x3t
2) W c,c+1

a,b

(
− x21t

2

4

)
dt. (4.4)

By applying (2.1) in (4.4), we receive our needed result (4.1).
Similarly, the other recurrence relation (4.2) can be established with the help of the following

recurrence relation of W c,d
a,b (z) (see [2, p. 9, eq. (74)]):

W c,d
a,b−1(z) + (1− b)W c,d

a,b (z) =
ac

d
z W c+1,d+1

a,a+b (z).
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5. Concluding remarks
In the present study, we have defined a new type of the generalized Voigt function by mak-

ing use of the generalized Wright function. We have also studied various interesting and useful
properties (for example, series representations involving Kampé de Fériet function F p:q;r

g:h;k and
Srivastava’s triple hypergeometric series F (3)[x1, x2, x3], generating relations and recurrence re-
lations) of our proposed Voigt function.

In this section, we shortly discuss about two interesting variations in the integral representa-
tion of our introduced Voigt function Υ

(a,b,c,d)
µ,ν .

The generalized Wright function W c,d
a,b (z) have the undermentioned relations with the Fox

H-Function Hm,n
r,s and Fox Wright hypergeometric function pΨq (see [2, p.4])):

W c,d
a,b (z) =

Γ(d)

Γ(c)
H1,1

1,3

[
− z

/
(1− c, 1)

(0, 1), (1− b, a), (1− d, 1)

]
(5.1)

and

W c,d
a,b (z) =

Γ(d)

Γ(c)
1Ψ2

[
(c, 1);

(d, 1), (b, a);
z

]
. (5.2)

Therefore, by using (5.1) and (5.2), we can propose two interesting variations in the integral
representation of our generalized Voigt function Υ

(a,b,c,d)
µ,ν as follows:

Υ(a,b,c,d)
µ,ν (x1, x2, x3) =

Γ(d)

Γ(c)

(
x1
2

)ν+ 1
2

×

×
∫ ∞

0

tµ+ν exp(−x2t− x3t
2)H1,1

1,3

[
x21t

2

4

/
(1− c, 1)

(0, 1), (1− b, a), (1− d, 1)

]
dt (5.3)

and

Υ(a,b,c,d)
µ,ν (x1, x2, x3) =

=
Γ(d)

Γ(c)

(
x1
2

)ν+ 1
2
∫ ∞

0

tµ+νexp(−x2t− x3t
2)1Ψ2

[
(c, 1);

(d, 1), (b, a);
− x21t

2

4

]
dt. (5.4)
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Об обобщенной функции Фойгта и связанных с ней
свойствах

Ульфат Ансари
Мушарраф Али
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Мохд Гаясуддин

Факультет математики, Интегральный университет
Центр Шахджаханпур-242001, Индия

Аннотация. В настоящей статье мы стремимся представить новый тип обобщенной функции
Фойгта и исследовать ее рядовые представления. Используя рядовые представления нашей функ-
ции, мы также указываем некоторые порождающие соотношения, связанные с функцией Кампе де
Фериета, тройным гипергеометрическим рядом Шриваставы, конфлюэнтными гипергеометриче-
скими функциями одной и двух переменных и обобщенной гипергеометрической функцией. Кро-
ме того, также указаны два интересных рекуррентных соотношения нашей введенной функции
Фойгта.

Ключевые слова: функция Фойгта, функция Райта, функция Кампе де Ферье, тройной гипер-
геометрический ряд Шриваставы.
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Abstract. Let m, n and l be integers with 0 6 l 6 m+ n. It is the main purpose of this paper to give
an identity for the sum:

m∑
a=0

n∑
b=0

a+b>m+n−l

Bm−aBn−b

(
m
a

)(
n
b

)
a+ b+ 1

(
a+ b+ 1

m+ n− l

)
,

where Bm (m = 0, 1, 2, . . . ) is the Bernoulli number. As corollary we prove that the above sum equal to
1

2
when l = 0.

Keywords: Bernoulli polynomial, Bernoulli number, generating function.

Citation: B. Mittou, On a New Identity for Double Sum Related to Bernoulli Numbers, J.
Sib. Fed. Univ. Math. Phys., 2024, 17(5), 609–612. EDN: MAGLZV.

1. Introduction and main results

As the years have gone by, Bernoulli polynomials and numbers have consistently affirmed their
significance as crucial mathematical entities. Since their introduction in the 17th century, they
have continuously piqued the curiosity of numerous mathematicians and have found applications
across a multitude of mathematical disciplines. Bernoulli polynomials Bm(x) (m = 0, 1, 2, . . . )
are defined by using the generating function (see e.g., [2–4]):

zexz

ez − 1
=

∞∑
m=0

Bm(x)
zm

m!
, |z| < 2π.

The Bernoulli numbers Bm (m = 0, 1, 2, . . . ) are the values of the Bernoulli polynomials Bm(x)
at x = 0 or, equivalently, they are the coefficients in the power series expansion (see e.g., [2, 4]):

z

ez − 1
=

∞∑
m=0

Bm
zm

m!
, |z| < 2π.

There are numerous properties associated with Bernoulli numbers and polynomials, which
readers interested in this topic can explore, for instance, in the following references [3,4]. In the
forthcoming discussion, we will confine ourselves to enumerating the properties upon which we
will rely for the demonstration of our results.

∗mathmittou@gmail.com, mittou.brahim@univ-ouargla.dz https://orcid.org/0000-0002-5712-9011
c⃝ Siberian Federal University. All rights reserved
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The expression of the Bernoulli polynomials in terms of the Bernoulli numbers is given by
(see e.g., [2–4]):

Bm(x) =

m∑
j=0

(
m

j

)
Bm−jx

j . (1)

The Bernoulli polynomials satisfy the well-known relation (see e.g., [2–4]):

d

dx
Bm(x) = mBm−1(x) (n > 1). (2)

The Bernoulli polynomials satisfy the difirence equation (see e.g., [4]):

Bm(x+ 1)−Bm(x) = mxn−1 (n > 1),

from which
Bm(0) = Bm(1) (n > 2), (3)

Many mathematicians, over the course of time, has been deeply intrigued by the pursuit of
identifying and rigorously establishing mathematical identities related to Bernoulli numbers. For
example, in the work by Vassilev and Missana [4], an interesting identity was established for all
positive integers m and n:

(−1)m
m−1∑
a=0

(
m

a

)
Bm+a = (−1)n

n−1∑
a=0

(
n

a

)
Bn+a.

In another research, Agoh and Dilcher [1, Lemma 1], for all m,n > 0, proved the following
identity:

m∑
a=0

(−1)a
(
m+ n+ 1

m− a

)
Bm−aBn+a+1 −

n∑
a=0

(−1)a
(
n+m+ 1

n− a

)
Bn−aBm+a+1 =

= (−1)n(m+ n)Bm+n+1.

One can also find several identities in [4, Corollary 19.1.18].
The aim of this paper is to establish an identity for the sum associated with the Bernoulli

numbers, which is presented as follows:
Let m, n and l be integers with 0 6 l 6 m+ n. Set

S(m,n, l) :=

m∑
a=0

n∑
b=0

a+b>m+n−l

Bm−aBn−b

(
m
a

)(
n
b

)
a+ b+ 1

(
a+ b+ 1

m+ n− l

)
.

Our main identity is the following:

Theorem 1.1. Let n < m be non-negative integers such that m+ n > 3. If 0 6 l 6 m+ n− 3,
then

S(m,n, l) =

⌊m
2 ⌋∑

r=0

{
n

(
m

2r

)
+m

(
n

2r

)}
(m+ n− 2r − 1) · · · (l + 2− 2r)

(m+ n− l)!
B2rBl+1−2r, (4)

where it understood that the sum is extended over those r such that l + 1− 2r > 0.

Remark 1.2. When relying on the right-hand side of Formula (4), we opt for B1 =
1

2
rather than

−1

2
, and this selection is quite common, as many researchers adopt it (see e.g., [3, Remark 1.2]).
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In the special case, when l = 0, the sum in Formula (4) becomes restricted to only one term
(for r = 0), and then we have:

(m+ n)
(m+ n− 1)(m+ n− 2) · · · (2)

(m+ n)!
B0B1 = B1,

which proves the following corollary:

Corollary 1.3. Let n < m be non-negative integers such that m+ n > 3. Then S(m,n, 0) =
1

2
.

2. Proof of Theorem 1.1
The subsequent lemma will assume a pivotal role in establishing the proof for Theorem 1.1.

Lemma 2.1. Let m and n be positive integers. Then

Bm(x)Bn(x) =

Mm,n∑
r=0

{
n

(
m

2r

)
+m

(
n

2r

)}
B2rBm+n−2r(x)

m+ n− 2r
+ (−1)m+1 m!n!

(m+ n)!
Bm+n,

where Mm,n = max
{
⌊m

2 ⌋, ⌊
n
2 ⌋
}

Proof. See e.g., [2, Ex. 19 p. 276].

Now, we are ready to prove Theorem 1.1.

Proof of Theorem 1.1. Suppose that n < m and l be non-negative integers such that m+ n > 3
and 0 6 l 6 m+ n− 3. Then according to Formula (1) we have

m∑
a=0

n∑
b=0

(
m

a

)(
n

b

)
Bm−aBn−a x

a+b = Bm(x)Bn(x). (5)

Differentiating (m+ n− l − 1) times both sides of Formula (5) with respect to x, then dividing
by (m+ n− l)! gives

m∑
a=0

n∑
b=0

(
m

a

)(
n

b

)
Bm−aBn−a

1

m+ n− l

(
a+ b

m+ n− l − 1

)
xa+b−m−n+l+1 =

=
1

(m+ n− l)!

(
Bm(x)Bn(x)

)(m+n−l−1)

. (6)

By using the following elementary identity:

1

m+ n− l

(
a+ b

m+ n− l − 1

)
=

1

a+ b+ 1

(
a+ b+ 1

m+ n− l

)
we can rewrite Formula (6) as:

m∑
a=0

n∑
b=0

Bm−aBn−a

(
m
a

)(
n
b

)
a+ b+ 1

(
a+ b+ 1

m+ n− l

)
xa+b−m−n+l+1 =

=
1

(m+ n− l)!

(
Bm(x)Bn(x)

)(m+n−l−1)

.
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Taking x = 1 gives

S(m,n, l) =
1

(m+ n− l)!

(
Bm(x)Bn(x)

)(m+n−l−1)

(1). (7)

Now, taking into consideration Formulas (2) and (3), Lemma 2.1 allows us to get

(
Bm(x)Bn(x)

)(m+n−l−1)

(1) =

⌊m
2 ⌋∑

r=0

{
n

(
m

2r

)
+m

(
n

2r

)}
×

×(m+ n− 2r − 1)(m+ n− 2r − 2) · · · (l + 2− 2r)B2rBl+1−2r. (8)

Consequently, one can show that Formulas (7) and (8) imply Formula (4). This completes the
proof. 2

The author wishes to express gratitude to the referees and the editor-in-chief for their valuable
comments and suggestions. Also, the author is thankful to Bakir Farhi for his help.
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О новом тождестве для двойной суммы, связанной
с числами Бернулли

Брахим Митту
Университет Касди Мербах Уаргла, Алжир

EDPNL & HM Laboratory of ENS Kouba, Алжир

Аннотация. Пусть m, n и l — целые числа с 0 6 l 6 m+n. Основной целью данной статьи является
дать тождество для суммы:

m∑
a=0

n∑
b=0

a+b>m+n−l

Bm−aBn−

(
m
a

)(
n
b

)
a+ b+ 1

(
a+ b+ 1

m+ n− l

)
,

где Bm (m = 0, 1, 2, . . . ) — число Бернулли. В качестве следствия мы доказываем, что указанная

выше сумма равна
1

2
при l = 0.

Ключевые слова: многочлен Бернулли, число Бернулли, производящая функция.
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Abstract. The purpose of this paper is to introduce and study strongly m-subharmonic (shm) functions
on complex manifolds X ⊂ CN , dimX = n, n 6 N. There are different ways to define shm-functions on
complex manifolds: using local coordinates, using retraction π : CN → X or using Jensen measures (see
for example [1, 8, 13]). In this paper we use the local coordinates. In Section 1 we present the definition
and simplest properties of shm-functions in Cn. In Section 2, we provide the definition of shm-functions
in the domains D ⊂ X of the complex manifold X and prove several of their potential properties. Section
3 introduces maximal functions and their properties, while Section 4 presents the main result of the work
(Theorem 4.1) concerning the solvability of the Dirichlet problem in regular domains.

Keywords: shm-functions, plurisubharmonic functions, Stein manifolds, Dirichlet problem.

Citation: S.A. Imomkulov, S.I. Kurbonboev, The Dirichlet Problem in the Class of
shm-functions on a Stein Manifold X, J. Sib. Fed. Univ. Math. Phys., 2024, 17(5),
613–621. EDN: NDRKSA.

The theory of strongly m-subharmonic (shm) functions plays an important role in the po-
tential theory. It expands and develops the well-known pluripotential theory, introduced at the
end of the last century, which at present is the main subject for studying analytic functions of
several complex variables and plurisubharmonic functions.

The pluripotential theory is based on plurisubharmonic (psh) functions and is related to the

Monge-Ampère operator (ddcu)n. Here, as usual d = ∂+∂ and dc =
∂ − ∂

4i
. This theory is based

on research in numerous fundamental works of E. Bedford, A. Taylor, J. Siciak, A. Sadullaev and
others (see, for example, [2, 10, 14]). shm-functions are related to the operator

(ddcu)m ∧ βn−m, 1 6 m 6 n, (1)

where β = ddc|z|2 is the standard volume form in the complex space Cn.
Since ddcu∧βn−1 = ∆uβn, operator (1) for m = 1 gives the Laplace operator, and for m = n

the Monge–Ampère operator. The operator (1) is called the complex operator in Hessians,
because it is easy to calculate

(ddcu)m ∧ βn−m = m!(n−m)!Hm(u)βn,

where Hm(u)=
∑

16j1<...<jm6n

λj1 . . . λjm is the Hessian of the eigenvalue vector λ=(λ1, λ2, . . . ,λn)

of the matrix (uj,k̄).
∗sevdi@rambler.ru
†suqrot.qurbonboyev.93@mail.ru

c⃝ Siberian Federal University. All rights reserved
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With the help of Hessians, a class of shm-functions was defined (see Definition 2.1. below)
in the works of Z. Blocki, S.Dinew, S.-Y. Li, H. Lu and others (see, for example, [3, 4, 6, 7]).
Moreover, in their works shm-functions are also defined in the class L1

loc(D) and a number of
their fundamental properties are proven. The potential theory in the class of shm-functions is
developed in the work of A. Sadullaev and B. Abdullaev [9].

1. Hessians

Let u ∈ C2(D) be a twice differentiable function given in a domain D ⊂ Cn. The second-

order differential ddcu =
i

2

∑
j,k

uj,k̄dzj ∧ dz̄k represents a Hermitian quadratic form, where uj,k̄ =

∂2u

∂zj∂z̄k
. Therefore, through an appropriate unitary transformation of coordinates, it can be

reduced to a diagonal form ddcu =
i

2
[λ1dz1 ∧ dz̄1 + · · ·+ λndzn ∧ dz̄n], where λ1, . . . , λn are the

eigenvalues of the Hermitian matrix (uj,k̄).

It is clear that

(ddcu)k ∧ βn−k = k!(n− k)!Hk(u)β
n, k = 1, . . . , n,

whereHk(u) =
∑

16j1<···<jk6n

λj1 . . . λjk is the Hessian of dimension k of the vector λ = λ(u) ∈ Rn.

Definition 1.1 (see [9]). A function u ∈ C2(D) is called shm in domain D ⊂ Cn, if it satisfies
the following condition

(ddcu)k ∧ βn−k > 0 ∀ k = 1, 2, . . . , n−m+ 1.

It is known that for all twice differentiable shm-functions u, v1, . . . , vn−m the following in-
equality holds

ddcu ∧ ddcv1 ∧ · · · ∧ ddcvn−m ∧ βm−1 > 0. (2)

Moreover, if a twice differentiable function u satisfies (2) for all twice differentiable shm-functions
v1, . . . , vn−m, then u is a shm-function. Using this, we can define shm-functions in the class L1

loc.

Definition 1.2 (see [9]). An upper semicontinuous function u in the domain D ⊂ Cn is called
shm in D, if for any twice differentiable shm-functions v1, . . . , vn−m the current ddcu ∧ ddcv1 ∧
· · · ∧ ddcvn−m ∧ βm−1 defined as

[ddcu ∧ ddcv1 ∧ · · · ∧ ddcvn−m ∧ βm−1](ω) =

=

∫
uddcv1 ∧ · · · ∧ ddcvn−m ∧ βm−1 ∧ ddcω, ω ∈ F (0,0)(D)

is positive, where F (0,0)(D) is a space of test functions in D.

The set of shm-functions in D is denoted by shm(D). It is clear that psh = sh1 ⊂ sh2 ⊂
· · · ⊂ shn = sh and we have the following important property.

Theorem 1.1. If u ∈ shm(D), then for any complex hyperplane Π ⊂ Cn restriction u|Π is a
shm-function in D

∩
Π, i.e.

u|Π ∈ shm(D ∩Π).
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2. shm-functions on a Stein manifold X.

Let us recall the definition of a Stein manifold. Let X be a complex manifold of complex
dimension n and denote by O(X) the ring of holomorphic functions on X.

Definition 2.1 (see [16]). A complex analytic manifold X of dimension n is called Stein manifold
if

1) X is holomorphic convex, i.e.

K̂ = {z : z ∈ X, |f(z)| 6 sup
K

|f | for all f ∈ O(X)}

is a compact subset of X for every compact subset K ⊂ X;
2) If z1 and z2 are different points in X, then f(z1) ̸= f(z2) for some f ∈ O(X);
3) For every z ∈ X, one can find functions f1, . . . , fn ∈ O(X) which form a coordinate system

at z.

It is well-known that the Stein manifold X can always be embedded in some space of higher
dimension, X ⊂ CN , N > n.

We define shm-functions on a Stein manifold X ⊂ CN , dimX = n, for 1 6 m 6 n by
restricting β = ddc||z||2, z = (z1, . . . , zN ) to X. In local coordinates ϕ (ξ) : B → U, B ⊂
Cn, U ⊂ X, ξ = (ξ1, . . . , ξn) the differential form β|X has the following form

β|X = β|U = α(ξ) =
i

2
[dϕ1(ξ) ∧ dϕ̄1(ξ) + · · ·+ dϕN (ξ) ∧ dϕ̄N (ξ)].

Definition 2.2 (see [15]). A function u ∈ C2(D) is called shm-function in the domain D ⊂ X
if

[(ddcu)|X ]k ∧ [β|X ]n−k > 0, k = 1, 2, . . . , n−m+ 1,

or, equivalently, in local coordinates of D the following holds

(ddcu(φ(ξ)))k ∧ αn−k(ξ) > 0, k = 1, 2, . . . , n−m+ 1. (3)

It is clear that if U1

∩
U2 ̸= ∅ are two open sets on X, then from β|Uj = β|Uk

◦ ϕ−1
k ◦ ϕj it is

easy to obtain that the positivity of the forms in (3) does not depend on the choice of the local
coordinates, i.e. Definition 2.2 is correct.

From the definition of shm-function, it obviously follows that if u, v1, . . . , vn−m ∈
shm (D)

∩
C2 (D), then

ddcu ∧ ddcv1 ∧ · · · ∧ ddcvn−m ∧ [β|X ]
m−1 > 0. (4)

Conversely, if a twice differentiable function u satisfies (4) for all v1, . . . , vn−m ∈
shm (D)

∩
C2 (D) , then u is a shm-function in D. This conclusion can be proved in the same

way as in the case X = Cn since the differential forms β|X in local coordinates is a strictly
positive (1, 1) form and by using suitable linear mapping it can be reduced to a diagonal form
λ1dξ1 ∧ dξ̄1 + · · ·+ λndξn ∧ dξ̄n.

As above, we can define shm-functions in the class of functions L1
loc.

Definition 2.3 (see [5]). A function u ∈ L1
loc (D) is called shm in a domain D ⊂ X if it is

upper semicontinuous and for any twice differentiable shm-functions v1 , . . . , vn−m the current
ddcu ∧ ddcv1 ∧ · · · ∧ ddcvn−m ∧ [β|X ]

m−1 which is defined as[
ddcu ∧ ddcv1 ∧ · · · ∧ ddcvn−m ∧ (β|X)

m−1
]
(ω) =

=

∫
u ddcv1 ∧ · · · ∧ ddcvn−m ∧ (β|X)

m−1 ∧ ddcω, ω ∈ F 0,0 (D)
(5)
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is positive.

The class of shm-functions in a domain D is denoted by shm (D) . Usually a trivial function
u (z) ≡ −∞ is also included in shm (D) .

The following properties of shm (D) follow easily from definitions of shm-function.
1) A linear combination of shm-functions with non-negative coefficients also is a shm-

function, i.e.

uk(z) ∈ shm (D) , ak ∈ R+ (k = 1, 2, . . . , p) ⇒ a1u1(z) + a2u2(z) + · · ·+ apup(z) ∈ shm (D) ;

2) We have the following relation

sh1 (D) ⊂ · · · ⊂ shm (D) ⊂ · · · ⊂ shn (D) .

3) The limit of a uniformly converging or monotonically decreasing sequence of shm-functions
is also shm-function:

uj (z) ∈ shm (D) , uj (z) ⇒ u (z) ⇒ u (z) ∈ shm (D) ;

uj (z) > uj+1 (z) (j = 1, 2, . . . ) ⇒ lim
j→∞

uj (z) ∈ shm (D) .

The above properties 1)–3) follow directly from Definition 2.3 and from the Lebesgue–Levi
theorem on monotone convergence.

Let us now state properties whose proofs are more complicated.
4)The maximum of a finite number of shm-functions is also a shm-function, i.e.,

u1(z), u2(z), . . . , up(z) ∈ shm (D) ⇒ max{u1(z), u2(z), . . . , up(z)} ∈ shm (D) .

Proof. We fix v1, . . . , vm−1 ∈ shm (D)
∩
C2 (D) and put α = ddcv1 ∧ · · · ∧ ddcvn−m ∧ [β|X ]

m−1
.

According to (4), the differential form α is positive. For small positive number ε > 0, considering
the differential form α+ε(ddcβ|X)

n−1
, without loss of generality, we can assume that it is strictly

positive. Then the operator

ddcu ∧ α = ddcu ∧ ddcv1 ∧ · · · ∧ ddcvn−m ∧ [β|X ]
m−1

is an elliptic operator. If the function u (z) is shm-function in D, then from the positivity in the
generalized sense of the form ddcu ∧ ddcv1 ∧ · · · ∧ ddcvn−m ∧ [β|X ]

m−1 we have the positivity of
the form ddcu ∧ α, which means α-subharmonicity (see, for example, [11, 12]) of function u in
local coordinates, defined by formula (3).

