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Abstract. Deformation study for monolayer graphene film on Pt substrate is performed by computer
simulation. The surface potential simulates the substrate. Carbon atoms in graphene interact with each
other and with the potential of the substrate. The minimum of potential energy determines the position
of carbon atoms. Transverse strains of graphene are energetically advantageous due to the strong bond
between carbon atoms. Longitudinal deformations in graphene are small. The model uses the Lennard–
Jones potential to calculate the substrate potential. The potential parameters are calculated from the
equilibrium state of the unperturbed system and experimental data. The surface potential is calculated
for one unit cell and translated by parallel transfer to the entire substrate. The interaction between
carbon atoms is also described by the Lennard–Jones potential. Moire patterns in graphene have a
honeycomb superstructure. The model calculates the dependence of the period for the moire pattern on
the angle between the main directions of the crystal lattice on the substrate and graphene. The period
of the moire superlattice decreases when the film is rotated according to a nonlinear law. Calculations
show a large distance between the substrate and the graphene film. The simulation results are in good
agreement with the experimental data.

Keywords: graphene, surface potential, moire pattern, Lennard-Jones potential.

Citation: S.V. Belim, I.V. Tikhomirov, Moire Patterns in Graphene on Pt(111) Substrate:
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ALQECJ.

Inroduction

Moire patterns occur on the surface of monolayer graphene under the substrate action [1, 2, 3].
The cause of moire patterns is the mismatch between the crystal lattice periods of the metal sub-
strate and graphene. The bond between carbon atoms in graphene is stronger than carbon with
support atoms. Therefore, vertical strains of graphene are energetically more advantageous than
longitudinal strains. These vertical deformations form a periodic superstructure that manifests
as a moire pattern. Moire patterns are formed in graphene on various substrates: Ru [4, 5], Ir
[6, 7], Rh [8], Pt [9, 10], Cu [11], Pd [12], Co [13], Ni [14]. Crystals with a face-centered crystal
lattice serve as a support for the graphene monolayer. As a rule, the surface of the substrate
coincides with the plane (111). In this case, the atoms on the substrate surface form a hexogonal
structure. The parameters of the moire pattern are determined by the ratio of the periods for

∗sbelim@mail.ru
†ivtikhomirov@omgtu.ru

c⃝ Siberian Federal University. All rights reserved
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the free graphene lattice and the substrate. The moire superstructure period also depends on
the mutual orientation between the crystal lattices of graphene and the substrate. Increasing the
angle between the main directions in the lattices reduces the moire pattern period.

The Pt (111) substrate is of particular interest due to the weak interaction between carbon
and platinum atoms. Van der Waals forces dominate the interaction between platinum and
carbon atoms [15]. The weak interaction between atoms makes it possible to create graphene
films oriented at different angles [16]. These capabilities provide a wide variety of moire pattern
periods.

The main problem of modeling moire patterns in graphene is the choice of interaction po-
tential. The method of classical molecular dynamics with Tersoff potential [17] demonstrated a
wide variety for moire superstructures. The application of the same method with Lennard–Jones
potential did not produce interesting results. The density functional method allowed to simulate
epitaxial growth of graphene on the Pt (111) surface at angles 0 and 30 [18]. Calculations showed
the dependence of the moire patterns period on the location of the graphene monolayer relative
to the substrate. Also, the density functional method considers the competition between the
interaction energy with the substrate and the energy of elastic strains of graphene [12]. Cal-
culations from the first principles for six different graphene orientation angles [19] confirmed
a weak bond between carbon atoms and the substrate. The geometric superposition model of
two mismatched hexagonal lattices [20] predicts the appearance of periodic beats that appear
as moire patterns. The system of equations in this model has solutions well consistent with
the experimental data for Pt (111). Atomistic modeling based on minimizing van der Waals
energy [21] is also well consistent with experimental data. Mathematical formalism based on the
two-dimensional Fourier transform [22] also leads to the inevitability of the appearance of moire
patterns on substrates when there is a mismatch between crystal lattices. However, the authors
of this work do not give the results for comparison with the experiment. All of these methods are
computationally demanding. Lennard-Jones’s potential is one of the easiest to describe van der
Waals forces. A computational scheme based on this potential allows simulating systems with a
large number of atoms and controlled accuracy.

Previous articles of the authors have shown that the influence of the substrate can be repre-
sented as a periodic potential [23, 24]. Deformations of the monoatomic film under the action
of the substrate are described by minimizing the total energy for films atoms [25, 26]. Pre-
viously, the authors considered longitudinal deformations of thin films. This paper develops a
method for calculating the surface potential and behavior of monoatomic films in it for transverse
deformations and the formation of moire patterns.

1. Model

Intermolecular forces determine the interaction between carbon atoms and the substrate, since
there is a large distance between them. These forces can be approximated by the Lennard–Jones
potential [27] in this case.