Let us take functions u1(z), u2(z), . . . , up(z) ∈ shm (D) . Since they are α-subharmonic in the
local coordinate, the maximum function u = max{u1(z), u2(z), . . . , up(z)} is also α-subharmonic.
This means that ddcu ∧ α > 0 in the generalized sense. So, we have ddcu ∧ α > 0 for every
v1, . . . , vm−1 ∈ shm (D)

∩
C2 (D) and α = ddcv1 ∧ · · · ∧ ddcvn−m ∧ [β|X ]

m−1
, i.e.[

ddcu ∧ ddcv1 ∧ · · · ∧ ddcvn−m ∧ (β|X)
m−1

]
(ω) =

=

∫
u ddcv1 ∧ · · · ∧ ddcvn−m ∧ (β|X)

m−1 ∧ ddcω > 0, ∀ω ∈ F 0,0 (D) , ω > 0.

According to Definition 2.3, u is a shm-function. The proof is complete. 2
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5) For any locally uniformly bounded family ut (z) ∈ shm (D) , t ∈ T, we have[
sup
t
ut (z)

]∗
∈ shm (D) .

Similarly, the regularization of the upper limit of locally uniformly bounded sequence uj (z) ∈

shm (D) is a shm-function, i.e.,
[
lim
j→∞

uj (z)

]∗
∈ shm (D) . In particular, the regularization of

the limit of a monotonically increasing, locally uniformly bounded sequence of shm-functions is
again shm-function.

Proof. Let us deal with the supremum, assuming without loss of generality that there exists
M > 0 : ut (z) 6 M. We fix v1, . . . , vm−1 ∈ shm (D)

∩
C2 (D) and put it as above α =

ddcv1∧· · ·∧ddcvn−m∧ [β|X ]
m−1

, assuming without loss of generality that α is a strictly positive
(n− 1, n− 1)-form. Since ddcuj ∧ α > 0, then uj are α-subharmonic functions for the elliptic
operator ddcuj ∧α. Then, just as for the Laplace operator ddcuj ∧ βn−1 in Cn (see [14]), we can

show that
[
sup
t
ut (z)

]∗
∧ α > 0. The proof is complete. 2

6) Let uj (z) ∈ shm (D) be a sequence of shm-functions satisfying uj (z) 6 Mj(j = 1, 2, . . . )

where
∞∑
j=1

Mj converges. Then
∞∑
j=1

uj (z) is a shm-function.

Proof. The functions uj (z) − Mj (j = 1, 2, . . . ) are not positive. Therefore, the sequence

vk (z) =
k∑

j=1

[uj (z)−Mj ] is monotonically decreasing. By property 3) we have
∞∑
j=1

(uj (z)−Mj) ∈

shm (D). Since the series
∞∑
j=1

Mj converges, then
∞∑
j=1

uj(z)∈shm (D) . The proof is complete. 2

7) Let γ(t) : R → R be a convex and non-decreasing function, and u (z) ∈ shm (D) . Then
γ ◦ u ∈ shm (D) .

3. Maximal functions.

Maximal functions are analogous of harmonic functions in the class of shm-functions, they
are studied by the A. Sadullaev, B. Abdullaev [9] in Cn. Let us give the definition of a maximal
shm-function on a Stein manifold X.

Definition 3.1. A function u (z) ∈ shm (D) , D ⊂ X is called maximal in the domain D ⊂ X
if for any function v (z) ∈ shm (D) for which lim

z→∂D
(u (z)− v (z)) > 0 holds u (z) > v (z) in D.

The condition lim
z→∂D

(u (z)− v (z)) > 0 for arbitrary shm-functions u (z) , v (z) can be un-

derstood as follows: for any ε > 0 there exists a compact subset F ⊂ D outside of which
v (z) 6 u (z) + ε. In particular, v (z) = −∞ if u (z) = −∞.

Let us formulate the following theorem, which allows us to define maximal functions in
convenient forms

Theorem 3.1. The following statements are equivalent
1) u (z) is a maximal function in D;
2) for any subdomain G ⊂⊂ D the inequality u (z) > v (z) , ∀z ∈ G holds for all functions

v (z) ∈ shm (G) satisfying lim
z→∂G

(u (z)− v (z)) > 0;
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3) for any subdomain G ⊂⊂ D the inequality u (z) > v (z) , ∀z ∈ G holds for all functions
v (z) ∈ shm (D) for which

u|∂G > v|∂G.

4. The Dirichlet problem in the class of shm-functions
on a Stein manifold X.

In this section we will discuss the solvability of the Dirichlet problem in the class of shm-
functions on a Stein manifold X ⊂ CN ,dimX = n.

Definition 4.1. A domain D ⊂ X is called strictly m-convex if D = {ρ (z) < 0} for some strictly
shm-function ρ(z) in some neighborhood D+ of D̄. Strictly of the shm-function ρ (z) means that
there is a δ > 0 such that ρ (z)− δ ·

(
∥z∥2

)
X

is a shm-function in D+.

Remark 4.1. If the domain D ⊂ X is a strictly m-convex, then any point ζ0 ∈ ∂D is a peak
point, i.e. there is a peak function q (z) ∈ shm (D)

∩
C
(
D
)
: q
(
ζ0
)
= 0, q|D̄\{ζ0} < 0.

In fact, by Definition 4.1, there is δ > 0 such that the function

q (z) = ρ (z)− δ ·
(∥∥z − ζ0

∥∥2)
X

is a shm-function in D, which will be continuous on D and q
(
ζ0
)
= 0, q|D̄\ζ0 < 0.

Let D ⊂ X be a strictly m-convex domain and given a continuous function φ (ζ) ∈ C (∂D) .

We consider the following Dirichlet problem: find a function satisfying the following conditions
a) u ∈ shm (D) ;

b) lim
z→ζ

u (z) = φ (ζ) , ∀ζ ∈ ∂D;

c) u is maximal function in D.

In order to solve the Dirichlet problem, we will use the Perron method. Let us define the
following class

U (φ,D) =

{
v ∈ shm (D) : lim

z→∂D
v (z) 6 φ (ζ)

}
and put

ω (z) = sup
v∈U(φ,D)

v (z) .

Theorem 4.1. The upper regularization ω∗ (z) of ω(z) is a solution to the Dirichlet problem,
i.e. ω∗ (z) satisfies the conditions a), b) and c).

Proof. First we prove that ω∗ (z) is a shm-function in D. Since φ is continuous and by the
maximum principle we deduce that the class of functions of U (φ,D) is uniformly bounded from
above. By property 5 of Section 2 its regularization is a shmf-unction in D.

Now we prove the continuity of the function ω∗(z) on ∂D. First, we show that lim
z→ζ0

ω(z)>φ(ζ0)

for any fixed point ζ0 ∈ ∂D. Set M = ∥φ∥∂D and fix ε > 0. Then from the continuity of the
function φ (ζ) ∈ C (∂D) there is r > 0 such that∣∣φ (ζ)− φ

(
ζ0
)∣∣ < ε ∀ζ ∈ ∂D

∩
B
(
ζ0, r

)
,

where B
(
ζ0, r

)
⊂ CN .
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Since the point ζ0 is a peak point, then there is a peak function q (z) ∈ shm (D) such that

q
(
ζ0
)
= 0, sup

∥z−ζ0∥>ε, z∈D

q (z) = qε < 0.

Let us estimate the boundary values of the following function

vε (z) = −ε+ φ
(
ζ0
)
+
q (z)

|qε|
(
M + φ

(
ζ0
))
.

If ζ ∈ ∂D
∩
B
(
ζ0, r

)
, then

lim
z→ζ

vε 6 −ε+ φ
(
ζ0
)
6 φ (ζ) ;

if ζ ∈ ∂D\B
(
ζ0, r

)
, then

lim
z→ζ

vε 6 −ε+ φ
(
ζ0
)
−M − φ

(
ζ0
)
6 φ (ζ) .

Hence, lim
z→ζ

vε 6 φ (ζ) for all ζ ∈ ∂D and vε ∈ U (φ,D) . Consequently, we get that vε (z) 6 ω (z)

and lim
z→ζ0

ω (z) > lim
z→ζ0

vε (z) = −ε+ φ
(
ζ0
)
. Since ε > 0 is arbitrary, we have

lim
z→ζ0

ω (z) > φ
(
ζ0
)
.

Now we will show that lim
z→ζ0

ω (z) 6 φ
(
ζ0
)
. To prove this inequality we fix the function

u (z) ∈ U (φ,D) and consider the sum u (z) + gε (z) , where

gε (z) = −ε− φ
(
ζ0
)
+
q (z)

|qε|
(
M − φ

(
ζ0
))
.

It’s clear that u (z) + gε (z) ∈ shm (D) . Now let’s estimate the boundary values of the function
gε (z) : If ζ ∈ ∂D

∩
B
(
ζ0, r

)
, then

lim
z→ζ

gε (z) 6 −ε− φ
(
ζ0
)
6 φ (ζ) .

Similarly, if ζ ∈ ∂D\B
(
ζ0, r

)
, then

lim
z→ζ

gε (z) 6 −ε− φ
(
ζ0
)
+ lim

z→ζ

q (z)

|qε|
(
M − φ

(
ζ0
))

=

= −ε− φ
(
ζ0
)
+
q (ε)

|qε|
(
M − φ

(
ζ0
))

= −ε−M 6 −φ (ζ) .

Consequently, we have

lim
z→ζ

[u (z) + gε (z)] 6 lim
z→ζ

u (z) + lim
z→ξ

gε (z) 6 lim
z→ζ

u (z)− φ (ζ) 6 0

for any ζ ∈ ∂D. Thus thanks to the maximum principle, u (z) + gε (z) 6 0 in D, i.e. u (z) 6
−gε (z) , ∀z ∈ D. Since the function u (z) ∈ U (φ,D) is arbitrary, we get ω (z) 6 −gε (z) , z ∈ D.

As a consequence we deduce that

lim
z→ζ0

ω (z) 6 lim
z→ζ0

(−gε (z)) = −ε+ φ
(
ζ0
)
.
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Since ε > 0 is arbitrary, by letting ε→ 0 we get lim
z→ζ0

ω (z) 6 φ
(
ζ0
)
.

Combining lim
z→ζ0

ω (z) > φ
(
ζ0
)

with lim
z→ζ0

ω (z) 6 φ
(
ζ0
)

we get the continuity lim
z→ζ0

ω (z) =

φ
(
ζ0
)

at every point ζ0 ∈ ∂D. This means that lim
z→ζ

ω (z) = φ (ζ) is true in ∂D, i.e. ω (z) is

continuous on ∂D. It is not difficult to see that the regularization ω∗ (z) is continuous at the
boundary i.e., lim

z→ζ
ω∗ (z) = φ (ζ) , ∀ζ ∈ ∂D.

Let us now prove that the function ω∗ (z) is maximal in D. We will prove this by contrary,
assume there is a domain G ⊂⊂ D and a function ϑ (z) ∈ shm (D) : ϑ|∂G 6 ω|∂G, but
ϑ
(
z0
)
> ω(z0) at some point zo ∈ G. It’s easy to see that function

v(z) =

{
max {ϑ (z) , ω (z)} , z ∈ G

ω (z) , z ∈ D\G

is a shm-function and v|∂D = ω|∂D = φ. Therefore, v (z) 6 ω (z) and hence ϑ (zo) 6 ω (zo) .

This leads to contradiction. The proof is complete. 2
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Задача Дирихле в классе shm-функций на многообразии
Штейна X

Севдияр А. Имомкулов
Сукротбек И. Курбонбоев

Национальный университет Узбекистана
Ташкент, Узбекистан

Аннотация. Целью данной работы является введение и изучение shm-функций на комплексных
многообразиях X ⊂ CN , dimX = n, n 6 N. Имеются разные способы определения shm-функций
на комплексных многообразиях: при помощи локальных координат, при помощи ретракции π :
CN → X, при помощи мер Иенсена (см. [1, 8, 13]). Для определения shm-функций на комплексном
многообразии X мы пользуемся локальными координатами. В разделе 1 мы приводим определение
и простейшие свойства shm-функций в пространстве Cn. В разделе 2 дается определение shm-
функций в областях D ⊂ X комплексного многообразия X и доказывается ряд их потенциальных
свойств. В разделе 3 определяются максимальные функции и их свойства, и в разделе 4 мы докажем
основной результат работы (Теорема 4.1.) о разрешимости задачи Дирихле в регулярных областях.

Ключевые слова: shm-функции, плюрисубгармонические функции, многообразие Штейна, зада-
ча Дирихле.
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Abstract. Global climate warming challenges the permafrost areas losing the frozen state and stabil-
ity. Industrial development and human activity in these regions also contributes to the degradation of
permafrost. The construction of residential buildings and their operation in these territories mainly in-
volves maintaining the soil under these structures in a frozen state throughout the entire period of their
operation. For these purposes, pile foundations and ventilated crawl spaces are used. The basements
may also include the devices aiding stabilize the soil. For example, it could be hundreds of the seasonally
operating cooling devices. An urgent task is long-term forecasting of the dynamics of changes in the
bearing capacity of a pile foundation of a building, considering climatic and technogenic impacts on
the surrounding soil. A new model and numerical algorithm were developed to study the dynamics of
changes in the bearing capacity of piles during the operation of the building, considering temperature
monitoring data from temperature sensors located in thermometric wells. Validation of the developed
software package was carried out based on the existing and constantly arriving data on soil temperature
monitoring to a depth of 10 meters on the server. A comparison of the obtained monitoring data and
the calculated data in thermometric wells showed a significant improvement compared to the previously
used model and calculation program for this residential building.
Keywords: mathematical modelling, heat and mass transfer, permafrost.

Citation: M.Yu. Filimonov, N.A. Vaganova, D.Zh. Shamugia, I.M. Filimonova, Computer
Modeling of Temperature Fields in the Soil and the Bearing Capacity of Pile Foundations
of Buildings on Permafrost, J. Sib. Fed. Univ. Math. Phys., 2024, 17(5), 622–631. EDN:
OJGPTH.

Introduction
The territories of Western Siberia and the northern latitudes of Russia, which are covered by

permafrost, are extremely important for the Russian economy. These regions are rich in various
minerals and have great oil and gas fields. In the development strategy of the northern territories
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of Russia, a significant place is given to the balanced development of the economy, industry, and
social infrastructure with the preservation of natural ecosystems. Sustainability of engineering
infrastructure in regions occupied by permafrost [1] needs for extra attention due to observed
climate warming [2–4]. Experiencing significant changes and degradation of permafrost [5–8]
may lead to possible technogenic accidents [9, 10].

In accordance with the Russian Building Code [1], the capital structures and residential
buildings require special rules for construction and operation in such territories. In accordance
with these rules, the construction should be carried out following two principles. The first
principle of construction means the construction and operation of capital structures must keep
the foundation soils in a frozen state. The second principle of construction means the permafrost
foundation soils should be used in a thawed or thawing state. So, before the construction the
thawing layers should be achieved to the expected depth or under the assumption the thawing
during the operation. In Russia, more than 75% of all buildings and engineering structures
in the permafrost zone were built and operated according to the first principle. Thawing of
ice-saturated rocks due to climate change or various technogenic impacts will be accompanied
by subsidence of the earth’s surface [11] and the development of dangerous frozen geological
processes leading to accidents, the possible consequences of which may be the destruction of
pile foundations of capital structures and residential buildings [12]. To predict these processes,
various methods of monitoring the condition of the foundations of structures are used [13]. The
bearing capacity of building foundation piles also depends on the temperature of the surrounding
soil, therefore, in the city of Salekhard, employees of the Arctic Research Center of the Yamal-
Nenets autonomous district have built and are developing an automatic temperature monitoring
(ATM) system for the soil surrounding the pile foundations residential buildings [14,15]. For this
purpose, thermometric wells equipped with temperature sensors were drilled in the ventilated
crawl spaces of buildings. Analysis of the temperature data obtained from this system allows us
to draw conclusions about the condition of the soil under buildings. However, to model unsteady
thermal fields throughout the entire area of a pile foundation, it is necessary to investigate
mathematical models based on ATM data. The presence of thermometric wells makes it possible
to determine the lithology of the soil and to validate the constructed numerical methods [16]. In
accordance with the first principle of construction, it is also necessary to maintain the foundation
soils of residential buildings in a frozen state.

Therefore, in the northern regions the pile foundations, ventilated crawl spaces, and various
devices for cooling the soil may be used side by side under buildings [17, 18]. The seasonal
cooling devices (SCDs) may be mentioned as the most common. The SCD operational principle
is based on the physical laws of cooling due to the temperature difference in the soil and in
the ventilated crawl space. So, the SCDs are in process only on winter. SCD operation makes
significant changes in the surrounding soil and has to be accounted in the mathematical model
and is required extra calibration with data from temperature sensors in thermometric wells.

In this study the new algorithm and software were calibrated for a specific residential building
(Building I) in the city of Salekhard. In contrast to [16], the climatic and technogenic factors
influencing the temperature fields at the base of the pile foundation of this building were studied
in detail. Numerical calculations were performed for the dynamics of changes in the bearing
capacity of piles in 2021–2023. The presented data verifies the model and the developed numerical
algorithm using data from temperature sensors located in thermometric wells. Additional data
is obtained from temperature sensors of four thermometric wells. When carrying out numerical
calculations, the concept of average bearing capacity of piles was introduced and the dynamics
of its changes until January 2024 are shown. Based on the numerical calculations, the further
research direction related to improving and increasing the accuracy of the mathematical models,
algorithms and software are discussed.
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1. Statement of the problem and pethods

Object of study
The object of study is the pile foundation of a nine-story residential building in the city of

Salekhard, which, in accordance with the first principle of construction on permafrost, has a
ventilated crawl spaces 1.8 meters high, and 186 SCDs are used to cool the soil around 229 piles.
Fig. 1 shows a plan of the pile foundation for Building I.

Each automatic monitoring station (SAM station) collects data from four thermometric wells
(SAM wells) equipped with temperature sensors that measure soil temperature to a depth of 10
meters with an accuracy of 0.1◦C. The triangles in the Fig. 1 are the SAM wells, the squares
are the SAM stations, the dots are the piles. Data from all temperature measurements are
transmitted to the server every 3 hours using GSM modules. 186 SCDs are not shown in the
Fig. 1, but their exact location coordinates in the ventilated crawl space are used in the model
and in computer simulations. These devices are vertical cooling devices, which are two-phase
closed thermosiphons with a diameter of 38 mm. The aluminum cooling fins of these devices
are of 95 cm and the underground depths are of 10 m. To carry out automatic temperature
monitoring of the soil in a ventilated crawl space, 6 stations were equipped.

Fig. 1. Scheme of the location of thermometric equipment of the SAMs and the pile foundations
under the Building I

Mathematical model
Let T = T (t, x, y, z) be the soil temperature at point (x, y, z) for the time t and at the initial

time t0 has a temperature T0(x, y, z). Following [16, 19], to describe the temperature regime of
the soil under the building, we will use the equation taking into account the localized heat of the
phase transition:

ρ
(
cν(T ) + kδ(T − T ∗)

)∂T
∂t

= ∇ (λ(T )∆T ), (1)

where ρ is density [kg/m3], T ∗ is temperature of phase transition [K],

cν(T ) =

{
c1(x, y, z), T < T ∗,
c2(x, y, z), T > T ∗ is specific heat [J/(kg · K)],
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λ(T ) =

{
λ1(x, y, z), T < T ∗,
λ2(x, y, z), T > T ∗ is thermal conductivity coefficient [W/(m · K) ],

k = k(x, y, z) is specific heat of phase transition, δ is Dirac delta function.
This equation allows to solve the problem of Stefan type without the explicit separation of

the phase transition [19]. The heat of phase transition is introduced with using Dirac δ-function
in the specific heat ratio. The parameters c(T ) and λ(T ) inserted in (1) were determined during
laboratory studies of soil from SAM wells drilled in ventilated crawl space. As the initial time
moment we take t0, corresponding to the moment in time 2 years ago and the reconstructed
initial distribution of soil temperature at this moment in time T0(x, y, z) based on ATM data.
As studies based on numerical calculations have shown, such a choice is necessary to take into
account the operation of all SCDs and their impact on the soil temperature regime for 2 years.
Particular attention was paid to modeling the operation of SCDs considering the ATM data.
The calculation of the bearing capacity is carried out based on the condition:

F 6 Fu/γn,

where F is the design load on the foundation, γn is the reliability coefficient for the responsibility
of the structure, Fu is the bearing capacity of the foundation, determined in accordance with the
Russian Building Code and soil temperature data determined during numerical calculations.

Of course, moisture and migration of water should be mentioned in the problem of tem-
perature distribution in soil. When the soil freezes, migration of water contained in the soil is
observed [20–23]. This process has a significant impact on the temperature regime of the soil.
Indeed, unfrozen water in the soil will migrate from bottom to top into the freezing zone, and
latent heat will affect the temperature distribution of frozen soil due to the freezing of replen-
ished water. In the proposed model, SCDs will also be sources of cold in the ground in winter,
from which soil freezing will spread in the horizontal direction, and lateral migration above the
groundwater level in the case under consideration will be minimal. This study takes into account
the latent heat of the initial water content and assumes that the soils in the basements are gen-
erally low-moisture, and the soil surface in a ventilated crawl space is insulated with a concrete
slab that protects from evaporation and filtration of rain and melted snow water into the soil.

Validation of numerical algorithms

To find the thermal fields in the soil described by (1) in the area of the pile foundation, the
finite difference method with splitting into spatial variables is used [19]. The initial equation
for each of the spatial directions is approximated by an implicit central-difference three-point
scheme, and a system of difference linear algebraic equations having a tridiagonal form is solved
by the sweep method. Since thermal fields in the soil have a significant impact on the physical and
mechanical properties of frozen soil and the bearing capacity, an important task is to determine
the temperature on the surfaces of piles with sufficient accuracy. In order to test the accuracy
of the developed algorithm, the numerical results were compared with data from temperature
sensors in SAM wells. Figure 2 compares data for SAM well 44–1 during 2023 for various months.
In these Figures, the dashed lines correspond to the data of numerical calculations obtained on
the basis of the proposed model, and the solid lines indicate ATM data. In general, the agreement
of these data is acceptable for engineering calculations.

2. Results of numerical calculation

A large number of works are devoted to development of numerical methods for solving bound-
ary value problems of heat conduction. Basics of finite difference methods are detailed in the
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Fig. 2. Comparison of temperature sensor data in well 44–1 with numerical calculation data in
the seasons 2023

works [24, 25]. To solve the Stefan problem for the equation (1), the finite difference method
using the method of splitting in spatial variables has proven itself well [19].

In numerical calculations, an orthogonal condensed mesh is used. In the {x, y}-plane, the
computational grid is condensed around the elements of the pile foundation (piles and SCDs)
and thermometric wells, which are used to set the initial temperature distribution in the three-
dimensional computational domain, as well as to test the developed software.

Calculations show that we can use as a computational grid consisting of 331 × 154 × 39 =
1987986 nodes. The calculations were carried out on the supercomputer Uran in N. N.Krasovskii
Institute of Mathematics and Mechanics (Yekaterinburg). The time step during the numerical
experiments was chosen to be 1 day.

Let us consider the dynamics of changes in the bearing capacity of the pile foundation from
2021 to 2023. To do this, using the developed software, we will determine the bearing capacity
of each of the 229 piles. Let us introduce the concept of the average bearing capacity of all piles,
equal to the sum of the bearing capacities of all piles on the first day of each month, divided
by the number of piles. Fig. 3 shows the change in this characteristic from November 2021 to
October 2023. The bearing capacity of all piles is measured in tf. Note that 1tf = 9806, 65N .

To study the bearing capacity of piles, it is also useful to consider the minimum annual average
bearing capacity, the average annual average bearing capacity, and the maximum annual average
bearing capacity. Fig. 3(b) shows these characteristics. It can be noted that in 2022 there was
a noticeable decrease in the maximum average annual bearing capacity, which is explained by a
warmer winter period compared to the winter period in 2021 (Fig. 4). In 2023, the winter period
became colder than in 2021. In 2022 the maximum average annual bearing capacity increased.
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(a) (b)

Fig. 3. Average bearing capacity (a) and minimum, average and maximum bearing capacities
(b) in 2021, 2022, 2023

Fig. 4. Air temperature in a ventilated crawl space in 2021, 2022, 2023

For the practical use of the obtained average characteristics, the minimum annual average
characteristic is of particular interest, which must be considered when designing and operating
residential buildings in regions with permafrost. Numerical calculations did not record a critical
change in the bearing capacity of the piles for Building I.

3. Discussions and conclusions
To assess the bearing capacity of piles for residential buildings in permafrost regions, a new

model was developed that considers the accumulated ATM data, and a new method for simulating
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the operation of SCDs, which made it possible to evaluate the various characteristics of the
bearing capacity of a specific pile foundation of a residential building. An important point of
this study was the detailed validation of the developed numerical methodology on data obtained
from temperature sensors placed in SAM wells.

Fig. 5 shows the air temperature in a ventilated crawl space in January 2024 from the tem-
perature sensors at SAM station 44 (orange). If the air temperatures in different parts of the
ventilated crawl space generally differ little from each other, then the temperatures on the surface
z = 0, which is a concrete covering, can already differ significantly. For example, a comparison
of surface temperatures at SAM well 44–1 (blue) and at the surface at SAM well 48–2 (yellow)
shows that the difference on some days can reach 15◦C (Fig. 5).

Fig. 5. Air temperature in a ventilated crawl space and surface temperature z = 0 at two points
in January 2024

A similar situation with a significant difference in temperature on the surface z = 0 exists at
other points. Fig. 6 shows changes in surface temperature in January 2024 near SAM well 45–1,
which has a minimum average temperature at point 45–1(0), and near well 48–2, which has a
maximum average temperature at point 48–2(0).

Such differences in surface temperatures can be associated with several factors: utility failures,
snow falling into the ventilated crawl space from outside, different operating efficiency of the
SCDs, and the presence of utilities, which, despite the necessary thermal insulation, can be
additional sources of heat. In any case, to more adequately describe the dynamics of changes
in the temperature regime of the soil around the foundation piles, it is advisable to use a two-
dimensional approximation of surface temperatures, taking into account the accumulated ATM
data and the correct setting of the SCD operation. This approach will also make it possible to
carry out numerical calculations in the event of utility accidents, when the surface temperature
can increase significantly in winter, first due to the influx of water, and then due to its freezing
and the formation of additional thermal insulation of the surface, when a local thermal anomaly
occurs that changes the bearing capacity of the soil. Based on a new algorithm for taking into
account the influence of SCDs and ATM data on the temperature regime of the soil around
foundation piles, software was developed, the validation of which was tested on the available
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Fig. 6. Surface temperature in a ventilated crawl space of Building I in January 2024

data from temperature sensors from SAM wells. A good agreement between the ATM data
and the obtained numerical calculation data was obtained. The greatest difference between the
calculated data and the ATM temperature data was observed in the winter months when the
bearing capacity of the piles is maximum. This difference may be associated with the need to
use the above-described method for setting the temperature on the surface, as well as with the
Gibbs-Thomson effect, which is associated with the presence of unfrozen water in the soil, which
leads to a change in the shape of the interphase boundary and a decrease in the freezing point of
the soil. It was noted in [26] that the deviation of the calculation results from the experimental
data gradually increases with decreasing temperature. In our case, comparison of numerical
calculations and ATM data in September and October (Fig. 2 ) showed good agreement. During
these months, the soil is the warmest after the summer season, and therefore has a minimum
bearing capacity, which is most often used when assessing the reliability of a pile foundation.
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Компьютерное моделирование температурных полей
в грунте и несущей способности свайных фундаментов
зданий на вечной мерзлоте

Михаил Ю. Филимонов
Наталия А. Ваганова

Институт математики и механики им. Н. Н. Красовского
Екатеринбург, Российская Федерация
Уральский федеральный университет
Екатеринбург, Российская Федерация

Давид Ж. Шамугия
Ирина М. Филимонова

Уральский федеральный университет
Екатеринбург, Российская Федерация

Аннотация. Освоение обширных регионов, занятых вечной мерзлотой, сталкивается с проблема-
ми, связанными с потеплением климата, которое способствует деградации вечной мерзлоты. Стро-
ительство жилых домов и их эксплуатация на этих территориях в основном предполагает поддер-
жание грунта под этими сооружениями в мерзлом состоянии на протяжении всего периода их экс-
плуатации. Для этих целей используются свайные фундаменты и вентилируемые подполья. Слож-
ность компьютерного моделирования возникает из-за учета сезонно действующих охлаждающих
устройств, количество которых в конструкции современного здания определяется его размерами и
в среднем может достигать 200 штук. Актуальной задачей является долгосрочное прогнозирование
динамики изменения несущей способности свайного фундамента здания с учетом климатических и
техногенных воздействий на окружающий грунт. Для этих целей были разработаны новая модель
и численный алгоритм исследования динамики изменения несущей способности свай в процессе
эксплуатации здания с учетом данных температурного мониторинга с датчиков температуры, рас-
положенных в термометрических скважинах. Валидация разработанного программного комплекса
проводилась на основе существующих и постоянно поступающих данных мониторинга темпера-
туры грунта до глубины до 10 метров. Сравнение полученных данных мониторинга и расчетных
данных в термометрических скважинах показало значительное улучшение по сравнению с ранее
использованной моделью и программой расчета для данного жилого дома.

Ключевые слова: математическое моделирование, тепломассоперенос, вечная мерзлота.
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Introduction

Under consideration is the parabolic equation

Mu = ut − Lu = ut − div(c(x, t)∇u) + a⃗(x, t)∇u+ a0(x, t)u = f, (1)

where c = diag(c1(t, x), . . . , cn(t, x)) is a diagonal matrix with strictly positive continuous entries,

(t, x) ∈ Q = (0, T )×G, a⃗(x, t) = (a1(x, t), . . . , an(x, t))
T , ∇u =

( ∂u
∂x1

, . . . ,
∂u

∂xn

)T
, n = 2, 3, and

G is a domain in Rn with boundary Γ. The equation (1) is furnished with the initial-boundary
conditions

Bu|S = g(t, x) (S = (0, T )× Γ), u|t=0 = u0(x), (2)

where Bu =
n∑

i=1

νiciuxi
+ σ(t, x)u, with ν being the outward unit normal to Γ, and with the

overdetermination conditions

u(t, bi) = ψi(t) (i = 1, 2, . . . , r), (3)
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where {bi}ri=1 is a collection of points lying in G. It is possible that Γ = Γ0 ∪ Γ1 with Γ0∩Γ1 = ∅,
Γ0,Γ1 are open subsets of Γ, and the condition (2) is given in the form

Bu|S0
= g(t, x), u|S1

= g1(t, x) (Si = (0, T )× Γi, i = 0, 1), u|t=0 = u0(x). (4)

Assume that g(t, x) =
r∑

i=1

αi(t)Φi(x) for some known functions Φj , the problem consists in

recovering both a solution to (1) satisfying (2), (3) (or (4), (3)) and functions αj , j = 1, 2, . . . , r.
Note that any function g can be approximated by the sums of this form for a suitable choice of
basis functions Φi.

Inverse problems of recovering the boundary regimes are classical. They arise in many dif-
ferent problems of mathematical physics, in particular, in the heat and mass transfer theory,
diffusion, filtration (see [1–3]), and ecology [4–9].

A particular attention is payed to numerical solution of the problems (1)–(3) and close to
them. Most of the methods are based on reducing the problems to optimal control ones and
minimization of the corresponding quadratic functionals (see, for instance, [10–16]). However,
it is possible that these functionals can have several local minima (see Section 3.3 in [17]) and
the problem is not always well-posed. Describe some articles, where pointwise measurements
are employed as additional data. Numerical determination of constant fluxes in the case of
n = 2 is described in [11]. Similar results are presented in [18] for n = 1. The three-dimensional
problem of recovering constant fluxes of green house gases is discussed in [4], but numerical results
are presented only in the one-dimensional case. In [5] (see also [6]) the method of recovering
a constant surface flux relying on the approach developed in [19] is described, where special
solutions to the adjoint problem are employed (see also [7,8]). The surface fluxes depending on t
are recovered in [3,14,20,21] in the case of n = 1, and in [13,23–25] in the case of n > 1. The flux
depending on time and spatial variables is reconstructed in [16, 26]. The case of flux depending
on space variables is discussed in [25]. In this article the flux is sought a finite segment of a
series with the use of piecewise linear basis of the finite element method. In literature, there are
results in the case in which additional Dirichlet data are given on a part of the boundary and the
flux is reconstructed with the use of these data on another part of the boundary (see [27]). The
article [15] is devoted to the recovering of the flux h(t, x)f(x) (the function f(x) is unknown)
with the use of final or integral overdetermination data. There is a limited number of theoretical
results devoted to the problem (1)–(3). If the points {bi}ri=1 are interior points of G then the
problem is ill-posed and this fact was observed in many articles (see [28]).

In this article we describe some new theoretical results (see [29]) as applied to this problem,
expose a new algorithm of calculating the flux based on our theoretical arguments and describe
the results of numerical experiments. The method relies on the finite element method in the space
variables and the finite difference method in time. The number of summands in the reprentatation
of the function g depends on the number of measurements. The results of numerical experiments
are quite satisfactory and the procedure is stable under small perturbations.

1. Preliminaries

The notations of the Sobolev spaces W s
p (G) and W s

p (Q) are conventional (see [30, 31]).
Given an interval J = (0, T ), put W s,r

p (Q) = W s
p (J ;Lp(G)) ∩ Lp

(
J ;W r

p (G)
)

and W s,r
p (S) =

W s
p (J ;Lp(Γ)) ∩ Lp

(
J ;W r

p (Γ)
)

[30]. By the norm of a vector, we mean the sum of the norms of
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its coordinates. Denote by Bδ(b) the ball of radius δ centered at b. The symbol ρ(X,Y ) stands
for the distance between the sets X,Y .

The definition of the inclusion Γ ∈ Cs, s > 1, can be found in [31, Chapter 1]. The coefficients
of the equation (1) are assumed to be real. We consider an elliptic operator L, i.e., there exists
a constant η0 > 0 such that ci(t, x) > η0 for all (t, x) ∈ Q and i = 1, . . . , n.

2. Recovering of the heat flux

Under consideration is the conventional heat and mass transfer model (1). We take G =

Ω × (0, Z), with Ω = (0, X) for n = 2 and Ω is a bounded domain with smooth boundary
(∂Ω ∈ C2) for n = 3. Let Γ0 = {x ∈ Γ : xn = 0} = {(0, x′) : x′ ∈ Ω} (x′ = (x1, . . . , xn−1))

and let S0 = (0, T )× Γ0. The problem is to find a solution to the equation (1) and the function

g =
r∑

i=1

αi(t)Φi(x) such that

u(bi, t) = ψi(t), i = 1, 2, . . . , r, bi ∈ G, (5)

u|t=0 = u0(x), cnuxn
|S0

= g(t, x), u|S\S0
= 0. (6)

One or more boundary conditions on S \ S0 can be changed. This inverse problem arises in the
problem of evaluation of the greenhouse gases emission from wetlands (see [4]).

We now expose some consequences of the results in [29]. Despite the fact that they refer
to the model case when c is the identity matrix and the remaining coefficients are independent
of t, they are rather sharp and we think that they are valid in more general situation as well.
Moreover, the conditions on the data below are actually used in the numerical algorithm. We
consider the model problem

ut + Lu = f(t, x), Lu = −∆u+

n∑
i=1

ai(x)uxi
+ a0(x)u, (7)

u|t=0 = u0(x), uxn
|S0

= g(t, x), u|S\S0
= 0, (8)

u(t, bi) = ψi(t) (i = 1, 2, . . . , r). (9)

As before, the problem consists in recovering both a solution to (7) satisfying (8) and (9) and

functions αi, i = 1, 2, . . . , r, characterizing the function g =
r∑

i=1

αi(t)Φi(x). We assume that

bi ∈ K = {x ∈ G : xn < ρ(x,Γ \ Γ0)}. (10)

Let b′i = (bi 1, . . . , bi n−1, 0), where bij is the j-th coordinate of the point bi. It is naturally to
assume that b′i ̸= b′j for i ̸= j. Let Gδ be the δ-neighborhood about the points b′i (i = 1, 2, . . . , r).
Denote Γδ = Gδ ∩ Γ0. Оur conditions for the data have the form

ai ∈W 2
∞(G) (i = 1, . . . , n), a0 ∈ L∞(G), (11)

u0(x) ∈W 1
2 (G), f ∈ L2(Q), (12)

Φi(x
′) ∈W

1/2
2 (Γ0), suppΦi ⊂ Ω, (13)

there exists δ0 > 0, δ0 < mini ρ(bi,Γ \ Γ0) such that

Φi(x) ∈W 1
2 (Γδ0) for n = 2, Φi(x) ∈W 2

2 (Γδ0) for n = 3, i = 1, . . . , r, (14)
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a0 ∈W 1
∞(Gδ0 ∩G). (15)

Under the conditions (11), (12), there exists a unique solution w0 to the problem (7), (8),
where g = 0, such that w0 ∈ W 1,2

2 (Q) (see [33]). Changing the variables w = u− w0, we obtain
the simpler problem

wt + Lw = 0, wxn |S0 = g(t, x), w|S\S0
= 0, w|t=0 = 0, (16)

w(bi, t) = ψi(t)− w0(t, bi) = ψ̃i(t), i = 1, 2, . . . , r. (17)

We assume that the functions ψ̃i(t) admit the representations

ψ̃i(t) =

∫ t

0

Vδi(t− τ)ψ0i(τ)dτ, ψ0i ∈ W̃
n/4
2 (0, T ) (n = 2, 3), (18)

where Vγ(t) =
e−γ2/4t

4πt
for n = 2 and Vγ =

γe−γ2/4t

2
√
πt3/2

for n = 3. Denote by Ψ the matrix with

the entries Ψij = Φj(b
′
i) (i, j = 1, 2, . . . , r) and assume that

detΨ ̸= 0. (19)

Theorem 1. Assume that the conditions (10)–(14), (18), (19), and (15) for n = 3 hold. Then
there exists a unique solution to the problem (7)–(9) such that u ∈W 1,2

2 (Q), αi(t) ∈W
1/4
2 (0, T )

(i = 1, 2, . . . , r).

Proof. The claim results from Theorem 5 in [29]. First of all, we note that in [29] Γ ∈ C2.
Nevertheless, the arguments of the proof remain valid since W 1,2

2 (Q)-solvability of the boundary
value problem (7), (8) holds. The well-posedness condition from [29] is reduced to the condition
(19). The condition (10) ensures that the sets {b ∈ Γ : ρ(bj ,Γ) = |bj − b|} consist of one point
b′j ∈ Γ0 and the conditions (10), (13), (14), (18), (19) guarantee the fulfillment of other conditions
of Theorem 5 in [29].

Note that the condition (18) is sharp and cannot be weakened. 2

3. Numerical algorithm

Describe the numerical algorithm. Consider the case of n = 2. We employ FEM (the finite
element method). We need to find the functions {αi(t)}. As for the functions Φi, we can use
the piecewise linear basis of FEM, in this case we obtain a piecewise linear approximation of g.
Sometimes, it is better to use smoother function. We use some analog of the FEM basis. Define
a collection of numbers x11 < x21 < . . . , xr1. Let x01 = ε > 0, xr+1

1 = X − ε, with ε a sufficiently
small parameter. Let δi = (xi+1

1 − xi−1
1 )/2, i = 1, 2, . . . , r. Assign

Φi(x1) =


1

2

(
1 + cos

(
π

δi

(
x1 −

xi−1
1 + xi+1

1

2

)))
, x1 ∈

[
xi−1
1 , xi+1

1

]
0, x1 ̸∈

[
xi−1
1 , xi+1

1

] ∈W 2
∞(0, X) (20)

for i = 1, 2, . . . , r. Make an additional change of variables

v = u− Φ, Φ =

r∑
i=1

ψi(t)
x21(x1 −X)2

∏
j ̸=i(x1 − xj1)

(xi1)
2(xi1 −X)2

∏
j ̸=i(x

i
1 − xj1)

(Z − x2)

(Z − xi2)
. (21)
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The function v is a solution to the problem

Mv = f −MΦ = f0, v(bi, t) = 0, i = 1, 2, . . . , r, v|t=0 = u0(x)− Φ(0, x), (22)

c2vx2 |S0 = g(t, x1)− g0(t, x1) = g̃, v|S\S0
= 0, g0 = c2(t, x1, 0)Φx2(t, x1, 0). (23)

Describe the method. Construct a triangulation of the domain G and the corresponding basis
{φi}Ni=1 of FEM. Denote the nodes by {yi}. We look for an approximate solution in the form

v =
N∑
i=1

Ci(t)φi. For convenience, we assume that the points bi = (bi1, b
i
2) (i = 1, 2, . . . , r) agree

with the nodes yN−r+1, . . . , yN . The functions Ci(t), i = 1, 2, . . . , N , are a solution to the system

MC⃗t +KC⃗ = −F⃗ + f⃗0, C⃗ = (C1, C2, . . . , CN )T , (24)

where

F⃗ =

(∫ X

0

g(t, x1)φ1(x1, 0) dx1, . . . ,

∫ X

0

g(t, x1)φN (x1, 0) dx1

)T

,

and the coordinates of the vector f⃗0 are of the form

fi = (f0(t, x), φi) +

∫ X

0

g0(t, x1)φi(x1, 0) dx1, (f0(t, x), φi) =

∫
G

f0(t, x)φi dx.

The matrices M and K have the entries Mij = (φi, φj) =
∫
G

φi(x)φj(x) dx and

Kjk = (c1(t, x)φkx1
, φjx1

) + (c2(t, x)φkx2
, φjx2

) + (a(t, x)∇φk, φj) + (a0(t, x)φk, φj),

respectively. We have that C⃗(0) = v0. A solution to the system (24) is defined by the finite
difference method. Define the step in time τ = T/m and replace (24) with the system

M
C⃗i+1 − C⃗i

τ
+Ki+1C⃗i+1 = −F⃗i+1 + f⃗i+1, C⃗i = (C1

i , . . . , C
N
i )T , i = 0, 1, 2, . . . ,m− 1, (25)

where Ck
i ≈ Ck(τi), F⃗i ≈ F⃗ (τi), f⃗i = f⃗0(τi), Ki = K(τi). The system (25) can be written as

follows:

Ri+1C⃗i+1=−τF⃗i+1+τ f⃗i+1+MC⃗i, C
k
i =Ck(τi), C⃗i = (C1

i , . . . , C
N
i )T , i=0, 1, 2, . . . ,m−1, (26)

where Ri+1 =M + τKi+1. Assign α⃗i = (α1
i , . . . , α

r
i )

T , α⃗i ≈ ⃗̃α(τi), αk
i ≈ α̃k(iτ).

In view of (22), we must have CN−r+i
k = 0 (i = 1, 2, , . . . , r). Assign Ck

0 = v0(bk)

(k = 1, . . . , N). The numbers αk
0 are solutions to the system

r∑
i=1

αi
0Φi(x

k
1) = c2(0, x1, 0)u0x2

(b′k). (27)

In dependence of smoothness of a solution we can require the consistency conditions
r∑

i=1

αi
0Φi(x1) = c2(0, x1, 0)u0x2(x1, 0), ∀x1 ∈ (0, X),

with αi
0 a solution to the system (27). But they are not necessary, for example, for solutions

u ∈W 1,2
2 (Q). We also assume that

det {Φi(b
k
1)}rk,i=1 ̸= 0, ψi(t) ̸= 0 ∀t, i. (28)
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Assume that we have found the vectors α⃗i, C⃗i. We seek the quantity C⃗i+1 as a solution to the
system

Ri+1C⃗i+1 = −τBα⃗i+1 + τ f⃗i+1 +MC⃗i, (29)

where N×r-matrix B has the entries bkj =
X∫
0

Φj(x1)φk(x1, 0) dx1 (j = 1, 2, . . . , r, k = 1, . . . , N).

The vector α⃗i+1 is determined from the system

τBi+1α⃗i+1 = τΦ0R
−1
i+1f⃗i+1 +Φ0R

−1
i+1MC⃗i (30)

where the matrix Bi+1 = Φ0R
−1
i+1B

i+1 of dimension r × r, where Φ0 is a r × N -matrix whose
first N − r columns are occupied by zeros and and the last r columns is the identity matrix
of dimension r × r. The matrix Bi can be singular (with small elements). To improve the
convergence, we employ the Tikhonov regularization. So we replace the system (29) with the
system

τ(B∗
i+1Bi+1 + ε)α⃗i+1 = τB∗

i+1Φ0R
−1
i+1f⃗i+1 +B∗

i+1Φ0R
−1
i+1MC⃗i, ε > 0, (31)

where B∗
i+1 is the adjoint matrix.

4. Program implementation and results of numerical
experiments

In this section, we analyze the results of numerical experiments for several groups of input
data. We will consider the dependence of accuracy of determining the coefficients αi and the
function u on the number N of points of the triangulation grid, the number of the overdetermi-
nation points bi and the distance l between them. The coefficients in (1) are defined as follows:
a0 = 1/(t + 1), a1 = x, a2 = y, c1 = x + 2, c2 = y + 2. Characteristics of the computer: Pro-
cessor: Intel(R) Xeon(R) CPU E5-2678 v3 @ 2.50GHz (2 processors); RAM: 64.0 GB; System
type: Windows 10 Pro 64-bit operating system.