ULG(r) = 4ε0

((σ
r

)12
−
(σ
r

)6)
. (1)

ε0 is a parameter that determines the depth of the potential pit. σ is a parameter that determines
the position of the energy minimum. Both parameters depend on the type of atoms that interact.
These parameters can be determined from comparison with experimental data.
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We use the surface potential approximation [24, 25] to study the influence of the substrate
on graphene. The monolayer film is placed at an external periodic potential in this approach.
Substrate atoms create this surface potential with van der Waals forces. The first step in the
model determinates parameters for free graphene without a substrate. The second step calculates
the potential of the substrate. The third stage consists in placing graphene in the potential of
the substrate and finding its equilibrium state.

Monolayer graphene forms a hexagonal lattice of carbon atoms in free-state. The model
calculates the interaction energy WC of one carbon atom with the rest of the atoms to determine
the Lennard–Jones potential parameters.

WC = 4εC
∑
(i,j)

((
σC
rij

)12

−
(
σC
rij

)6
)
. (2)

rij is the distance between the selected carbon atom and the carbon atom numbered (i, j). εC
and σC are Lennard-Jones potential parameters for carbon atoms in graphene. There is a KIM
repository of Lennard-Jones potential parameter values for various atoms [28]. However, this
repository builds on experimental data for the most common crystal lattices. Calculations show
that a change in the type of crystal lattice leads to a change in the σC parameter in the Lennard-
Jones potential [28]. This parameter requires a separate calculation for graphene. The repository
contains parameters for graphite. The model calculates the WC energy for only one atom. The
rest of the atoms will have the same energy.

The graphene lattice is two triangular sublattices. The atom with the number (i, j) in the
first sublattice has coordinates:

xij =

(
i+

j

2
− 1

2

)
a+

a

2
,

yij =

√
3

2

(
j +

1

3

)
a+

a

2
√
3
.

(3)

The atom with the number (i, j) in the second sublattice has coordinates:

xij =

(
i+

j

2
− 1

2

)
a+

a

2
,

yij =

√
3

2

(
j − 1

3

)
a+

a

2
√
3
.

(4)

The graphene lattice is shifted so that one of the atoms is at the origin. All carbon atoms have
the same energy. The energy WC is calculated for the atom at (0, 0). The distance rij to the
atom number (i, j) is directly proportional to the lattice period a. Substituting rij into the
formula (2) gives an expression similar to the Lennard–Jones potential.

WC = 4εC

(
A(n)

(σC
a

)12
−B(n)

(σC
a

)6)
. (5)

The coefficients A(n) and B(n) depend on the number of atoms considered n. Calculations
performed for n = 20. Increasing the number of atoms n > 20 has little effect on the result.

The calculations determine the σC parameter from the requirement to minimize the interac-
tion energy.

∂WC

∂a

∣∣∣
a=aC

= 0. (6)
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a is the period of the crystal lattice in graphene. aC is the experimental value of the lattice
period in graphene. Substituting the experimental value aC = 2.46 Å [29] into formula (6) and
solving the equation yields a value σC = 1.2850 Å. The calculations use an array with 1000
atoms. The results of the calculations show that you can limit to an array of 400 atoms. A
further increase in the number of atoms in the system gives corrections in the fifth sign after the
comma. Further calculations use the value from the KIM repository εC = 6.3695eV [28] for the
second parameter. This parameter cannot be defined for simple geometric reasons and energy
minimization.

The model requires the determination of parameters in the Lennard-Jones potential for the
interaction between platinum atoms to calculate the surface potential. Platinum has a face-
centered cubic lattice with a period bPt = 3.920 Å. Two types of atoms are distinguished in a
unit cell by the number of nearest neighbors. The first type of atoms is located at the top of the
cube and has energy WPt1. The second type of atoms is located in the center of the face and
has energy WPt2. Both energies are calculated using the formula (7).

WPti = 4εPt
∑
(i,j)

((
σPt
rij

)12

−
(
σPt
rij

)6
)
. (i = 1, 2). (7)

The distance between the atoms rij depends on the number of the atom (i, j) and the period of
the crystal lattice b.

The average energy per atom accounts for the number of each type atoms per unit cell. One
atom of the first type and three atoms of the second type are per unit cell. The average energy
per atom is determined by the weighted sum of energies.

WPt =
1

4
WPt1 +

3

4
WPt2. (8)

Minimizing energy per atom gives an equation to compute the parameter σPt.

∂WPt

∂b

∣∣∣
b=bPt

= 0. (9)

Substituting the experimental value bPt=3.920 Å into equation (9) gives the value σPt=2.5420 Å.
The calculations use an array of 10000 atoms. The value of the parameter goes to a stable value
starting from 8000 atoms in the system. The model uses the second parameter from the KIM
repository εPt = 3.1401eV [28].

Surface potential WCPt calculations also use Lennard-Jones potential.