First of all, we construct some test data. To define test functions, we construct a solution u to
the direct problem (1), (6) with the known boundary condition (6) and the function g depending
on the known functions Φi and αi. Next, we take a collection of points bi and determine the
data (5). Solving the inverse problem (1), (5), (6), we find a solution u and the functions {αi}.
Comparing given function {αi} and obtained after calculations, we can estimate the convergence
of the algorithm. To abbreviate the exposition, only graphs of the functions constructed and the
results of calculating the parameters αi will be presented.

Each experiment includes sequential steps:
- Setting the number and coordinates of overdetermination points and the functions αi;
- Initialization of the domain for constructing a solution to the direct and inverse problems;
- Definition of service arrays of points;
- Solving the direct problem (1), (6);
- Construction of the functions Φi and the auxiliary function Φ;
- Solving the inverse problem (22)–(23), restoring the solution u and the function αi.
Present the software implementation for the first group of data, for the rest we will present

only pivot tables.
For the first group of experiments, we take r = 3. The overdetermination points bi

have the coordinates: (0.2; 0.2), (1; 0.5), and (1.8; 0.8). We take α1 = t + 2, α2 = (t − 2)2, and
α3 = (t+ 1)3.
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Experimentally, it was found that the change in the number of grid points in time m prac-
tically does not affect the accuracy of the calculations, so we take it equal to 100. It was also
found that with an increase in the number of time points m, it is necessary to decrease the
regularization parameter ε, for example, for m = 200, you need to take ε 6 10−10, otherwise the
algorithm will diverge. For all groups of experiments, we take the parameter ε = 10−7.

1) As the domain of constructing the solution to the problem (1), (5), (6), we take a rectangle
with sides A = 2 and B = 1 located along the axes x1 and x2, respectively. The lower left corner
of the rectangle is at the point (0; 0), we will use this domain for all groups of experiments. Let’s
add to the domain r circles with radii R = 0.1 and centered at the points bi.

Using Delaunay triangulation, we get the first mesh Z0 with 214 nodes. The new grids
are obtained by dividing each triangle of the previous grid into 4 parts, we get Z1 = 812 and
Z2 = 3163, the Fig. 1.

a) b) c)

Fig. 1. Zone with nodes a) Z0 = 214; b) Z1 = 812; c) Z2 = 3163

2) Further, after constructing the triangulation mesh, it is necessary to determine the collec-
tions of indices of points, including the points bi.

3) The time step is defined as τ = T/m. To solve the direct problem (1), (6), we define the
right-hand side f = 1 (see (1)), the initial condition u0 = 1 and boundary function g assuming
that αi are known. The functions Φ, Φi, and the respective function g are constructed in accord
with the formulas from the previous section (see (21), (20)). Note that with these almost arbitrary
initial data, the consistency conditions at t = 0, x2 = 0 are not fulfilled. This gives rise a large
oscillation of a solution at t = 0. So, it is necessary to cut off a part of the solution that has a
large error at the initial time points which arise in the calculations. One more variant which was
used is to define the time shift variable as τs = 20 · T/m. It is necessary to extend the time line
by changing the start point to −τs · T/m. With the shift in time, we get m+ τs +1 time points.
This stage is not obligatory.

4) A solution to the direct problem (1), (6) is defined by the formulas of the previous section,
except for the equation (26) which is replaced with

C⃗i+1 = (Mi+1 + τKi+1)
−1 · (−τG⃗i+1 + τF⃗i+1 +Mi+1C⃗i), C

k
i = Ck(τi), (32)

where C⃗j = (C1
j , . . . , C

N−lp−tp−rp
j )T , j = 0, 1, 2, . . . ,m+ τs.

5) We calculate the functions MΦ, f0 (see (22)), and the first time derivative of the data
ψi
t = (ψi((j + 1)τ)− ψi(jτ))/τ .

6) For further analysis of the results of solving the problem (22)–(23) and restoring the solution
u, we introduce the following quantities that describe the calculation errors: the parameter
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εα = maxi(maxj |αj(iτ)−αj
i |), where the numbers αj

i are the results of calculations, j = 1, . . . , r;
εu = maxi,j |ui,j − u(yi, τj)| is the error in calculating the concentration of a pollutant, where
i = 1, 2, . . . , N and j = 1, 2, . . . ,m. Let Tτ be the total running time of the algorithm, including
the time to solve the direct problem, in seconds. The calculation results for three previously
defined grids are presented on the Fig. 2.

a) b) c)

Fig. 2. The results of calculations of functions αi on the grids a) Z0; b) Z1; c) Z2

It is quite natural that an increase in the number of nodes leads to an increase in the accuracy
of calculations. In this case, the calculation error εα, εu and the calculation time Tτ for three
grids, respectively, are equal to (1.7116, 0.0996, 74), (0.4589, 0.0285, 238), (0.1306, 0.0082, 1052).
As is easily seen, the error is inversely proportional to the number of nodes.

Even in the case of the grids Z0 and Z1, solutions obtained repeat the profile of the de-
sired solution. In this case, taking into account the increasing computation time, in subsequent
experiments we will use Z0.

For the second group of experiments, we take one overdetermination point and the
function α1 = log(t+ 1). The other data are the same.

We present a summary table indicating a different number and coordinates of overdetermi-
nation points, the functions αi, received errors, and calculation time, Tab. 1.

Table 1. Summary table

No bi εα εu τs
1 (0.5;0.3) 0.0303 0.0037 35.7
2 (0.5;0.5) 0.0384 0.0044 35.8
3 (0.5;0.7) 0.0572 0.0056 35.4
4 (1;0.3) 0.0248 0.0041 38.1
5 (1;0.5) 0.0315 0.0053 39.2
6 (1;0.7) 0.0475 0.0065 37.9
7 (1.5;0.3) 0.0374 0.0059 37.6
8 (1.5;0.5) 0.0443 0.0078 36
9 (1.5;0.7) 0.0679 0.0098 36.7

According to the results obtained, it can be seen that, despite the use of the grid Z0, the
solutions are quite accurate. The error increases as the distance from the lower bound increases,
which corresponds to the theoretical results (Theorem 1).
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For the next part of the experiments, we will add random noise to each point of the array
of the right-hand side vector, the noise value will be denoted by nz(i, j). Thus we get f(i, j) =
f(i, j) · (1 + nz(i, j)), with f(i, j) the right-hand side in the system, the results are presented in
Fig. 3. The coordinates of overdetermination point (0.5; 0.3) and all other parameters are the
same.

a) b)

Fig. 3. Result of calculations of the function α1 on a grid with noise a) nz = 25%; b) nz = 50%

Despite the introduced noise, the algorithm still shows good convergence, the calculation
errors are εα, εu: (0.19, 0.009) and (0.35, 0.017), respectively.

For the third experimental group, form a table with data for two points with the required
functions α1 = (t− 2)2 and α2 = log(t+ 1). The remaining data are the same.

Table 2. Summary table

No bi εα εu τs
1 (0.5; 0.3), (1; 0.3) 0.074 0.0067 48.6
2 (0.5; 0.3), (1; 0.5) 0.094 0.0087 50.8
3 (0.5; 0.3), (1; 0.7) 0.149 0.0154 51.7
4 (0.5; 0.3), (1.5; 0.3) 0.058 0.005 52.4
5 (0.5; 0.3), (1.5; 0.5) 0.083 0.0063 53.1
6 (0.5; 0.3), (1.5; 0.7) 0.145 0.011 52.5
7 (0.5; 0.5), (1; 0.3) 0.048 0.0047 50.6
8 (0.5; 0.5), (1; 0.5) 0.077 0.0069 50.7
9 (0.5; 0.5), (1; 0.7) 0.129 0.0097 49.7
10 (0.5; 0.5), (1.5; 0.3) 0.038 0.0046 54.5
11 (0.5; 0.5), (1.5; 0.5) 0.069 0.0052 53.6
12 (0.5; 0.5), (1.5; 0.7) 0.12 0.0083 52.5
13 (0.5; 0.7), (1; 0.3) 0.097 0.0086 49.9
14 (0.5; 0.7), (1; 0.5) 0.072 0.0057 50.1
15 (0.5; 0.7), (1; 0.7) 0.067 0.005 49.5
16 (0.5; 0.7), (1.5; 0.3) 0.054 0.0037 49.9
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According to the data obtained, it is possible to confirm the conclusion made earlier that the
distance between the points does not affect the accuracy of the calculation. Also, an increase in
the number of overdetermination points and the unknown functions αi increases the calculation
error.

This work was supported by the Russian Science Foundation and the Government of the
Khanty-Mansiysk Autonomous Okrug-YUGRA (Grant no. 22-11-20031).
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Восстановление потока на границе области по точечным
замерам

Егор И. Сафонов
Сергей Г.Пятков

Даниил А. Парунов
Югорский государственный университет
Ханты-Мансийск, Российская Федерация

Аннотация. Мы рассматриваем обратные задачи восстановления поверхностных потоков на гра-
нице области по точечным замерам. Задача некорректна по Адамару. Мы описываем точные усло-
вия, гарантирующие существование и единственность решений в пространствах Соболева и строим
численный метод, основанный на методе конечных элементов и методе конечных разностей по вре-
мени. Представлены результаты численных экспериментов, которые вполне удовлетворительны и
процедура устойчива по отношению к малым возмущениям.

Ключевые слова: поверхностный поток, регуляризация Тихонова, обратная задача, точечное
переопределение, конвекция-диффузия.
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Abstract. The new phenomenological model of a prediction of perpendicular anisotropy index of charged
particle pitch angle distribution at geostationary (geosynchronous) orbit (GEO) in the Earth’s magneto-
sphere, and also in any circular orbit depending from the local time LT in an orbit and the geomagnetic
activity index Kp is offered. Comparison of model with the numerous experimental data is lead. It
is proved, that the general analytical dependence of perpendicular anisotropy index of charged particle
pitch angle distribution on GEO received as a first approximation can be used for conditions of mag-
netically quiet time for quantitative forecasts and comparisons with experimental data on GEO. The
nonlinear effect is theoretically predicted for a difference between the maximal value of perpendicular
anisotropy index of charged particle pitch angle distribution and the minimal value of perpendicular
anisotropy index (in local midnight LT = 0 h) on GEO from the Kp-index of geomagnetic activity.
The nonlinear effect for anisotropy of charged particle pitch angle distribution will be, possibly, to some
extent and on other radial distances from the Earth.
Keywords: geostationary orbit, new model, anisotropy dynamics of charged particles, data of the
CRRES satellite, nonlinear effect.
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Introduction
The charged particle pitch angle distribution is dependence a differential flux of particles j

from a local pitch angle of particles α in the range from 0◦ up to 180◦. It is the important
characteristic for the charged particles in velocity space in the Earth’s magnetosphere.

In the monography [1] for the description different meeting in the magnetosphere of pitch
angle distributions was offered following distribution

j (α) = j⊥ sinγ(α) α, (1)

where j⊥ is the perpendicular (α = 90◦) differential flux of charged particles.
The equation (1) differs from standard by that an anisotropy index (or a parameter) of pitch

angle distribution not is a constant (γ = const), and it is function from α (γ = γ (α)).
For the range of pitch angles 0◦ < α < 90◦ γ (α) it is possible to find under the formula

γ (α) =
ln j (α)− ln j⊥

ln sinα
. (2)

∗smolinsv@inbox.ru
c⃝ Siberian Federal University. All rights reserved
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For α = 90◦ the equation (2) gives the relation 0/0, therefore we find a limit for γ at α→ 90◦,

using the rule of Lopitalya and considering, that
(
dj

dα

)
⊥
= 0

γ⊥ = − 1

j⊥

(
d2j

dα2

)
⊥
. (3)

The perpendicular anisotropy index (parameter) of pitch angle distribution γ⊥, presented to
a general view the formula (3), is the exact indicator of type of pitch angle distribution and
in this its great value. Particularly, if pitch angle distributions are normal or type "head and
shoulders" — γ⊥ > 0. If γ⊥ = 0, it will already correspond isotropic or "flattop" pitch angle
distribution. And at last, pitch angle distributions of type "butterfly". In this case — γ⊥ < 0.
Such representation (3) is exact at definition of the moment of occurrence of butterfly pitch angle
distribution.

The literature on pitch angle distributions of the charged particles and anisotropy of pitch
angle distributions is extensive, for example [1–13]. From the review for last years it is visible,
that statistical and empirical models of anisotropy of charged particles pitch angle distributions
are, and the analytical mathematical models based on the physics and describing a perpendicular
anisotropy index of charged particles pitch angle distribution, possibly, no.

Therefore the purpose of the given work is mathematical modeling an anisotropy index of
charged particles pitch angle distribution at geostationary (geosynchronous) orbit (GEO) in the
Earth’s magnetosphere in the form of: 1) the new mathematical model based on the physics
and describing a perpendicular anisotropy index of charged particles pitch angle distribution on
GEO depending from the local time LT on GEO and the Kp-index of geomagnetic activity, 2) the
analysis of consequences of the offered analytical model and 3) nonlinear effect for anisotropy of
charged particle pitch angle distribution.

1. Mathematical model
As a first approximation dependence of a perpendicular anisotropy index of charged particles

pitch angle distribution from time γ⊥(t) we shall find from the equation

dγ⊥
dt

=
dγ⊥
dL

dL

dt
. (4)

At carrying out of numerical calculations we shall assume in the equation (4), that
dL/dt ≈ ⟨dL/dt⟩. Then, the bounce-averaged radial drift velocity of charged particle motion
in the Earth’s magnetosphere can be determined, for example, for the Earth’s dipole magnetic
field, so [1]: ⟨

dL

dt

⟩
= −Ω

ϕ2
ϕ0
L4 cosϕ, (5)

where L is the dimensionless McIlwain parameter; t is the time; ϕ is the azimuth angle (the local
time LT = 0 h at midnight) or the geomagnetic east longitude in the magnetic equator plane;

Ω =
2π

24
is the angular velocity of the Earth’s rotation in 1/h; ϕ0 = 92 kV; and the dependence

ϕ2, measured in kV, from the index of geomagnetic activity Kp ≡ Kp(t), is determined by the
formula [14]

ϕ2 =
0.045

(1− 0.16Kp+ 0.01Kp2)
3 . (6)

Then the equation (4), taking (5) into account, is written as follows

dγ⊥
dt

+
dγ⊥
dL

Ωϕ2(t)L
4(t) cosϕ(t)

ϕ0
= 0. (7)
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Now, we can add equations that describe the trajectory of the spacecraft (SC) in the gravi-
tational field of the Earth to equation (7). It will be easier if one specifies the trajectory (SC) in
a parametric form. In this case, for a GEO (for a circular orbit) we get

L(t) = 6.6; ϕ(t) = Ωt+ φm, (8)

where φm = const will be determined from a comparison with experimental data in a GEO and
t is already the local time LT along the GEO in hours.

In the future for a spacecraft with any circular orbit or with an elliptical orbit, such a
replacement in (7) can be done similarly to (8).

The equations (7), (8) represent the general formulation of new phenomenological model of a
prediction of perpendicular anisotropy index dynamics of charged particle pitch angle distribution
on GEO in the Earth’s magnetosphere.

As a result, using (6)–(8), we receive for E = const, Kp = const, L = const

dγ⊥
dt

= −CΩcos(Ωt+ φm), (9)

where
C =

∣∣∣∣dγ⊥dL
∣∣∣∣ ϕ2ϕ0L4 (10)

and at such definition (10) C > 0 always.

If in (10)
dγ⊥
dL

< 0, the equation (9) will be transformed to the equation

dγ⊥
dt

= CΩcos(Ωt+ φ−
m). (11)

Then the analytical solution of the differential equation (11), (10) will look like

γ⊥(t) = C[sin(Ωt+ φ−
m)− sinφ−

m] + γ⊥0, (12)

where γ⊥0 is the perpendicular anisotropy index of charged particle pitch angle distribution at
t = 0, i.e., when the local time along the GEO is LT = 0 h at midnight.

If in (10)
dγ⊥
dL

> 0 then the analytical solution of the differential equation (9), (10) looks like

γ⊥(t) = −C[sin(Ωt+ φ+
m)− sinφ+

m] + γ⊥0. (13)

If Kp(t) ̸= const and (6) ϕ2(t) ̸= const (a dependence from time t can be complex), we shall
receive, using (10), value C∗

C∗ =
L4

ϕ0
(14)

and the following general formula for modeling (predicting) calculations γ⊥(t) on GEO and in
any circular orbit SC

γ⊥(t) = ±C∗Ω

∫ t

0

dγ⊥
dL

ϕ2(t) cos(Ωt+ φ+
m)dt+ γ⊥0, (15)

as generally a gradient
dγ⊥
dL

= f(L,LT,E,Kp, t).
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2. Experimental data and calculations
For definition at geostationary (geosynchronous) orbit of concrete value φ+

m = const we use

comparison with the numerous experimental data [5], received on GEO. For
dγ⊥
dL

> 0 on these
experimental data the maximum of perpendicular anisotropy index of charged particle pitch angle
distribution γ⊥(tm) (13), when tm = 13 h LT on GEO. Thus, in the further tm will designate
the moment of time in hours LT, when the perpendicular anisotropy index of charged particle
pitch angle distribution on GEO has the maximal value.

Further in a point of a maximum the first derivative (9)
dγ⊥
dt

(t = tm) = 0, therefore the
condition should be satisfied

cos(Ωtm + φ+
m) = 0. (16)

Considering, that tm = 13 h, the condition (16) is carried out, when Ωtm + φ+
m = 3π/2.

Whence follows, that

φ+
m =

π(18− tm)

12
. (17)

Under the formula (17) for experimental data [5] value φ+
m = 5π/12 rad, γ⊥0 = 0.1860,

γ⊥(tm) = 1.5059 for Kp = 0 (Fig. 1), and for Kp = 3 γ⊥0 = 0.0, γ⊥(tm) = 1.8353 (Fig. 2).
For the moment of time t = tm following analytical dependence turns out γ⊥(tm) (13)

for perpendicular anisotropy index of charged particle pitch angle distribution on GEO, when
Kp ≈ const, for example, within one day

γ⊥(tm) = −C[sin(Ωtm + φ+
m)− sinφ+

m] + γ⊥0 = C[1 + sinφ+
m] + γ⊥0, (18)

and for the intermediate moment of time t = tp it is received following dependence γ⊥(tp)

γ⊥(tp) = −C[sin(Ωtp + φ+
m)− sinφ+

m] + γ⊥0. (19)

Further we shall find the useful formula in the form of a difference of two equations (18)
and (19)

γ⊥(tm)− γ⊥(tp) = C[1 + sin(Ωtp + φ+
m)]. (20)

The formula (20) is useful to a finding of a constant C, when at t = 0 value γ⊥0 unknown, and
other values in (20) known from experimental data. Then knowing C, value γ⊥0 can find from
the equation (18). On the other hand at tp = 0 equation (20) passes in the equation (18) as it
and should be. If value γ⊥0 known, the constant C can be found at once from the equation (18).

Thus, determining φ+
m (17), γ⊥0 and C, for

dγ⊥
dL

> 0 final analytical dependence turns out
(13) for perpendicular anisotropy index of charged particle pitch angle distribution on GEO,
when Kp ≈ const, for example, within one day.

To compare dependence from local time γ⊥(t) (13), (17) with averaged on LT and energy E
experimental data for electrons [5] on GEO, let’s make modeling calculations (as a first approx-
imation) for Kp=0 and Kp=3. Results of calculations are presented on Fig. 1 and Fig. 2.

For the index of geomagnetic activity Kp = 0 (Fig. 1) at comparison (13) with experimental
data good conformity is received, as on numerous data [5] the averaged values of an anisotropy
index γ⊥(t) for 0 6 Kp 6 1 have the maximal values approximately in the moment of time
tm = 13 h LT on GEO and they rather are not sensitive to value of kinetic energy E. For the
geomagnetic activity index Kp = 3 (Fig. 2) at comparison more good conformity with numerous
data [5] of the averaged values of an anisotropy index γ⊥(t) for 2 6 Kp 6 4 is received.

The divergence is connected with experiment by that dependence γ⊥(t) (13) while is cer-
tain only as a first approximation. Thus, the general analytical dependence of perpendicular
anisotropy index of charged particle pitch angle distribution on GEO γ⊥(t) (13), (17), received
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Fig. 1. The continuous line is modeling analytical dependence of perpendicular anisotropy index
of electron pitch angle distribution on GEO γ⊥(t) (13) from the local time LT for the index of
geomagnetic activity Kp = 0. Circles are designated the averaged experimental data [5]

Fig. 2. The continuous line is modeling analytical dependence of perpendicular anisotropy index
of electron pitch angle distribution on GEO γ⊥(t) (13) from the local time LT for the index of
geomagnetic activity Kp = 3. Circles are designated the averaged experimental data [5]

as a first approximation, can be used for conditions of magnetically quiet time for quantitative
forecasts and comparisons with experimental data on GEO.
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Further, for
dγ⊥
dL

> 0 and GEO we shall find a modeling (predicted) difference between the
maximal value γ⊥(tm) and the minimal value γ⊥(0) ≡ γ⊥0 (at midnight) depending on Kp-index
of geomagnetic activity, using for this purpose (18), (17), (10), (6). As a result the following
simple equation turns out

γ⊥(tm)− γ⊥0 = C[1 + sinφ+
m]. (21)

The right part of the equation (21) should be more zero since on experimental data the
difference between the maximal value γ⊥(tm) and the minimal value γ⊥0 always is more than
zero.

For an example we shall lead a modeling calculation for electrons on GEO. Thus, interesting
nonlinear dependence (21), if approximately within one day Kp = const or Kp ≈ const, which
is presented on Fig. 3 turns out.

Fig. 3. A continuous line is modeling analytical dependence of a difference of perpendicular
anisotropy indexes of electron pitch angle distribution on GEO γ⊥(tm) − γ⊥0 (21) from Kp-
index of geomagnetic activity. Circles are designated the averaged experimental data [5]

Thus it is necessary to notice, that the right part of the equation (21), namely C (10), depends

in this case as well from a gradient
dγ⊥
dL

(Kp). Therefore, to receive the best consent (21) with
the averaged experimental data on GEO [5], we shall make the following. First, we shall believe
dependence ϕ2 from Kp-index of geomagnetic activity under the formula (6) [14] fair. Secondly,

using the method of the least squares, we shall find dependence of a gradient
dγ⊥
dL

from Kp-index
of geomagnetic activity for conditions of magnetically quiet time (0 6 Kp 6 3) in the following
form

dγ⊥
dL

(L = 6.6,Kp) = 0.7234− 0.5113Kp+ 0.2068Kp2 − 0.0305Kp3. (22)

From here follows, that the offered technique allows to predict (to forecast) very important

dependence of a gradient
dγ⊥
dL

from Kp-index of geomagnetic activity. With dependence (22)
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very good consent (21) with the averaged experimental data [5] has turned out, that evidently
proves to be true Fig. 3. Still it is necessary to add, that concrete dependence (22) on GEO is
received (forecast) for the first time. The received dependence (22) also shows, that on GEO

for a range (0 6 Kp 6 3) the gradient
dγ⊥
dL

(L = 6.6,Kp) is more than zero that corresponds
to a prospective condition on a gradient prior to the beginning of calculations. And for other

distances (1 < L 6 6.1) dependence of a gradient
dγ⊥
dL

from Kp-index is visually presented, for
example in [11].

Such theoretical prediction (21), in general, it is necessary to check in the further on corre-
sponding experimental data. And still, in the equation (21) value C (10) is certain while as a first
approximation, but in the future C can specify on experimental data, using the equation (21).

Thus, the received nonlinear dependence (21) can be considered as a theoretical prediction of
nonlinear effect for a difference between the maximal value of a perpendicular anisotropy index
of charged particle pitch angle distribution γ⊥(tm) and the minimal value of a perpendicular
anisotropy index γ⊥(0) ≡ γ⊥0 (at midnight) on GEO (L = 6.6) from Kp-index of geomagnetic
activity.

The presented nonlinear effect for anisotropy of charged particle pitch angle distribution (21)
will be, possibly, to some extent and on other radial distances from the Earth, i.e. at other values
of the McIlwain parameter L.

For some experimental data when a gradient
dγ⊥
dL

< 0, the following (similar previous) for-
mulas and the equations are received. In this case for tm = 13 h the condition (16) is carried
out, when Ωtm + φ−

m = 5π/2. Whence follows, that

φ−
m =

π(30− tm)

12
. (23)

Under the formula (23) value φ−
m = 17π/12 rad. For the moment of time t = tm following an-

alytical dependence γ⊥(tm) (12) turns out for perpendicular anisotropy index of charged particle
pitch angle distribution on GEO, when Kp ≈ const, for example, within one day

γ⊥(tm) = C[sin(Ωtm + φ−
m)− sinφ−

m] + γ⊥0 = C[1− sinφ−
m] + γ⊥0. (24)

The first composant in the right part of the equation (24) should be more zero since on
experimental data the difference between the maximal value γ⊥(tm) and the minimal value γ⊥0

always is more than zero.
For the intermediate moment of time t = tp it is received following dependence γ⊥(tp)

γ⊥(tp) = C[sin(Ωtp + φ−
m)− sinφ−

m] + γ⊥0. (25)

Further we find the useful formula in the form of a difference of two equations (24) and (25)

γ⊥(tm)− γ⊥(tp) = C[1− sin(Ωtp + φ−
m)]. (26)

The formula (26) is useful for a finding of a constant C, when at t = 0 value γ⊥0 unknown,
and other values in (26) known from experimental data. Then knowing C, the value γ⊥0 can
be found from the equation (24). On the other hand at tp = 0 the equation (26) passes in the
equation (24) as it and should be. If value γ⊥0 known the constant C can be found at once from
the equation (24).

Thus, determining φ−
m (23), γ⊥0 and C, for

dγ⊥
dL

< 0 final analytical dependence turns out
(12) for perpendicular anisotropy index of charged particle pitch angle distribution on GEO,
when Kp ≈ const, for example, within one day.
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Formulas and the equations for gradients
dγ⊥
dL

< 0 and
dγ⊥
dL

> 0 are interconnected. In
particular, the equation (23) can be presented so

φ−
m =

π(30− tm)

12
=
π(12 + 18− tm)

12
= π +

π(18− tm)

12
= π + φ+

m. (27)

Then, using (27) and the reduction formulas in the trigonometry, it is possible to make
following transitions of the equations: (24) in (18), (25) in (19), and (26) in (20) and thus to
prove interrelation of the equations.

For an example when
dγ⊥
dL

< 0, and tm = 12 LT, in work [13] for the first time have been
used special cases of the formulas and the equations (12), (23)–(26) for comparison to numer-
ous experimental data, received with 1999 on 2007 on GEO. Comparison was made only at a
qualitative physical level. As in [8] the pitch angle anisotropy (in the form of the relation of two
average values) of the Earth’s external radiation belt in the field of GEO in another way was
quantitatively determined, but for very plenty of experimental data. In this work [13] it has been
found, that at tm = 12 LT the value φ−

m = 3π/2 (23). Thus following final analytical dependence
(the special case (12)) has been received for perpendicular anisotropy index of charged particle
pitch angle distribution on GEO, when Kp ≈ const, for example, within one day

γ⊥(t) = C

[
sin

(
Ωt+

3π

2

)
+ 1

]
+ γ⊥0 ≡ 2C sin2

(
Ω

2
t

)
+ γ⊥0. (28)

And for a modeling (predicted) difference between the maximal value γ⊥(12) and the minimal
value γ⊥(0) ≡ γ⊥0 (at midnight) depending on Kp-index of geomagnetic activity more simple
equation (the special case (24)) has been received at φ−

m = 3π/2

γ⊥(12)− γ⊥0 = 2C. (29)

To compare dependence from local time γ⊥(t) (28) with experimental data [8], test (modeling)
calculations have been made [13], for example, for protons with energy E = 120 keV on GEO
for Kp = 3- и Kp = 5.

In the same work [13] for the first time nonlinear effect (29) has been theoretically predicted
for a difference between the maximal value of perpendicular anisotropy index of charged particle
pitch angle distribution (in local midday LT = 12 h) and the minimal value of perpendicular
anisotropy index (at midnight LT = 0 h) on GEO depending onKp-index of geomagnetic activity.

On the whole, results of all calculations for
dγ⊥
dL

< 0 are very in detail presented in [13].

3. Conclusion
1. The new phenomenological model of a prediction of perpendicular anisotropy index of

charged particle pitch angle distribution at geostationary (geosynchronous) orbit (GEO)
in the Earth’s magnetosphere, and also in any circular orbit depending from the local time
LT in an orbit and the geomagnetic activity index Kp is offered.

2. Comparison of model with the numerous experimental data is lead. It is proved, that the
general analytical dependence of perpendicular anisotropy index of charged particle pitch
angle distribution on GEO received as a first approximation can be used for conditions of
magnetically quiet time for quantitative forecasts and comparisons with experimental data
on GEO.
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3. The nonlinear effect is theoretically predicted for a difference between the maximal value of
perpendicular anisotropy index of charged particle pitch angle distribution and the minimal
value of perpendicular anisotropy index (in local midnight LT = 0 h) on GEO from Kp-
index of geomagnetic activity.

4. The technique is offered which allows to predict (to forecast) very important dependence

of a gradient
dγ⊥
dL

from Kp-index of geomagnetic activity. For the first time concrete

dependence of a gradient
dγ⊥
dL

from Kp-index on GEO for conditions of magnetically quiet
time is received (forecast).

5. The nonlinear effect for anisotropy of charged particle pitch angle distribution will be,
possibly, to some extent and on other radial distances from the Earth.
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Нелинейный эффект для анизотропии питч-углового
распределения заряженных частиц на геостационарной
орбите

Сергей В. Смолин
Сибирский федеральный университет

Красноярск, Российская Федерация

Аннотация. Предложена новая феноменологическая модель предсказания перпендикулярного ин-
декса анизотропии питч-углового распределения заряженных частиц на геостационарной (геосин-
хронной) орбите (ГСО) в магнитосфере Земли, а также на любой круговой орбите в зависимости
от местного времени LT на орбите и Kp–индекса геомагнитной активности. Проведено сравнение
модели с многочисленными экспериментальными данными. Доказано, что общая аналитическая
зависимость перпендикулярного индекса анизотропии питч-углового распределения заряженных
частиц на ГСО, полученная в первом приближении, может быть использована для магнитоспо-
койных условий для количественных прогнозов и сравнений с экспериментальными данными на
ГСО. Теоретически предсказан нелинейный эффект для разности между максимальным значени-
ем перпендикулярного индекса анизотропии питч-углового распределения заряженных частиц и
минимальным значением перпендикулярного индекса анизотропии (в местную полночь LT = 0 ч)
на ГСО от Kp–индекса геомагнитной активности. Нелинейный эффект для анизотропии питч-
углового распределения заряженных частиц будет, вероятно, в той или иной степени и на других
радиальных расстояниях от Земли.

Ключевые слова: геостационарная орбита, новая модель, динамика анизотропии заряженных
частиц, данные спутника CRRES, нелинейный эффект.
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Abstract. A computational study of the secondary destruction of a drop of organic water-coal fuel
(OCWS) in a gas flow was carried out. For the first time, the influence of the temperature of an OCWF
drop, which has non-Newtonian properties, on deformation and its further destruction was studied. The
computational study was carried out using a numerical technique based on the VOF method, the LES
model was used to take into account turbulence, and the technology of adapted dynamic meshes was
used to describe the behavior of the interface on the main turbulent scales, which made it possible to
resolve secondary liquid droplets up to 20 µm in size. During the work, the shape of the surface of an
OCWF drop during the destruction process, as well as the structure of the flow near and in the wake
of the drop, were studied. As a result of the calculations, the dependences of the rate of transverse
deformation of the midsection of an OCWF drop for different temperatures were obtained. Judging by
the results, with increasing temperature, the destruction time of an OCWF drop decreases, which has a
beneficial effect on the mixing of OCWF with air.

Keywords: OCWS fuel, secondary destruction of a drop, deformation rate, mathematical modeling,
dynamic mesh adaptation technology.
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Introduction

Currently, special attention is paid to the socio-economic development of the northern and
Arctic regions. This is due to the presence in these regions of large reserves of natural resources,
such as non-ferrous metal ores, gas, oil and coal. Since coal production has been increasing
recently, coal fuel will remain one of the main energy sources in the near future. However, we
should not forget about environmental problems that arise when burning coal, such as emissions
of nitrogen oxides and carbon dioxide into the atmosphere. To reduce harmful effects on atmo-
sphere and environment during energy production, it is proposed to use alternative fuels, such
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as coal-water fuel (CWF), consisting of water and coal dust, or organic water-coal fuel (OCWF),
consisting of water, crushed coal (or combustible waste from its processing ), a small amount of
chemical additives (for example, surfactants, plasticizers) and a petroleum combustible compo-
nent (waste oil) [1]. To burn liquid waste of petroleum origin in its original state, large resources
are needed; according to data [2], waste of petroleum origin and waste oils form masses amount-
ing to millions of tons per year and require further disposal. However, as part of OCWF, these
wastes can be used to intensify ignition and improve rheological characteristics of fuel [3]. Use
of by-products from coal mining and oil refining industries as part of OCWF can help eliminate
waste from these industries and reduce the harmful impact of energy sector on nature. Also, the
advantages of using OCWF include the absence of dust and contamination during storage, trans-
portation and use of fuel. Today, there are technologies for industrial preparation and combustion
of CWF in furnaces of power boilers, experimental methods and numerical modeling algorithms
have been developed, and practical recommendations have been formulated for the combustion
of CWF droplets [4–7]. China and Japan are already using CFC combustion on an industrial
scale. The works [3, 8–10] describe stages of preparation and ignition of OCWF droplets. To
date, data on the maximum ignition and combustion temperatures are presented for a narrow
composition of OCWF, which also complicates the process of studying these types of fuels. The
problem of ignition and combustion of OCWF is not simple, this is due to fact that OCWF is
multicomponent, contains solid particles, and this fuel most often has non-Newtonian properties.
To increase the efficiency of fuel combustion, its preliminary atomization in combustion chamber
is required; the technical task in this case is to optimize the process of destruction of the jet,
which includes changing the shape of the surface of the drop and its secondary destruction. The
development of an effective method for burning OCWF will allow low-quality fossil fuels to be
included in the fuel balance and solve the problem of recycling industrial waste that pollutes the
environment, thereby improving the environmental situation by reducing harmful emissions into
the atmosphere.

One of first experimental works on study of secondary crushing of OCWF droplets was
work [11]. The authors, in work [12], conducted a detailed experimental study of OCWF spray
for a coaxial nozzle, obtained quantitative information on characteristics of OCWF atomization
(average droplet size, shape and spray angle) with and without fuel treatment for purposes of ap-
plication in design of combustion chambers gas turbines burning OCWF. Also, a semi-empirical
correlation was developed to determine average spray particle sizes as a function of various pa-
rameters, including Weber number, Reynolds number, and air-to-fuel mass flow ratio. Heating
of OCWF (flash atomization) has been found to be very effective in reducing droplet size not
only at atmospheric pressure but also at elevated pressure. A detailed experimental study of
fragmentation of individual OCWF droplets was carried out for the first time in the work [13].

The authors studied the morphology of droplets at various Weber numbers, We =
ρgu

2
gd0

σ
and

Ohnesorge numbers, Oh =
η√
σρL

. Later, in the work [7] a numerical study of behavior of an

OCWF drop during secondary crushing was carried out. The results obtained were compared
with experimental data on droplet crushing modes considered in the experimental work [7]. De-
spite the seemingly sufficient number of works in the field of studying OCWF, at the moment
there are practically no works related to the numerical study and establishment of the depen-
dence of the shape of the drop surface, deformation, and destruction time on the rheological
properties of OCWF [14,15].

– 655 –



Anna A. Shebeleva . . . Secondary Destruction of Organic Coal-water Slurry Drops . . .

1. Numerical technique for destruction of OCWF droplets

Since one of ways to obtain data on secondary destruction of a fuel droplet is numerical mod-
eling, in our works [16, 17] we proposed and verified a numerical method for the destruction of
OCWF droplets. This technique showed good agreement between calculated and experimental
data on the destruction of OCWF droplets and the rate of deformation of the droplet. When
developing numerical methodology, information about flow structure and physical properties of
gas-droplet flows was taken into account. It was also taken into account that fluid under consid-
eration can be either a viscous Newtonian or a non-Newtonian viscoplastic fluid, behaviour of
which can be described by one of common rheological models, such as the power-law, Bingham
or Herschel-Bulkley model [17] a numerical model was proposed and verified method of destruc-
tion of OCWF droplets. To simulate destruction of an OCWF drop, the Ansys Fluent software
package was used; the VOF method was used to describe free surface; a detailed description is
presented in work [18]. According to this method, the OCWF and air flow are considered as
a single two-component medium, and phase distribution within computational domain is deter-
mined using marker function F(x,y,z,t). The volume fraction of liquid phase in calculation cell is
taken equal to F(x,y,z,t) = 0 if cell is empty, F(x,y,z,t) = 1 if cell is completely filled with liquid,
0 < F(x,y ,z,t) < 1 if interphase boundary passes through the cell. Tracking movement of in-
terface is performed by solving the equation for transfer of volume fraction of liquid phase in
cell:

∂F

∂t
+ ui

∂

∂xi
F = 0, (1)

where: ui is the velocity vector of a two-phase medium, found from solving a system of hydro-
dynamic equations: the mass conservation equation or the continuity equation:

∂ρ

∂t
+

∂

∂xi
(ρui) = 0, (2)

and equations of motion or the law of conservation of momentum:

∂

∂t
(ρui) +

∂

∂xj
(ρuiuj) =

∂σij
∂xj

− ∂p

∂xi
− ∂τij
∂xj

+ Fsi , (3)

here τij is the subgrid stress tensor, Fs is vector of body forces, p is static pressure, ρ is density
of two-phase medium. Components of viscous stress tensor σij :

σij ≡
[
µ

(
∂ui
∂xj

+
∂uj
∂xi

)]
− 2

3
µ
∂ui
∂xi

δij , (4)

where: µ is dynamic viscosity of two-phase medium. Density and Newtonian viscosity of two-
component medium under consideration are found through volume fraction of liquid in cell
according to the mixture rule:

ρ = ρ1F + (1− F )ρ2, (5)

µ = µ1F + (1− F )µ2, (6)

where: ρ1, µ1 – density and viscosity of liquid, ρ2, µ2 – density and viscosity of gas. The obtained
values of density ρ and viscosity µ are included in equations of motion and determine physical
properties of two-phase medium.

To simulate destruction of droplets, special attention must be paid to surface tension, in this
case, the CSF algorithm [19] was used, which involves introducing into equations of motion an
additional body force Fs, value of which is determined from relation:
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Fs = σk∇F, (7)

where: σ is surface tension coefficient, k is curvature of free surface, which is defined as the
divergence of normal vector:

k = ∇(
n

|n|
). (8)

The normal to free surface is calculated, in turn, as the gradient of volume fraction of liquid
phase in cell:

n = ∇F. (9)

Since turbulent flows are observed during secondary destruction, the LES model was used [20].

τ ij −
1

3
τkkδij = −2µtSij , (10)

Sij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
, (11)

where: τij is subgrid stress tensor, Sij is strain rate tensor, µt is subgrid viscosity. In this work,
we used subgrid viscosity model proposed by Smagorinsky:

µt = ρL2
s |S| , (12)

where: Ls is length of subgrid scale mixing:

Ls = min
(
kd,CsV

1/3
)
, (13)

|S| ≡
√

2SijSij , (14)

here: k is the Karman constant, d is distance to nearest wall, V is volume of the computational
cell Cs is the Smagorinsky constant. In this work, the value Cs = 0.17 was used.

For modeling properties of OCWF, the Herschel-Bulkley rheological model was used:

µ (γ̇) =
kγ̇n + τ0

γ̇
. (15)

where: γ̇ is shear rate, τ0 is yield strength of the viscoplastic fluid, n is flow index, k is fluid
consistency index.

For modeling destruction of droplets, including very small ones, special attention should be
paid to computational mesh. During secondary destruction of OCWF, small drops are formed,
resolution of which is a rather complex process, therefore, the technology of gradient adaptation
of the computational mesh is used in proposed numerical technique. According to this technology,
during calculation process mesh is automatically condensed in area of large solution gradients,
gradient of volume fraction of liquid was chosen as control parameter. At initial moment of time,
there are 40 calculated cells per drop along its diameter. In this case, there are at least 8 cells per
interface. Total number of computational nodes in optimized mesh during calculation process
was close to 12 million nodes.

2. Problem formulation and numerical simulation results

To describe destruction of OCWF droplets in a gas flow, an isothermal formulation of prob-
lem was used. OCWF is a water-coal suspension consisting of 60–70% by weight of coal powder,
30–40% water and a small amount of additives. Depending on composition, OCWF can be ei-
ther a Newtonian or non-Newtonian fluid. In our case, OCWF droplets have non-Newtonian
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properties and are described by the Herschel–Bulkley rheology. The physical properties of fuel
suspensions under consideration were taken from experimental work [21] (see Tab. 1), where ρl is
density of OCWF, τ0 is yield strength of viscoplastic fluid, k is consistency index, n is flow index,
σ – coefficient of surface tension of OCWF, T – temperature of OCWF. Air with following prop-
erties was considered as a gas: ρg = 1.7 kg/m3, µg =1.789·10−5 Pa·s. The computational domain
is a parallelepiped with dimensions 0.026 × 0.026 × 0.08 m. On one of faces of parallelepiped,
an entry condition with a fixed velocity value was set, and on remaining faces of computational
domain, free exit conditions were set. At initial moment of time, at a distance of 0.0015 m from
entrance of computational domain, a spherical drop of OCWF with an initial diameter of d0 =
0.003 m was placed, which was affected by an air flow with a speed of
ug = 50 m/s and deformed drop.

Table 1. Physical properties of OCWF fuel suspensions

T, K ρl, kg/m3 τ0, Pa k, Pa*sn n σ, N/m We
278 1063 47.08 0.66 1 0.247 51.6
298 1062 37.36 0.42 1 0.239 53.3
308 1061 26.57 0.39 1 0.231 55.2
318 1059 16.99 0.32 1 0.223 57.2

The secondary disintegration of an OCWF drop occurs under influence of an aerodynamic
force exceeding surface tension forces. Quantitatively, ratio of these forces is determined by the
Weber number. Value of the Weber number determines regime of destruction of drop.

For developing new fuel combustion technologies or burning fuel at low temperatures (e.g. in
Arctic conditions), its preliminary atomization in combustion chamber is important to increase
contact surface of fuel with the oxidizer. Main task in fuel atomisation and further improvement
of combustion technologies is to determine induction time of destruction, shape of surface and
rate of deformation of droplet at different times.

In Fig. 1 shows regimes of destruction of an OCWF drop at different temperatures, interval
between pictures is ∆t = 500 µs. In Fig. 1a you can see process of deformation of an OCWF
drop at a temperature of 278 K, time of interaction of drop with flow is 11000 µs. At such a low
temperature, drop does not collapse for a long time; a process of deformation and flattening of
drop in a plane normal to gas flow velocity vector is observed. At a time of ≈ 8500 µs, central
part of drop begins to thin out and stretch along flow, upon reaching a time of 11000 µs, complete
destruction of central part of drop is observed.

When the OCWF temperature increases to 298 K, pattern of droplet deformation changes
(Fig. 1b). Interaction time of the drop with flow is 6000 µs. Initially, spherical drop at time
instant ≈ 2000 µs resembles shape of a "disk". Over time, the central part of the "disk" inflates
like a "parachute"; this is clearly visible at time ≈ 5500 µs. This regime of destruction for
a Newtonian liquid was described in detail in the work [22], authors write that this regime of
destruction for Newtonian liquids exists in the range of Weber numbers from 12 to 50. In this
case, when destruction of a non-Newtonian drop of OCWF at temperature 298 K, Weber number
is We = 53.3.

In Fig. 1c shows pictures of destruction of a drop of OCWF at a temperature of 308 K. The
drop is destroyed according to a scenario close to previous case (see Fig. 1 b). However, if in case
of Fig. 1b, destruction of the "parachute" is observed at ≈ 5500 µs, but in this case destruction
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Fig. 1. Regimes of destruction of a drop of OCWF at different temperatures. Interval between
frames ∆t = 500 µs. a) t = 278 K, period 0 – 11000 µs; b) t = 298 K, period 0 – 6000 µs;
c) t = 308 K, period 0 – 6000 µs; d) t = 318 K, period 0 – 6000 µs

occurs earlier, at ≈ 5000 µs. As can be seen, even with such a small increase in temperature of
the OCWF drop from 298 K to 308 K, process of destruction of drop increases in time. Change
in the surface shape of an OCWF droplet at a temperature of 318 K is shown in Fig. 1d. The
interaction time of a drop with a flow is 6000 µs. In this case, tendency for destruction time to
depend on the initial temperature of drop remains unchanged. Destruction of the "parachute"
occurs at a time equal to ≈ 4000 µs. Further, shell of central part of OCWF drop is destroyed
with formation of small drops; at moment of time ≈ 5000 µs, only a ring remains from initial
drop, which subsequently becomes thinner and destroyed.

In course of mathematical modeling, formation of a ring and its further movement along
flow was obtained for following OCWF temperatures of 298 – 318 K. After the "parachute" is
destroyed, only a ring remains from initially spherical drop, which over time increases in diameter
and becomes thinner. For the case of an OCWF droplet with a low temperature of 278 K, we
observe formation of a ring, but it thins out so slowly that the computational region was not
enough to record complete destruction of droplet. However, for this study this is not important,
because we are studying moment of induction of destruction, and not the late stage of interaction
of drop with the flow.

The most important indicator of droplet destruction is not only dynamics of deformation,
presented in Fig. 1, but also induction time of destruction of the OCWF droplet. Fig. 2 shows
pictures of destruction of a drop at a temperature of 278 K at various times. As can be seen,
at the moment of time 10377 µs the central part of drop has already thinned out, but remains
intact, and at moment of time 10465 µs a violation of integrity of shell is already observed, it
follows that the OCWF droplet at a temperature 278 K begins to collapse at a time equal to
t1 ≈ 10421 µs. Based on Fig. 1a, Fig. 2, drop was deformed for a long time, and after reaching
destruction induction time, central part of drop quickly collapsed.

In Fig. 3 shows dynamics of destruction of a drop of OCWF at a temperature of 298 K in
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frontal projection. This type of destruction differs from previous case in that there is a gradual
destruction of central part of the drop with a simultaneous thinning of edge of drop - appearance
of a ring that increases until it collapses. Induction time of destruction in this case is t2≈4955 µs.
Fig. 3 clearly shows that drop begins to collapse from central part. At moment of time≈5006µs
the "parachute" has become so thin that streams break off from drop, which increase and break
up into small drops. At time ≈ 5560 µs, complete destruction of central part of drop is observed,
liquid ring has increased in size, but has not yet become thin enough to collapse.

Fig. 2. Frontal projection of destruction of an OCWF drop at t = 278 K

Fig. 3. Frontal projection of destruction of an OCWF drop at t = 298 K

Fig. 4 shows moments of destruction of an OCWF drop at a temperature of 308 K. Induction
time of destruction in this case is t3 ≈ 4463 µs. If we compare results obtained in Fig. 4 with
results presented in Fig. 3, we see that with increasing temperature destruction process begins
to proceed faster. Thus, at a temperature of 298 K (Fig. 3), a drop of OCWF began to collapse
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at time instant ≈ 4955 µs. And at a temperature of 308 K (Fig. 4) at same point in time, we
observe that the central part of the drop has already been completely destroyed and only a liquid
ring remains.

Fig. 4. Frontal projection of destruction of an OCWF drop at t = 308 К

The scenarios for destruction of an OCWF drop at temperatures of 298–318 K are very
similar: gradual transverse stretching of the drop along midsection until drop resembles shape
of a "disk", further thinning of central part of drop and its inflation in a "parachute" type,
destruction of "parachute" into small drops and as a result, a ring remains from original drop,
which becomes thinner and collapses. In this case, destruction begins at time t4 ≈ 3598 µs, this
can be seen from Fig. 5.

Fig. 5. Frontal projection of destruction of an OCWF drop at t = 318 К

For quantitative assessments of destruction of droplet surface shape, dependence of ratio of
maximum value of droplet midsection to initial size d0 is used, where dmax is maximum size of
droplet shape during the deformation process, at a moment in time. This dependence is also
called rate of transverse deformation of the drop (Fig. 6).

Based on results (Fig. 6), as temperature of the OCWF drop increases, ratio of maximum
deformation of drop to initial size increases. Also, for the first time, estimates were made of
the influence of temperature of an OCWF drop on induction time of destruction and rate of
deformation of drop at moment of destruction. Thus, with increasing temperature,destruction
time of an OCWF droplet decreases, and ratio of maximum deformation of droplet to initial size
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increases. Quantitative calculation indicators, such as the induction time of destruction and ratio
of maximum deformation of drop to initial size at moment of destruction are presented in Tab. 2.

Fig. 6. Rate of transverse deformation of an OCWF drop at different fuel temperatures

Table 2. Quantitative results of destruction of a drop of OCWF

OCWF temperature, T, K Induction time of destruction, t, µs dmax/d0
278 10421 1.798
298 4955 1.874
308 4463 2.069
318 3598 2.185

Conclusion

A computational study of secondary destruction of a drop of organic-coal fuel in a gas flow
was carried out in order to improve its combustion technologies. Droplets with different initial
temperatures from 278 to 318 K were studied.

The results of numerical modeling have yielded images of destruction of OCWF droplets.
These images demonstrate that fuel drops, which have non-Newtonian properties and are de-
scribed by the Herschel–Bulkley rheology, deform according to the "parachute" scenario within
the studied temperature range. At the same time, for a temperature close to freezing and equal
to 278 K, the drop is deformed for a long time before collapsing. This is due to fact that at such
low temperatures fuel has a higher yield strength, as well as a higher surface tension coefficient.
At the initial temperature of the OCWF drop equal to 318 K, the drop is destroyed much more
intensely. Induction time of destruction is reduced by approximately 3 times (compared to a
temperature of 278 K), which has a beneficial effect on mixing of OCWF with air.

Dependences of induction time of destruction and rate of transverse deformation of drop on
initial temperature of the OCWF drop obtained in work will be useful for improving technology
of combustion of OCWF, including in regions of the Far North.
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Вторичное разрушение капли органоводоугольного
топлива различной температуры в потоке газа

Анна А. Шебелева
Александр В. Шебелев

Андрей В. Минаков
Анастасия К. Округина

Сибирский федеральный университет
Красноярск, Российская Федерация

Аннотация. Проведено расчетное исследование вторичного разрушения капли органоводоуголь-
ного топлива (ОВУТ) в потоке газа. Впервые изучалось влияние температуры капли ОВУТ, об-
ладающей неньютоновскими свойствами, на деформацию и ее дальнейшее разрушение. Расчетное
исследование проводилось с помощью численной методики, основанной на ВОФ-методе, для учета
турбулентности использовалась ЛЕС-модель, для описания поведения межфазной границы на ос-
новных турбулентных масштабах применялась технология адаптированных динамических сеток,
которая позволила разрешить вторичные капли жидкости размером до 20 мкм. В ходе работы
была исследована форма поверхности капли ОВУТ в процессе разрушения, а также структура по-
тока вблизи и в следе капли. В результате расчетов были получены зависимости темпа поперечной
деформации миделя капли ОВУТ для различных температур, судя по результатам, с увеличени-
ем температуры время разрушения капли ОВУТ уменьшается, что благоприятно сказывается на
перемешивании ОВУТ с воздухом.

Ключевые слова: дифференциальные уравнения, задача Коши, расщепление, устойчивость, схо-
димость.
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Abstract. The paper formulates a model of axisymmetric flow of an ideal fluid with n effectively inviscid
vortex zones, generalizing the well-known model of M. A. Lavrentiev on the gluing of vortex and potential
flows in a plane case. The possibility is shown within the framework of such a model of the existence in
space of a liquid sphere streamlined around by a potential axisymmetric flow, consisting of n spherical
layers of axisymmetric vortex flows. This model example generalizes the spherical Hill vortex with one
vortex zone, known in hydrodynamics. Such a vortex flow with n spherical layers is also possible in a
sphere, and, unlike a flow in space, such a flow is not unique. The problem of an axisymmetric vortex
flow in a limited region is considered; its formulation generalizes the plane flow of an ideal fluid in a field
of Coriolis forces.

Keywords: ideal fluid, vortex flows, spherical Hill vortex
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Introduction. Setting of the problem

A large number of works and monographs are devoted to the study of vortex flows. The topic
of vortex flows is presented in every hydrodynamics course. The monographs by M. A.Gol’dshtik
"Vortex Flows" [1], M. A. Lavrentiev, B. V. Shabat "Problems of Hydrodynamics and Their Math-
ematical Models" [2] can be considered fundamental in this research area. The monographs
indicate various examples of vortex flows in nature and technology, present a study of prob-
lems of signifit scientific and practical interest, and formulate various mathematical problems for
research.

The paper examines one of them, related to the existence and non-uniqueness of axisymmetric
flows according to the scheme of M. A. Lavrentiev [1, 2] with n effectively inviscid vortex zones
in an unbounded and limited region.

The stationary vortex flow of an ideal incompressible fluid in the plane case is described by
the equation

∆Ψ =
∂Ψ(x, y)

∂x2
+
∂Ψ(x, y)

∂y2
= F (Ψ), vx =

∂Ψ

∂y
, vy = −∂Ψ

∂x
, (1)

LΨ(z, r) =
∂2Ψ(z, r)

∂z2
+
∂2Ψ(z, r)

∂r2
− 1

r

∂Ψ(z, r)

∂r
= H ′(Ψ)r2 − Γ′(Ψ)Γ(Ψ), (2)

∗isvain@mail.ru
c⃝ Siberian Federal University. All rights reserved
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vr = −1

r

∂Ψ

∂z
, vz =

1

r

∂Ψ

∂r
in axisymmetric. Functions F (Ψ), H ′(Ψ), Γ(Ψ) are arbitrary functions

of the flow function Ψ[1]. Various approaches to defining the functions F (Ψ), H(Ψ), Γ(Ψ) when
solving specific problems are also available in [1].

The right-hand sides of equations (1), (2) determine the value of vorticity ω(x, y), ω(z, r).

When the vorticity is zero, the flow is potential.
Thus, equations (1), (2) of the motion of an ideal fluid in terms of the flow function make it

possible to study the motion of an ideal fluid with potential and vortex zones. With the natural
requirement of continuity of the velocity field, one should require the continuity of the first partial
derivatives of the flow function when passing through the common boundary of these zones.

It is important to note that equation (2) in the appropriate notation is called the Grad-
Shafranov equation [3] in plasma theory, on the basis of which tokamaks are calculated and
built.

The paper considers flows with effectively inviscid vortex zones, where it is assumed that the
flow of an ideal fluid is the limiting flow of a viscous fluid when the viscosity tends to zero. In this
case, the vorticity in the plane case is equal to a constant, in the axisymmetric case ω(z, r) = ω0r,
ω0 is a constant [1, 2, 4]. Respectively

∆Ψ(x, y) = ω0, LΨ(z, r) = ω(z, r)r = ω0r
2. (3)

In this case, the M.A. Lavrentiev scheme of plane flows with n vortex zones [1, 2, 5] for
axisymmetric flows with n effectively inviscid vortex zones in unbounded and bounded regions
can be formulated as follows: given a flow region D with a boundary Γ, numbers ωi, i = 1, . . . , n.

The value of the flow function Ψ(z, r) on the boundary Γ of the region D or its behavior at infinity
is specified. It is required to construct disjoint flow zones Di,

∪
Di = D and find in the region D

a continuously differentiable flow function Ψ(z, r), which in each zone Di satisfies the equation
LΨ = ωir

2. At all points of the boundaries Γi of zones Bi not belonging to the boundary Γ of
area D, it is equal to zero. The possibility of the existence of zones in which the values of ωi

coincide or ωi = 0 cannot be excluded. In the latter case, the flow in the zone Di is potential.
Note that, taking into account corrections associated with viscosity, M.A. Lavrentyev, using

a plane flow model with three flow zones in a deep trench (two vortex zones with constant
vorticities ±ω, and in the third — potential flow), substantiated the unacceptability burial of
radioactive residues in ocean depressions [1, 2].

The formulated problem with n vortex zones is nonlinear, and here an important role is played
by the consideration of model problems, the results of which can be used in the formulation and
solution of general problems. This will be seen when solving problem (31).

Let us formulate a simple property related to the geometry of zones Di and the signs of ωi.

Property 1. If the boundaries of the zones Di, Dj are zero streamlines and ωiωj > 0 then the
two zones have no common point which can be touched with circles both from the region Di and
the region Dj.

Let there be such a point M∗. Since the flow function Ψ(z, r) vanishes at the boundaries of
the zones Di, Dj , then in the case ωi > 0, ωj > 0 the function Ψ(z, r) at this point attains
its maximal value in the zones Di, Dj , for ωi < 0, ωj < 0 smallest. In such a situation, the
derivatives of the solution at the point M∗ along the external normals from the zones Di, Dj

are of the same sign [6], which contradicts the continuous differentiability of the solution when
passing through the common boundary of the zones.
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Using the known relation

L(r2U(z, r)) = r2L∗U(z, r), L∗U(z, r) =
∂2U(z, r)

∂z2
+
∂2U(z, r)

∂r2
+

3

r

∂U(z, r)

∂r
,

to obtain solutions to the equation LΨ = ω0r
2, in (3), it is convenient to pass to the equation

L∗U = ω0, after replacing Ψ(z, r) = r2U(z, r).

In the equation L∗U = ω0 it is already possible to look for a solution depending only on R

(R2 = r2 + z2), U(z, r) = U(R). In this case

L∗U(R) =
∂2U(R)

∂R2
+

4

R

∂U(R)

∂R
= ω0.

Its solution is the function

U(R) =
ω0

10
R2 +

c

R3
+ d, R ̸= 0, (4)

c, d — arbitrary constants. Note that
(
∂2

∂R2
+

4

R

∂

∂R

)
1

R3
= 0.

After returning to the function Ψ(z, r) = r2
(
ω0

10
R2 +

c

R3
+ d

)
we have a solution to the

equation L Psi(z, r) = ω0r
2.

For further purposes, let us formulate what can be verified by direct differentiation:

Property 2. Let Ψi = r2
(
ωi

10
R2 +

ci
R3

+ di

)
. If the constants ci, di, cj , dj are such that the

functions Ψi, Ψj vanish for R = a, then the condition for their continuous differentiability for
R = a is written in the form

1

10

(
2ωia−

ci
a4

)
=

1

10

(
2ωja−

cj
a4

)
.

1. Hill vortex with n vortex spherical layers

Let us consider the possibility of the existence in the entire space of an axisymmetric flow
with n vortex zones with a given geometry of the vortex zones: (D1 : R6a1, Di : ai−16R6ai,
a1 > 0, ai−1 < ai, i = 2, . . . , n). In the zone (Dn+1 : R > an, ωn+1 = 0) the flow is potential.

For a given flow case, the problem can be written in analytical form

LΨ(z, r) =


ω1r

2 if R < a1,

ωir
2 if ai−1 < R < ai, i = 2, . . . , n,

0 if R > an,

(5)

given that

Ψ|R=ai
= 0, i = 1, . . . , n, lim

R→∞

Ψ

r2
= A > 0. (6)

Given such a geometry of zones, according to Property 1, the signs of numbers ωi must alternate
if none of them is zero,

In accordance with (4), we look for a solution to problem (5), (6) in the form

Ψ(z, r) =



r2

10
ω1(R

2 − a21) if 0 6 R 6 a1,

r2

10
(ωiR

2 +
ci
R3

+ di) if ai−1 6 R 6 ai, i = 2, . . . , n,

Ar2(1− a3n
R3

) if R > an.
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Satisfying the boundary conditions (6) and the continuous differentiability of the solution
when passing through the boundaries of the zones, in accordance with Property 2, we obtain the
system

ωia
2
i−1 +

ci
a3i−1

+ di = 0, ωia
2
i +

ci
a3i

+ di = 0, i = 2, . . . , n, (7)

2ω1a1 = 2ω2a1 −
3c2
a41
, 2ωiai −

3ci
a4i

= 2ωi+1ai −
3ci+1

a4i
, i = 2, . . . , n− 1, (8)

2ωnan − 3cn
a4n

=
30A

an
. (9)

From (7–9)

ωi(a
2
i−1 − a2i ) + ci(

1

a3i−1

− 1

a3i
) = 0, i = 2, . . . , n− 1, (10)

c2 =
2(ω2 − ω1)

3
a51, ci+1 =

2

3
(ωi+1 − ωi)a

5
i + ci, c1 = 0, i = 2, . . . , n− 1, (11)

cn =
2ωn

3
a5n − 10Aa3n. (12)

From (11)

i∑
j=2

cj =
2

3

i∑
j=2

(ωj − ωj−1)a
5
j−1 +

i∑
j=2

cj−1, ci =
2

3

i∑
j=2

(ωj − ωj−1)a
5
j−1, i = 2, . . . , n. (13)

Let us prove a property of system (10), (11), which will be used further.

Property 3. If the signs ωi, i= 1, . . . , n, alternate, then ai−1= ti−1ai, i = 2, . . . , n 0 < ti−1<1

is a root of the equation

t4 + t3 + t2 + γi−1t+ γi−1 = 0, (γi−1 =
3ωi

2(ω̄i−1 − ωi)
), (14)

ω̄i = (1− t5i−1)ωi + t5i−1ω̄i−1, ω̄1 = ω1, ci =
2(ωi − ω̄i−1)

3
t5i−1a

5
i , i = 2, . . . , n, (15)

sign(ω̄i) = sign(ωi), i = 1, . . . , n. (16)

We assume i = 2. Considering ω̄1 = ω1, c2 =
2(ω2 − ω̄1)

3
a51, from (10)

ω2(a
2
1 − a22) +

2(ω2 − ω̄1)

3
a51(

1

a31
− 1

a32
) = 0.

Hence a1 = a2, or

ω2(a1 + a2) +
2(ω̄1 − ω2)

3
a21
a22 + a2a1 + a21

a32
= 0. (17)

d Equation (17) is homogeneous. Denoting t1 =
a1
a2

< 1, γ1 =
3ω2

2(ω̄1 − ω2)
, ω1 ̸= ω2, we obtain

an equation for finding the value t1

t4 + t3 + t2 + γ1t+ γ1 = 0. (18)

For the existence of a root 0 < t < 1 it is necessary γ1 < 0. From the resulting equation

γ1(t) = −(t3 + t− 1 +
1

t+ 1
), 0 6 t 6 1, γ1(0) = 0, γ1(1) = −3

2
< 0,
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γ′1(t) = −(3t2 + 1− 1

(t+ 1)2
).

For t > 0, γ′1(t) < 0, the function γ1(t) decreases monotonically as t > 0. Hence, for

−3

2
<

3ω2

2(ω̄1 − ω2)
< 0 (19)

equation (18) has a single root t1 on the interval (0,1). Note that inequality (19) is satisfied, if
ω1, ω2 have different signs. We got a1 = t1a2. For ω2 = ω1, equation (17) implies ω2 = 0, and
hence ω1 = 0, or a2 = a1. Zones D1, D2 are combined into one — the number of zones with such
geometry should be reduced by one when setting the problem.

For what follows we set i = 3. From relation (13) it follows

c3 =
2

3
(ω3 − ((1− t51)ω2 + t51ω̄1))a

5
2 =

2

3
(ω3 − ω̄2)a

5
2.

From (17), similarly to the case i = 2, we obtain equation (14) with γ2 =
3ω3

2(ω̄2 − ω3)
.

Let us show that sign(ω̄2) = sign(ω2). Let’s write it down

sign(ω̄2) = sign(λ(t1)(1− t51) + t51)sign(ω̄1), λ(t1) =
ω2

ω̄1
=

2γ1
3 + 2γ1

. (20)

From equation (14) with γi−1 = γ2 we express γ2 and after substitution into (20)

λ(t1)(1− t51) + t51 =
2(t41 + t31 + t21)

2(t41 + t31 + t21)− 3t1 − 3
(1− t51) + t51 = −t21

3t31 + 6t21 + 4t1 + 2

2t31 + 4t21 + 6t1 + 3
< 0.

We got sign(ω̄2)=−sign(ω̄1)=−sign(ω1)=sign(ω2). Since ω1, ω2 by assumption have different
signs. This implies that inequality (19) holds for ω3, ω2 of different signs. Then a2 = t2a3.

Increasing i successively by one, similar to the previous one, we obtain ai−1 = ti−1ai and

ci =
2(ωi − ω̄i−1)

3
a5i−1 =

2(ωi − ω̄i−1)

3
t5i−1a

5
i , sign(ω̄i) = sign(ωi).

Let us return to the problem under consideration (5), (6). Let in some zone Di, ωi = 0, and
in the zone Di−1, ωi−1 ̸= 0, i = 2, 3, . . . , n, The function Ψ(z, r) and its partial derivatives in the
zone Di are identically equal to zero, which contradicts the inequality of the normal derivative
from the zone Di−1 to zero at points R = ai−1 of the common boundary of the zones Di−1, Di,

since the function Ψ(z, r) in the zoneDi−1 at boundary points R = ai−1 takes either the largest or
smallest value, depending on the sign of ωi−1[6]. Further continuing these arguments, successively
decreasing the index i, and then successively increasing it, we arrive at all ωi = 0, i = 1.2, . . . , n.

Thus, a flow with the considered geometry of vortex zones cannot have a single internal zone
with potential flow, and the alternation of signs of ωi in zones Di is a necessary condition for
the existence of a solution to the problem under consideration.

Let the signs of ωi alternate in the statement of the problem. Substituting cn =
2(ωn − ω̄n−1)

3
t5n−1a

5
i (Property 3) into (12 ), we obtain the equation for finding an

ω̄na
2
n = 15A, ω̄n = (1− t5n−1)ωn + t5n−1ω̄n−1.

Requiring ωn > 0, in the problem statement by Property 3, we obtain sign(ω̄n) = sign(ωn) > 0.
Then

an =

√
15A

(1− t5n−1)ωn + t5n−1ω̄n−1
.
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Next, ai are determined inversely through an, ai−1 = ti−1ai, i = n, n− 1, . . . , 2.

Note that if ωn > 0, is required, ω1 must be less than zero when n is even and ω1 > 0 when
n is odd.

Thus, we have obtained that in space, within the framework of an ideal fluid, it is possible
to move a liquid sphere of radius an, streamlined around by a potential flow, inside which there
are n vortex zones with vorticities ωir, with alternating signs ωi, at ωn > 0.

Let us write down the solution to problem (5), (6) (the signs of ωi alternate, ωn > 0).

Ψ(z, r) =



r2

10
ω1

(
R2 − a21

)
if 0 6 R 6 a1,

r2

10
ωi

(
R2 − a2i

)
+

2(ωi − ω̄i−1)

3
t5i−1a

5
i

(
1−

(
a1
R

)3)
if ai−1 6 R 6 ai, i = 2, . . . , n,

Ar2
(
1− a3n

R3

)
if R > an.

For n = 1 (one vortex zone with ω > 0) we have the spherical Hill vortex, known in hydro-
dynamics [7], in plasma theory after "spherical plasmoid" [8]

Ψ(z, r) =

 ωr2(R2
0 −R2) if 0 6 R 6 R0,

Ar2
(
1− R3

0

R3

)
if R > R0,

R0, ω, A are related by the relation ω =
15A

R2
0

. The Hill vortex represents a liquid sphere moving

in the direction of the OZ axis in a potential flow around it with a speed of A
2 at infinity, inside

which there is a vortex motion with a vorticity of ωr. It was shown in [9] that in the vicinity
of the spherical Hill vortex there is no other axisymmetric vortex with one vortex zone, which
differs little from it.

Note that the resulting solution to problem (5), (6) describes a natural axisymmetric gener-
alization of the Hill vortex with n vortex zones. This structure of the vortex flow can be called
a composite spherical Hill vortex.

Let us write the flow function for a composite Hill vortex with two vortex zones (ω1<0, ω2>0)

Ψ(z, r) =



ω1

10
r2(R2 − a21) if R 6 a1,

r2

10
ω2(R

2 − a22) +
3(ω2 − ω1)

2
a51

(
1− a32

R3

)
if a1 6 R 6 a2,

Ar2
(
1− a32

R3

)
if R > a2,

a2 =

√
15A

((1− t51)ω2 + t51ω1)
, a1 = a2t1 =

√
15A

((1− t51)ω2 + t51ω1)
t1. (21)

It is important to note that we wrote the general problem of axisymmetric flow in space with
n vortex zones in analytical form for a specific particular case of the geometry of vortex zones in
the form of spherical layers, assigning each zone its own vorticity from a given set of vorticities
ωir. Since the existence of such a solution requires only that the vorticities alternate signs in
adjacent zones (the numerical values of ωi determine the radii of the layers) and ωn > 0, then

the specified ωi must have
n

2
positive and

n

2
negative ωi, if n is even, and

n+ 1

2
positive,

n− 1

2
negative ωi, if n is odd.
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Thus, given a set of vorticities with the properties specified above, there is the possibility of

the existence of
(n
2

)
!
(n
2

)
! in space if n is even and

(n− 1

2

)
!
(n+ 1

2

)
! if n is odd, composite

Hill vortices with n vortex zones in the form of spherical layers.
Let us note an interesting fact that, along with the composite Hill vortex with two vortex

zones at ω1 < 0, ω2 > 0 of radius a2 (21), there is a Hill vortex with the same radius a2, but
with one vortex zone with vorticity ω(z, r) =

(
(1− t51)ω2 + t51ω1

)
r with the same value A.

Let’s consider the inverse problem. Given a Hill vortex with a given value A and one vortex
zone of radius R0. It is required to find a composite Hill vortex with two vortex zones with the
same values R0, A.

In accordance with (21), we arrive at the problem of finding the numbers ω1 < 0, ω2 > 0

satisfying the relation

(1− t5)ω2 + t5ω1 = ω =
15A

R2
0

, 0 < t < 1,

where t is an implicit function of ω1, ω2, given by equation (18) with γ1 =
3ω2

2(ω1 − ω2)
.

From γ1 =
3ω2

2(ω1 − ω2)
we write ω2 =

2γ

3 + 2γ1
ω1, and then from (1 − t5)ω2 + t51ω1 = ω, we

get

ω1 =
3 + 2γ1
2γ1 + 3t5

ω, ω2 =
2γ1

2γ1 + 3t5
ω, ω =

15A

R2
0

. (22)

From equation (18) we find γ1 = − t
4 + t3 + t2

t+ 1
, and after substitution into (22), we find

ω2 =
−2(t2 + t+ 1)

(t− 1)(3t3 + 6t2 + 4t+ 2)
ω > 0, ω1 = − 2t3 + 4t2 + 6t+ 3

(3t3 + 6t2 + 4t+ 2)t2
ω < 0, 0 < t < 1.

Next, setting t, 0 < t < 1, arbitrarily, we find ω1, ω2, and then using formulas (21) for t1 = t

the values a1, a2. By construction a2 = R0. Note that due to the arbitrariness of the value of
t, 0 < t < 1, the inverse problem under consideration has an infinite number of solutions.

2. Flow in a sphere with vortex spherical layers

Let us consider the possibility of axisymmetric flow in a sphere of radius R0 with a given
geometry of n vortex zones in the form of spherical layers (D1 : R 6 a1, Di : ai−1 6 R 6 ai,

i = 2, . . . , n) and with one selected zone (Dn+1 : an 6 R 6 R0), adjacent to the boundary
R = R0, only in which vorticity can become zero, i.e. the flow may be potential. This flow
design for ωn+1 = 0 is an analogue of a composite Hill vortex in a sphere.

Just as in point 1. the problem can be written in analytical form

LΨ(z, r) =


ω1r

2 if R < a1,

ωir
2 if ai−1 < R < ai, i = 2, . . . , n,

ωn+1r
2 if an < R < R0,

given that

Ψ|R=ai = 0, i = 1, . . . , n, Ψ|R=R0 = A > 0. (23)
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In accordance with (4), we look for a solution to the problem in the form

Ψ(z, r) =



r2

10
ω1(R

2 − a21), 0 6 R 6 a1,

r2

10
(ωiR

2 +
ci
R3

+ di), ai−1 6 R 6 ai, i = 2, . . . , n,

r2

10

(
ωn+1(R

2 − a2n) +
(10A− ωn+1(R

2
0 − a2n))R

3
0

(R3
0 − a3n)

(
1− a3n

R3

))
, an 6 R 6 R0.

Here, the boundary conditions are satisfied in the zone D1 with R = a1, in the zone Dn with
R = an, in the zone Dn+1 with R = an, R = R0. Satisfying the remaining boundary conditions
(23) and the continuous differentiability of the solution when passing through the boundaries of
the zones, we obtain system (10–12), in which equation (12) should be replaced by the equation

1

10

(
2ωnan − 3cn

a4n

)
=

1

10

(
2ωn+1an +

3R3
0(10A− ωn+1(R

2
0 − a2n))

(R3
0 − a3n)an

)
. (24)

In accordance with Property 3, the signs of ωi must alternate and an−1 = tn−1an, cn =
2(ωn − ω̄n−1)

3
t5n−1a

5
n. Taking this into account, from (24) the equation for determining the value

of an follows

a5n −R3
0a

2
n

(
1− 3ωn+1

2(ω̄n − ωn+1)

)
+

3R3
0(10A− ωn+1R

2
0)

2(ω̄n − ωn+1)
= 0. (25)

We set ωn > 0, ωn+1 6 0. Then ω̄n > 0 and
3R3

0(10A− ωn+1R
2
0)

2(ω̄n − ωn+1)
> 0. Consider the function

f(an) = a5n −R3
0a

2
n

(
1− 3ωn+1

2(ω̄n − ωn+1)

)
+

3R3
0(10A− ωn+1R

2
0)

2(ω̄n − ωn+1)
.

We have f(0) > 0, f(R0) > 0. At point a∗n =

(
2

5

(
1 − 3ωn+1

2(ω̄n − ωn+1)

)) 1
3

R0, f ′(a∗n) = 0. It is

checked that if ωn, ωn+1 have different signs, then 0 <

(
2

5

(
1− 3ωn+1

2(ω̄n − ωn+1)

)) 1
3

R0 < R0 and

f ′′(a∗n) > 0. So at point a∗n the function f(an) has a minimum.
Demanding f(a∗n) 6 0, we obtain the condition under which equation (25) on the interval

0 < an < R0 has a root (in the case of a strict inequality, there are two roots)

10A

R2
0

6 2(ω̄n − ωn+1)

3

(3
5

(2
5

) 2
3

(1− γn)
5
3 + γn

)
, γn =

3ωn+1

2(ω̄n − ωn+1)
. (26)

From Property 3. it follows −3

2
< γn < 0.

On the interval (− 3
2 , 0) the function F (γn) =

3

5

(2
5

) 2
3

(1−γn)
5
3 +γn is positive, monotonically

increasing and 0 < F (γn) <
3

5

(2
5

) 2
5

, F
(
− 3

2

)
= 0, F (0) =

3

5

(2
5

) 2
5

. Taking into account that
ω̄n − ωn+1 > 0, we found that the right part of the inequality in (26) is greater than zero.

Note that the right-hand side of condition (26) does not depend on A and R0, therefore
condition (26) is satisfied. In the case of strict inequality in condition (26), there are two solutions.
If condition (26) is not met, there is no solution.
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Let us write down condition (26) when in the zone Bn+1, adjacent to the boundary of the
ball R = R0, the flow is potential (ωn+1 = 0)

A

ω̄nR2
0

6 1

25

(2
5

) 2
3

.

Let us write down the solutions to the problem (ωn > 0, ωn+1 6 0, signs of ωi, i 6 n alternate)

Ψ(z, r) =



r2

10
ω1(R

2 − a21), 0 6 R 6 a1,

r2

10
ωi(R

2 − a2i ) +
2(ωi − ω̄i−1)

3
t5i−1a

5
i

(
1−

(a1
R

)3)
, ai−1 6 R 6 ai, i = 2, . . . , n,

r2

10
ωn+1(R

2 − a2n) +
(10A− ωn+1(R

2
0 − a2n))R

3
0

(R3
0 − a3n)

(
1− a3n

R3

)
, an 6 R 6 R0,

ai−1 = t5i−1an, ti−1 — root of equation (14), corresponding to the i − 1 zone, an — root of
equation (25).

Let us note an interesting fact: if a flow with a given number of vortex zones in space exists,
for example, a composite spherical Hill vortex, and in it the geometry of the layers is determined
uniquely, then a similar flow in the sphere does not always exist, and if it does exist, then two
different geometries are possible spherical layers.

Let us consider the possibility of the existence of two zones at ω1 6 0, ω2 > 0. We will need
this model example later. For this case, equation (25) for finding the value a1 takes the form

f(a1) = a51 −R3
0a

2
1

(
1− 3ω2

2(ω1 − ω2)

)
+

3R3
0(10A− ω2R

2
0)

2(ω1 − ω2)
= 0 (27)

We have f(0)=
3R3

0(10A−ω2R
2
0)

2(ω1−ω2)
, f(R0)=

15R3
0A

(ω1−ω2)
<0. At point a∗1=

(2
5

(
1− 3ω2

2(ω1− ω2)

)) 1
3

R0

its only extremum is the minimum, since f ′′(a∗1) =
6ω1 − 15ω2

ω1 − ω2
> 0. And only for f(0) > 0 does

equation (27) have a root on the interval (0, R0), and this root is unique. The condition f(0) > 0

is satisfied for ω2 >
10A

R2
0

. For ω1 = 0 in each meridian plane in the zone R 6 a∗1 the flow function

Ψ(z, r) is identically equal to zero.

We found that in a sphere with ω2 >
10A

R2
0

it is possible for two vortex zones with ω1 6 0,

ω2 > 0, and zones with the considered geometry are calculated uniquely.
It is obvious that problem (5), (6) for ωn > 0, ωn+1 = 0 is a generalization of the problem of

M.A. Gol’dshchik [1, 10] in M. A. Lavrentiev scheme of plane flow of an ideal fluid in the model
case of an axisymmetric flow with n+ 1 vortex zones.

For ω1 6 0, ω2 > 0 its formulation is an extension of the problem of plane motion of an
ideal fluid in the field of Coriolis forces [1, 11] to the axisymmetric case, as well as on the model
principle.

3. Vortex flows in an arbitrary limited axisymmetric region

Let D be an arbitrary bounded region adjacent to the axis r = 0 in variables z, r, r > 0. Its
boundary Γ consists of a smooth curve σ in the upper half-plane r > 0 and the segment [α, β] of
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the axis z = 0, α < 0, β > 0. The curve σ adjoins the points α, β at angles different from zero
and π respectively. Let us write the boundary condition for the flow function

Ψ|Γ = φ(s)r2 > 0. (28)

Since the flow region and boundary function are arbitrary, assumptions about the geometry of
vortex zones, as was done for flow in a sphere or in all space, are problematic. In this regard,
at the first stage a difficult problem arises in the analytical formulation of the problem. It is
natural to begin the study for a flow with two vortex zones.

For the analytical formulation of the problem in this case, the formulation of two dual prob-
lems by M. A.Gol’dshtik [1, 11] is well suited. This has already been discussed when constructing
flows in a sphere. Thus, in a flat bounded domain D, it is required to find continuously differen-
tiable solutions to problems (ω1 > 0, φ(s) > 0)

∆Ψ(x, y) =

{
ω1 if Ψ < 0,

0 if Ψ > 0,
∆Ψ(x, y) =

{
ω1 if Ψ > 0,

0 if Ψ 6 0,
Ψ|S = φ(s) > 0. (29)

They define flows with two zones, vortex and potential.
In accordance with these problems, to obtain a flow with two vortex zones in the axisymmetric

case, we come to two also dual problems, written in analytical form (ω1 > 0, ω2 6 0)

LΨ(x, y) =

{
ω1r

2 if Ψ < 0,

ω2r
2 if Ψ > 0,

Ψ|Γ = φ(s)r2 > 0, (30)

LΨ(x, y) =

{
ω1r

2 if Ψ > 0,

ω2r
2 if Ψ < 0,

Ψ|Γ = φ(s)r2 > 0. (31)

Let’s consider problem (30). A function Ψ0(z, r) satisfying the equation LΨ0(z, r) = ω2r
2

and boundary condition (30) in the domain D is positive in the domain D, and therefore is trivial
solution to this problem. At ω2 = 0 the flow is potential in the entire region D, at ω2 < 0 the
entire region D is a vortex zone. In [12], the existence of a nontrivial solution was proven.

Let us observe that the possibility of the existence of a second nontrivial solution with two
vortex zones, which exists in a model problem in a sphere, is a difficult, independent mathematical
problem. For the plane case with ω2 = 0, the existence of a nontrivial solution (flow with a vortex
and potential zone) was proven in [10, 13, 14], and the existence of a second nontrivial solution
in [5, 15]. For ω2 ̸= 0 the existence of a nontrivial solution was proven in [16].

Let’s consider problem (31). Note that its solution cannot take negative values in the region
D. We assume that at some point M∗ ⊂ D, Ψ(M∗) < 0. From the boundary condition in (31)
it follows that there is a subdomain D∗ ⊂ D on the boundary of which Ψ∗ = 0 , and inside it
LΨ(z, r) = ω2r

2 6 0. Hence Ψ > 0 in D∗. We obtain a contradiction.
From problem (31) we move on to the problem: we need to find a continuously differentiable

non-negative solution to the problem

LΨ(z, r) = ω1r
2 if Ψ(z, r) > 0, Ψ|Γ = r2φ(s) > 0. (32)

To construct a solution to the problem LΨ(z, r) = ωr2f(z, r), Ψ|Γ = r2φ(s) it is conve-
nient to go to the variables z = ξ, r = 2

√
t, after which LΨ(z, r) = SΨ = tΨtt + Ψξξ =

4ωtf(ξ, 2
√
t), L∗U(z, r) = S∗U = tUtt + Uξξ + 2Ut = ωf(ξ, 2

√
t). In the variables ξ, t we ob-

tained the equations (S(tU) = tS∗U) degenerate on the boundary of the region at t = 0, which
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are well studied in [17–19]. For example, for the equation SΨ = 0 the usual formulation of the
Dirichlet problem is correct, for the equation S∗U = 0 for the considered domain D the modified
formulation is correct — the solution is specified only on the curve σ and the solution is sought
in class of functions bounded at r → 0 [17]. Note that in the case under consideration such a
solution is continuous up to r = 0 and extreme values are reached at σ[19].

For the operator L∗ there is a fundamental solution[20]

E(z, r, z1, r1) =
4

π

∫ π

0

[(z − z1)
2 + r2 + r21 − 2rr1 cosβ]

− 3
2 sin2 βdβ,

which has a logarithmic singularity for r, r1 > 0

E(z, r, z1, r1) = − 2

π
(rr1)

− 3
2 ln((z − z1)

2 + (r − r1)
2) + Φ(z, r, z1, r1),

Φ(z, r, z1, r1) is a regular function.
Using Green’s formula [18, 19] with v =W, u = rG(z, z1, r, r1)∫∫

D

(uSv − vS∗u)dξ1dt1 =

∮
Γ

(vuξ1 − vξ1u)dt1 − (t1vut1 − t1vt1u− vu)dξ1,

we obtain a representation of the solution to the problem LW (z, r) = ωr2f(z, r), W |Γ = 0 in
the form

W (z, r) = −ω
8
r2
∫∫
D

r31f(z1, r1)G(z, z1, r, r1)dz1dr1. (33)

Here G(z, z1, r, r1) is the Green’s function for the problem L∗U = ωf(z, r), U |σ = φ(s) (the
solution is bounded for r → 0), which is standardly constructed using the fundamental solution
E(z, r, z1, r1). G(z, z1, r, r1) = E(z, r, z1, r1) − G1(z, z1, r, r1), where G1(z, z1, r, r1) in variables
ξ1 ̸= ξ, t1 ̸= t solution of problem S∗G1 = 0, G|σ = −E|σ bounded at t1 → 0 . From the
above extremum principle for the equation S∗U = 0 it follows that for z ̸= z1, r ̸= r1 the Green’s
function G(z, z1, r, r1) > 0 in D

∪
(α, β),

It is important to note that function (33) has all the properties of a logarithmic potential in
the D domain, since the Green’s function by construction has a logarithmic singularity inside
the D domain.

Let’s return to problem (32).
To prove the existence of a solution to this problem that goes to zero at points in the region

D, consider the sequence of problems

LΨn(z, r) = ω1r
2th(nΨn(z, r)), Ψn|Γ = r2φ(s) > 0. (34)

Just as before, it is easy to show that Ψn > 0.

Problem (34) is equivalent to the integral equation

Ψn(z, r) = −ω1

8
r2
∫∫
D

r31th(nΨn(z1, r1))G(z, z,r, r1)dz1dr1 +Ψ0(z, r). (35)

Similarly [1, 11, 12], taking into account the properties of the integral (33) with the introduced
Green’s function as a logarithmic potential, using Schauder’s theorem, we establish the existence
for each n > 0 of a solution Ψn > 0 continuous in D of the integral equation (35), and by
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Arzel’s theorem, the compactness of the sequence of solutions Ψn(z, r) in the space of functions
continuously differentiable in the domain D. Note that the solution to problem (34) is unique,

which follows from
∂th(nΨn)

∂Ψn
=

n

ch2(nΨn)
> 0. Let the subsequence Ψnk

(z, r) converge to a

continuously differentiable function Ψ(z, r) > 0.

Further, repeating the proof from [1, 11, 12], it is established that the limit function is a
solution to problem (34)

Here it is taken into account that for the right side of the equation in (34)

lim
nk→∞

th(nkΨnk
(z, r)) = 1 if Ψ(z, r) > 0.

Let us obtain the condition under which the resulting solution goes to zero in the region D.
Under the assumption that Ψ(z, r) > 0 at all points of the region D, it follows from equation (35)

Ψ(z, r) = Ψ0(z, r)−
ω1

8
r2
∫∫
D

r31G(z, r, z1, r1)dz1r1. (36)

Let D0 be a semicircle (r > 0) of the largest radius R0 that can be inscribed in the region D
(we can assume that its center is at the origin of coordinates z = 0, r = 0) and C = max(φ(s)r2).

For the model case D = D0, r
2φ(s) = Cr2 in the second paragraph, if we go to the notation

of problem (31), redesignating ω2 by ω1, ω1 on ω2, it is found that if the inequality ω1 >
10C

R2
0

is

satisfied, the problem (31) under consideration has a solution ΨD0
(z, r), which in the semicircle

Da ⊂ D0, r
2 + z2 6 a2, r > 0, a < R0 is identically equal to zero, and in D0 \ Da is greater

than zero. The value a is the root of equation (27) at A = C, ω1 = 0.
The function ΨD0

(z, r) for this case can be written as

ΨD0
(z, r) = C − ω1

8
r2
∫∫

D0\Da

r31GR0
(z, r, z1, r1)dz1r1.

GR0
(z, r, z1, r1), the Green’s function introduced in the work for the region D0.
Let us represent the function Ψ(z, r) (36) in Da in the form

Ψ(z, r) = (Ψ0(z, r)− C) +

(
C − ω1

8
r2
∫∫

D0\Da

r31GR0
(z, r, z1, r1)dz1r1

)
+

+
ω1

8
r2
∫∫

D0\Da

r31
(
GR0

(z, r, z1, r1)−G(z, r, z1, r1)
)
dz1dr1−

− ω1

8
r2
∫∫

D\D0

r31G(z, r, z1, r1)dz1dr1 −
ω1

8
r2
∫∫
Da

r31G(z, r, z1, r1)dz1dr1.

(37)

In the circle Da, the expression in the second bracket of equality (37) is equal to zero, the
remaining terms on the right side are negative. So, the function Ψ(z, r) is negative in Da ⊂ D,
which contradicts the assumption that it is positive in the entire domain D. We found that for

ω1 >
10C

R2
0

the function Ψ(z, r) goes to zero in the domain Da ∈ D.

Further, similarly to works [1, 11, 12], it is possible to prove that the problem (31) under
consideration has a unique solution and under the condition that the boundary set σ on which
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the boundary function φ(s) is nonzero is connected , the set on which the solution is positive is
a region.

Thus, it was established that with ω1 >
10C

R2
0

and with the above requirement on the boundary

function φ(s), in the region D a flow is possible, which in some region vortex with vorticity ω1r,
and in addition to it the flow function Ψ(z, r) equals zero - the fluid is motionless.

Note that in the work the problem of the possibility of the existence of vortex axisymmetric
flows in a limited area was considered with only two vortex zones. Therefore, it is natural to
continue the study of the existence of flows with n (n > 2) vortex zones with questions of their
non-uniqueness, which occurs with model flows in a sphere.
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Осесимметрические потоки идеальной жидкости
с эффективно невязкими вихревыми зонами

Исаак И. Вайнштейн
Сибирский федеральный университет

Красноярск, Российская Федерация

Аннотация. В работе сформулирована модель осесимметрического течения идеальной жидкости
с n эффективно невязкими вихревыми зонами, обобщающая известную модель М. А. Лаврентьева
о склейке вихревых и потенциальных течений в плоском случае. Показана возможность в рамках
такой модели существования в пространстве жидкой сферы, обтекаемой потенциальным осесим-
метрическим потоком, состоящей из n шаровых слоев осесимметрических вихревых течений. Этот
модельный пример обобщает известный в гидродинамике сферический вихрь Хилла с одной вих-
ревой зоной. Такое вихревое течение с n шаровыми слоями также возможно и в сфере, причем
в отличие от течения в пространстве, такое течение неединственно. Рассмотрена задача об осе-
симметрическом вихревом течении в ограниченной области, по постановке обобщающая плоское
течение идеальной жидкости в поле кориолисовых сил.

Ключевые слова: идеальная жидкость, вихревые течения, сферический вихрь Хилла.
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Abstract. We study intransitive temporal multi-agent logic with agents’ multi-valuations for formulas
letters and relational models representing reliable states. This logic is defined in a semantic as a set of
formulas which are true at linear models with multi-valued variables. We propose a background for such
approach and a technique for computation truth values of formulas. Main results concerns solvability
problem, we prove that the resulting logic is decidable.
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Introduction

Mathematical logics widely applied in research concerning computer science and information
sciences overall. We can observe the both side interaction. Tasks and problems in computer
science generate new areas in mathematical logic and induce creation new technique and tools
in mathematical logic itself. Conception of knowledge, which arose in the analysis of distributed
systems, leaded to development multi-agent and multi-valued logical systems. More details about
this can be found in the works of Halpern, Vardy (Reasoning About Knowledge [1]), Rybakov
(Refined common knowledge logics or logics of common information, [2]).

It concern also from the certain point of view approaches to omniscience, monotonic-
ity, justified knowledge, etc (cf. for example Artemov (Evidence-Based Common Knowledge
[3]), S. Artemov (Evidence-Based Common Knowledge, (Technical Report TR-2004018) [4]),
S.Artemov (Explicit Generic Common Knowledge, [5]), S.Artemov (Justification awareness, [5]).
And it also was implemented in research concerning uncertainty and plausibility (cf. V. Rybakov
Temporal Multi-Agent’s Logic, Knowledge, Uncertainty, and Plausibility [6] Agents and Multi-
Agent Systems: Technologies and Applications, LNCS, 2021, 2005–2014. Later some works
were done towards consolidation such technique and to improve hybrid cooperation of the
agents [7–9]. Also technique for formalization of knowledge was enriched by research in descrip-
tion logics (cf. Balder and Staler, [10]), first-order logic was also implemented (cf. F. Selaginella,
A. Lombroso [11]). Various semantic technique was used (cf. Horrors, Settler, — A Description
Logic with Transitive and Inverse Roles and Role Hierarchies [12]; Horrors, Geese, Karamu,
Waller, — Using Semantic Technology to Tame the Data Variety Challenge, [13]).

Nowadays research concerning knowledge was combined with implementation of temporal
logic (cf. Rybakov [14–17]). An automata-theoretic approach to multi-agent planning was
evolved at Footbridge, [18].
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In this our short paper we study intransitive temporal multi-agent logic with agents’ multi-
valuations for formulas letters. Common knowledge in [1] was modelled at Triple models. This
brought interesting strong results, correlating well with observed examples and intuition. Here
we wish to develop this approach towards modelling knowledge with Triple frames which are
linear time models and treating reliable states of models. Here time is intransitive and it acts to
only finite intervals. Main results concerns solvability problem, we prove that the resulting logic
is decidable, prove existence of sone deciding algorithm.

1. Notation, Preliminary facts

Formulas of our logic L(MN) will be introduced as the set of special formulas, which are true
at states of certain special relational Kripke-like models.

Alphabet for the language of our logic L(MN) is defined in a standard way and consists
of denumerable set of propositional letters (variables), parenthesises, logical Boolean operators,
modal operators 2, ♢, logical reliability operator S and also special time operator N .

We remind, that every modal operation 2 can be defined by means of modal operation ♢ as
follows 2 = ¬♢¬. Now we give inductive definition of the formulas in the language of our logic
L(MN).

1. Any propositional variable p ∈ Prop is formula.

2. If α is formula, then ¬α is formula also.

3. If α and β are formulas, then (α ∧ β), (α ∨ β) and (α→ ββ) are formulas as well.

4. If α is formula, then 2α is a formula also.

5. If α is formula, then ♢α is a formula also.

6. If α is formula, then Sα is formula as well.

7. If α is formula, then Nα is formula also.

There is no other formulas in the language of logic L(MN).

No we turn to describe relational models for our logic. We take as the basic set of the

model MN the set N of all natural numbers. Here we suppose N =
∞∪
j=1

Intj , where Intj are not

intersecting intervals on N possibly of different length. Each interval Intj can have inside some

intervals Intj1, Intj2, . . . , Intjs of "reliable states" inside. Denote C(Intj) =
s∪

t=1
Intjt. Binary

relation 4 coincides with the standard linear order 6 only inside but not outside every interval
Intj .

Next is the binary relation inside every interval Intj such that if a ∈ Intj and aNextb, then
b is the first number of the interval Intj+1 (first following after Intj , that is a + 1 = b holds).
We keep it to connect subsequently following intervals. We can write Next(a) = b. That makes
connection between neighboring intervals. Linear multi-agent model is the model of the form:

MN = ⟨N, 4, Next, V1, . . . , Vk⟩ ,

where valuations Vi, i ∈ [1, k] of every propositional variable p are some subsets Vi(p) from N.
Now we precisely define the truth values of formulas in our model.
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For any a, b, c ∈ M the truth relations are as follows:

∀ p ∈ Prop : a Vi p ⇐⇒ a ∈ Vi(p),

a Vi ¬α ⇐⇒ a 1Vi α,

a Vi (α ∧ β) ⇐⇒ a Vi α and a Vi β,

a Vi 2α ⇐⇒ ∀ b [(a 4 b) ⇒ (b Vi α)] ,

a Vi ♢α ⇐⇒ ∃ b [(a 4 b) ∧ (b Vi α)] .

a Vi S α ⇐⇒ ( a ∈ Intj ⇒ (∃ b ∈ C(Intj) [(a 4 b) ⇒ b Vi α])),

a Vi N α ⇐⇒ ∀ b [(aNext b) ⇒ b Vi α] .

Formula α is said to be refutable in the logic , if there exist a state a ∈ MN such as a 1Vi
α.

Formula α is said to be true in model MN if it is true at any state a from N.
The set of all formulas, which are true in all our models is said to be the logic L(MN)

generated by model MN.

2. Decidability of logic L(MN)

To solve the problem of decidability of logic L(MN) we shell transform models MN to get
special finite like models, named MC , which, in a sense, are equivalent to MN. That means that
formula α belongs to the logic L(MN) if and if only it is true at any state from any model MC .
The details will be given later.

Now we begin to subsequently describe undertaken transformation. First step.
1. For any state a ∈ MN and for valuation Vi i ∈ [1, k] we define the following theory:

Subi(a) = {β ∈ Sub(α) | b Vi
β}.

Evidently, there exist at most 2∥Sub(α)∥ such different theories.
2. The set of theories:

T (a) = {Sub1(a), Sub2(a), . . . , Subk(a)}

corresponds to every state a ∈ MN.
There exists only

d = 2∥Sub(α)∥ × · · · × 2∥Sub(α)∥ = 2k·∥Sub(α)∥

such different sets of theories.
3. We shell obtain model MC from MN with the help of the procedure of rarefaction.
Consider one arbitrary interval Intj .
The set of all states in interval Intj we denote A(Intj), the set of all of reliable states in

Intj— C(Intj) and the set of all not reliable states — B(Intj). The character of the reliable states
differs from the character of the other states, that is why we apply such rarefaction procedure
for B(Intj) and C(Intj) separately.

Let us represent B(Intj) = B1 ∪ B2∪, . . . ,∪Bs, where the any set Bi, i ∈ [1, s] consists of
the states b only, which have the same set T (b) of theories.

First of all, we remove from Intj all the states from B1, except one the largest state b. We
name that state representative of B1, and denote b. That is procedure of rarefaction of states.

Then we rarify in such manner all B2, B3, . . . , Bs from B(Intj).
After such transformations of the interval Intj there leaved fixed only (some) s non-reliable

states with pairwise different set of theories.
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Further, we represent reliable states as follows – C(Intj) = C1 ∪C2∪, . . . ,∪Cr, where the set
Cj , j ∈ [1, r] of states c, which have the same set T (c) of theories. Then we apply procedure of
rarefaction to every set C1, C2, . . . , Cr of reliable states as before we did for non-reliable states.

After such transformation of the interval Intj inside it there were be leaved fixed only a finite
(computable bounded size) reliable states with pairwise different sets of theories. So we obtain
totally rarified interval with reliable and non-reliable states.

We denote this interval Intj .

If in the all our model we will replace the intervals Intj by intervals Intj , and else will leave
in any intervals the smallest and biggest states (re-deifying Next relation appropriately, to keep
connection), then the states of intervals Intj will have the same truth values of formulas as in
the initial models (may be shown by usual induction by temporal and modal length o formulas).

To complete our result, we only need to clarify now many intervals Intj subsequently maybe
be chosen and inserted to support truth values of the formulas.

Theorem 1. For any formula α with temporal degree t and any given modal degree this formula
maybe be disproved at a model MC =

⟨
N, 4, Next, V1, . . . , Vk

⟩
, iff α may be disproved in the

model obtained from intervals Intj (described earlier above) by subsequent concatenation of at
most t+ 1 finite intervals So we get the logic in decidable.

Proof. Straightforward through induction by t using the described above construction. 2

Conclusion
In this paper we considered problem of decidability of a logic with models including reliable

states. We investigated temporal modal logic L(MN) for description of reliability information.
We considered intervals of stable truth values of formulas and their interaction. The techniques
is constructed and by it we wind an algorithm which may recognize decidability that logic.

This work is supported by the Krasnoyarsk Mathematical Center and financed by the Ministry
of Science and Higher Education of the Russian Federation (Agreement No. 075-02-2024-1429).
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Интервальная многоагентная логика с оператором
надёжности

Владимир Р.Кияткин
Владимир В. Рыбаков

Сибирский федеральный университет
Красноярск, Российская Федерация

Аннотация. В предлагаемой статье мы изучаем нетранзитивную временную многоагентную ло-
гику с мультиозначиванием агентов и реляционные модели, представляющие надёжные состояния.
Эти логики определяются семантически, как множества формул, истинных на линейных моде-
лях с мультиозначиванием. В работе мы предложили основу для такого подхода и разработали
технику для вычисления истинностных значений формул. Основной результат касается проблемы
разрешимости. Доказано, что рассматриваемая логика разрешима.

Ключевые слова: модальные логики, модели Крипке, многоагентные логики, проблема разре-
шимости.

– 683 –



Journal of Siberian Federal University. Mathematics & Physics 2024, 17(5), 684–688

EDN: YYANLK
УДК 512.54

To the Question of the Closure of the Carpet

Elizaveta N. Troyanskaya∗

Siberian Federal University
Krasnoyarsk, Russian Federation

Received 10.03.2024, received in revised form 15.04.2024, accepted 17.05.2024

Abstract. For a root system Φ, the set A = {Ar | r ∈ Φ} of additive subgroups Ar over commutative
ring K is called a carpet of type Φ if commuting two root elements xr(t), t ∈ Ar and xs(u), u ∈ As, gives
a result where each factor lies in the subgroup Φ(A) generated by the root elements xr(t), t ∈ Ar, r ∈ Φ.
The subgroup Φ(A) is called a carpet subgroup. It defines a new set of additive subgroups A={Ar | r∈Φ},
the name of the closure of the carpet A, which is set by equation Ar = {t ∈ K | xr(t) ∈ Φ(A)}. Ya. Nuzhin
wrote down the following question in the Kourovka notebook. Is the closure A of a carpet A a carpet too?
(question 19.61). The article provides a partial answer to this question. It is proved that the closure of
a carpet of type Φ over commutative ring of odd characteristic p is a carpet if 3 does not divide p when
Φ of type G2.

Keywords: commutative ring, Chevalley group, carpet of additive subgroups, K-character.
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1. Introduction

Let Φ be an indecomposable root system of rank l,Φ(K) be an elementary Chevalley group
of type Φ over a commutative ring K. The group Φ(K) is generated by its root subgroups

xr(K) = {xr(t) | t ∈ K}, r ∈ Φ.

The subgroups xr(K) are abelian and for each r ∈ Φ and any t, u ∈ K the following relations
hold

xr(t)xr(u) = xr(t+ u). (1)

A set of additive subgroups A = {Ar | r ∈ Φ} is called a carpet of type Φ over the ring K if

Cij,rsA
i
rA

j
s ⊆ Air+js, at r, s, ir + js ∈ Φ, i > 0, j > 0, (2)

where Ai
r = {ai | a ∈ Ar}, and the constants Cij,rs = ±1,±2,±3 are defined by the Chevalley

commutator formula

[xs(u), xr(t)] =
∏
i,j>0

xir+js(Cij,rs(−t)iuj), r, s, ir + js ∈ Φ. (3)

This definition of a carpet was introduced by V. M. Levchuk in the article [1]. Each carpet A

defines a carpet subgroup
Φ(A) = ⟨xr(Ar) | r ∈ Φ⟩,

∗troyanskaya.elizaveta@yandex.ru
c⃝ Siberian Federal University. All rights reserved
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where ⟨M⟩ denotes the subgroup generated by the set M from any subgroup. We call the closure
of the carpet A the set A = {Ar | r ∈ Φ} that is defined by

Ar = {t ∈ K | xr(t) ∈ Φ(A)}, r ∈ Φ.

A carpet A is called closed if Φ(A) ∩ xr(K) = xr(Ar), r ∈ Φ. In our notation this is equivalent
to the equality Ar = {Ar} for all r ∈ Φ, shortly A = A. Examples of non-closed carpets for
commutative rings of sufficiently wide classes are given in the articles [2] and [3].

This article received the following question from Ya.Nuzhin from the Kourovka notebook.

A) Is the closure A of the carpet A a carpet too? [4, question 19.61]

From the conditions of carpet (2) a statement follows. If t ∈ Ar, u ∈ As, then each factor from
the right side of the formula (3) lies in the carpet subgroup Φ(A). On the other hand, for the
arbitrary subgroup M of the Chevalley group Φ(K) the set M = {Mr | r ∈ Φ}, defined by the

Mr = {t ∈ K | xr(t) ∈M}, r ∈ Φ

is not always a carpet [5, page 528]. However, for the types Al, Dl and El, the set M defined by
the subgroup M is a carpet, as for this type formula (3) has the form [xr(t), xs(u)] = xr+s(±tu).
Therefore, for types Al, Dl and El closure of the carper is always a carpet. Thus, the question A)
is relevant only for Φ = Bl, Cl, F4, G2. The main result of the article is

Theorem 1. The closure A of a carpet A of type Φ over a ring of odd characteristic p is a carpet
if 3 does not divide p when Φ of type G2.

2. Preliminary results

The Chevalley group Φ(K) is increased to the extended group Φ̂(K) by all diagonal elements
h(χ), where χ is the K-character of the integer root lattice ZΦ, that is, a homomorphism of
the additive group ZΦ into the multiplicative group K∗ of the field K. Of course, the following
equalities hold

χ(a+ b) = χ(a)χ(b), a, b ∈ Φ,

χ(−a) = χ(a)−1, a ∈ Φ,

which will be used frequently.

Lemma 1. [6, Sec. 7.1] Any K-character χ is uniquely determined by values on the fundamental
roots and for any r ∈ Φ, t ∈ K

h(χ)xr(t)h
−1(χ) = xr(χ(r)t). (4)

The next lemma follows from the definition of a carpet and a carpet subgroup.

Lemma 2. Let M = {Mr | r ∈ Φ} — a set of additive subgroups of the ring K, the subgroup M
of the Chevalley group Φ(K) is generated by the subgroups xr(Mr), r ∈ Φ, and M ∩ xr(K) =
xr(Mr). A set M is a carpet if and only if for any r, s ∈ Φ with the condition that r + s ∈ Φ,
each factor from the right side of the commutator formula for elements xr(t) and xs(t), where
t ∈ Mr, u ∈ Ms, lies to M .

The article by Ya.Nuzhin gives examples of a subgroup M of the Chevalley group Φ(K) of
types B2, G2 such that the set M defined as in Lemma 2, is not a carpet [5, examples 1-2].

Lemma 3. Each diagonal element h(χ) normalizes any subgroup of the Chevalley group that is
generated by the root elements if for all r ∈ Φ the value χ(r) lies in the simple subring generated
by 1.
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3. Proof of the Theorem 1

Any two roots r, s with the condition that r + s is a root lie in a root system of type A2, B2

or G2. Therefore, by Lemma 2, it is enough to prove Theorem 1 for these types of rank 2. As
already noted in the introduction, for the type A2 the closure of any carpet is a carpet. That
means that only the types B2 and G2 remain.

Let r, s, r + s be the roots of the root system Φ of type B2 or G2, A = {Ar | r ∈ Φ} is a
carpet of type Φ, A = {Ar | r ∈ Φ} the closure of a carpet,

M = < xr(Ar) | r ∈ Φ > .

By Lemma 2, to prove Theorem 1 it is enough to establish the following statement.

B) For any t ∈ Ar, u ∈ As each factor from the right side of the commutator formula for
elements xr(t) and xs(u) lies in M .

It is clear that we will be interested only in those cases for which there are two or more factors
on the right side of the commutator formula (3).

Let Φ be of type B2. In this case, there are two types of commutator formula (3) with more
than one factor on the right side, these are the following formulas

[xa(t), xb(u)] = xa+b(ε1tu)x2a+b(ε2t
2u), (5)

[xb(u), xa(t)] = xa+b(ε3tu)x2a+b(ε4t
2u), (6)

where εi = ±1, i = 1, 2, 3, 4. The right sides of these two formulas differ only in sign, so it is
enough to consider only one of them, for example, the first.

Let χ(a) = χ(b) = −1. According to Lemma 3, h(χ) normalizes M and by Lemma 1

h(χ)[xa(t), xb(u)]h
−1(χ) = xa+b(ε1tu)x2a+b(−ε2t2u). (7)

Multiplying the right sides (5) and (7), we obtain the inclusion xa+b(ε12tu) ∈ M . Since the
characteristic is odd, then xa+b(±tu) ∈M . Multiplying it to the (5), we get x2a+b(ε2t

2u). Thus,
statement B) is established.

Let Φ be of type G2. Chevalley commutator formulas having more than one factor on the
right side are represented by four cases

[xa(t), xb(u)] = xa+b(ε1tu)x2a+b(ε2t
2u)x3a+b(ε3t

3u)x3a+2b(ε4t
3u2), (8)

[xb(u), xa(t)] = xa+b(ε1tu)x2a+b(ε2t
2u)x3a+b(ε3t

3u)x3a+2b(ε42t
3u2), (9)

[xa(t), xa+b(u)] = x2a+b(ε12tu)x3a+2b(ε23tu
2)x3a+b(ε33t

2u), (10)

[xa+b(u), xa(t)] = x2a+b(ε12tu)x3a+2b(ε23tu
2)x3a+b(ε33t

2u), (11)

where εi = ±1. Formulas (8) and (9) have different factors on the right side. The right sides of
(10), (11) differ only in sign, so it is enough to consider only (10).

Let it begin with the formula (8). Let χ(a) = −1, χ(b) = 1. By Lemma 1

h(χ)[xa(t), xb(u)]h
−1(χ) = xa+b(−ε1tu)x2a+b(ε2t

2u)x3a+b(−ε3t3u)x3a+2b(−ε4t3u2). (12)
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Multiplying the right sides (8) and (12), we have x2a+b(ε22t
2u) ∈ M. Since the characteristic is

odd, then x2a+b(−ε2t2u) ∈M . Multiplying the right side (12) by it, we obtain the product

xa+b(−ε1tu)x3a+b(−ε3t3u)x3a+2b(−ε4t3u2). (13)

Let χ(a) = −1, χ(b) = −1. Then

h(χ)[xa+b(ε1tu)x3a+b(ε3t
3u)x3a+2b(ε4t

3u2)]h−1(χ) = xa+b(ε1tu)x3a+b(ε3t
3u)x3a+2b(−ε4t3u2).

(14)
Multiplying the right sides (13) and (14), we obtain x3a+2b(−2t3u2) ∈M , and therefore

xa+b(−ε1tu)x3a+b(−ε3t3u).

This product cannot be split using the sets χ(r) = ±1. Let us choose other values of χ(r) from the
multiplicative groups of the field. Since the characteristic p > 3 is odd, the number 2 is different
from ±1 and invertible in the field K. We use this fact to choose χ(r). Let χ(a) = 2, χ(b) = −2,
then

h(χ)[xa+b(ε1tu), x3a+b(ε2t
3u)]h−1(χ) = xa+b(−4ε1tu)x3a+b(−16ε2t

3u). (15)

Let k 6 p be the inverse element for −4 in the ring, then we raise xa+b(−4ε1tu)x3a+b(−16ε2t
3u)

to the power k and get xa+b(ε1tu)x3a+b(4ε3t
3u). Adding this result to the product

xa+b(−ε1tu)x3a+b(−ε3t3u), we obtain x3a+b(3ε3t
3u) ∈M. Since the characteristic of the ring K

is not divisible by 3 , then x3a+b(ε3t
3u) ∈M. So, we managed to split the factors of the formula

(8). Formula (9) differs in the multiplier coefficient x3a+2b(ε42t
3u2), which, as above, splits off

from the product at the second step and does not play a role in the proof. Thus, statement B)
holds for (8), (9).

Carry out a similar procedure for the formula (10). Let χ(a) = 1, χ(b) = −1. By Lemma 1

h(χ)[xa(t), xa+b(u)]h
−1(χ) = x2a+b(−2ε1tu)x3a+2b(3ε2t

2u)x3a+b(−3ε3t
2u). (16)

Let χ(a) = −1, χ(b) = 1. By Lemma 1

h(χ)[xa(t), xa+b(u)]h
−1(χ) = x2a+b(2ε1tu)x3a+2b(−3ε2t

2u)x3a+b(−3ε3t
2u). (17)

Multiplying the right sides (10) and (16), we have x3a+2b(6ε2t
2u). Multiplying the right sides (10)

and (17), we have x2a+b(4ε1tu). Since the numbers 6 and 4 are coprime with the characteristic
of the ring K, then the elements x2a+b(ε1tu), x3a+2b(ε2t

2u) lie in M. Consequently, the factors
of Chevalley’s formula (10) are able to be split. The theorem has been proven.

The author expresses deep gratitude to his scientific supervisor Ya.Nuzhin for setting the
problem, constant attention to the work and support at all stages of its implementation.
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К вопросу о замыкании ковра
Елизавета Н. Троянская

Сибирский федеральный университет
Красноярск, Российская Федерация

Аннотация. Для системы корней Φ набор A = {Ar | r ∈ Φ} аддитивных подгрупп Ar коммута-
тивного кольца K называется ковром типа Φ, если при коммутировании двух корневых элемен-
тов xr(t), t ∈ Ar и xs(u), u ∈ As, каждый сомножитель из правой части коммутативной форму-
лы Шевалле лежит в подгруппе Φ(A), порожденной корневыми элементами xr(t), t ∈ Ar, r ∈ Φ.
Подгруппа Φ(A) называется ковровой подгруппой. Она определяет новый набор аддитивных под-
групп A = {Ar | r ∈ Φ}, называемый замыканием ковра A, который задается равенствами
Ar = {t ∈ K | xr(t) ∈ Φ(A)}. Я.Н. Нужин записал в Коуровской тетради следующий вопрос.
Является ли замыкание A ковра A ковром? (вопрос 19.61). В статье доказано, что замыкание ков-
ра типа Φ над коммутативным кольцом нечетной характеристики p является ковром, если 3 не
делит p, когда Φ типа G2.

Ключевые слова: коммутативное кольцо, группа Шевалле, ковер аддитивных подгрупп,
K-характер.
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