WCPt = 4εCPt
∑
j

((
σCPt
rj

)12

−
(
σCPt
rj

)6
)
. (10)

rj is the distance from the atom number j to the point with coordinates (x, y, z).
The model uses combining rules [29] for Lennard-Jones potential parameters when calculating

the surface potential.

σCPt =

(
σ6
C1 + σ6

Pt

2

)1/6

,

εCPt =
√
εCεPt

(√
σCσPt
σCPt

)6

.

(11)
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σC1 is a Lennard-Jones potential parameter for the interaction of carbon atoms with neighboring
layers. The parameters in the Lennard-Jones potential for graphene and for the substrate do
not match (σC1 ̸= σC). The model uses a value for σC1 that is characteristic of the interaction
between graphite layers. (σC1 = 3.5523 Å, σCPt = 3.2319 Å, εCPt = 2.8896 eV ).

Surface potential calculations use a 100× 100 atom site and three layers of platinum atoms.
The model is limited to only three layers, since the Lennard-Jones potential decreases rapidly
with distance and the following layers contribute little to the potential value. The surface layer
of atoms is located in the z = 0 plane. The substrate occupies a half-space z 6 0. Surface
arrangement of atoms corresponds to plane (111). The following layers of substrate atoms make
a small contribution that does not significantly affect the potential value. We calculate a fragment
of the potential located in the center of the site and having an area of one unit cell. The potential
of an unrestricted substrate consists of combining such fragments produced by parallel transfer.
If the height z above the substrate surface is fixed, the potential has the form of a periodic
structure with the maxima and minima clearly identified. The height of the extremes depends
on the distance from the point of space to the substrate z.

Graphene atoms are located in the external potential WCPt(x, y, z). The model also considers
the interaction between carbon atoms in graphene. The total energy per carbon atom near the
substrate is the sum of two energies.

Wi(x, y, z) =WCi(x, y, z) +WCPti(x, y, z). (12)

i is the number of the carbon atom.
The interaction energy between carbon atoms in graphene significantly exceeds the inter-

action energy with the substrate. Graphene longitudinal deformations do not exceed 5% [15].
Therefore, the model uses a quadratic approximation for the energy of the interaction forces
between graphene atoms.

WCi =
∑
j

Kx2ij
2

(13)

K is the elasticity coefficient, xij is the distance to the nearest neighboring atom. Calculations
used K = 10. This elastic coefficient provides the desired longitudinal deformations.

The energy minimum condition determines the coordinates of the carbon atom.

∂Wi(x, y, z)

∂x
= 0,

∂Wi(x, y, z)

∂y
= 0,

∂Wi(x, y, z)

∂z
= 0. (14)

The model solves the system of equations (14) for each carbon atom in graphene number i.The
central graphene atom is initially placed above the central minimum of the substrate potential.
The Monte Carlo method is used to solve this system of equations. The solution is obtained
iteratively. Graphene film is flat in initial state. One iteration involves trying to shift the
graphene atom by a random vector. If the displacement reduces the energy, then a new position
of the atom is accepted, otherwise the atom returns to its original position. The algorithm ends
when the next iteration changes the position of all atoms less than 1%.

2. Computer experiment results
Computer simulation is performed for a system having a size 100Å×100Å. The undisturbed

graphene film is above this site at the initial stage. The model calculates the equilibrium position
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for each graphene atom in the external substrate potential. The calculations vary the positions
of the atom by three coordinates. The first computer experiment examines a carbon system with
angle θ = 0◦ between the main directions of the crystal lattice for the substrate and graphene.
Fig. 1 shows the results of the calculations. The figure shows a 50Å×50Å film fragment to
zoom in.

Fig. 1. Arrangement of carbon atoms above Pt substrate for θ = 0◦. The height of the atoms
above the substrate is shown by the intensity of gray

Fig. 1 shows vertical strains of graphene. Deformations are periodic and form a honeycomb
superstructure. The boundaries of the cells for the superstructure are determined by the atoms
closest to the substrate. The superstructure period is d = 25.4 Å. The lower boundary of the
graphene film is located at a distance z = 2.865 Å from the substrate. Fig. 2 shows a 3D image
of a moire pattern in the graphene.

Fig. 2. 3D image of moire pattern in graphene
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In the second modeling step, the graphene film is rotated relative to the substrate. The
rotation angle θ for the film is measured between the principal directions of the graphene and
substrate lattices. The rotation of graphene relative to the crystal lattice main direction in the
substrate changes the period of the moire pattern. The rotation angle θ changes the position of
the atoms relative to the maxima and minima of the surface potential. Fig. 3 shows the moire
pattern at two angles θ.

(a) (b)

Fig. 3. Plot for period of moire pattern d versus rotation angle θ of graphene relative to substrate.
Moire pattern at two angles of graphene rotation relative to substrate: a) θ = 3◦, b) θ = 5◦

Calculations show a decrease in the period of moire pattern in graphene with an increase in
the angle of rotation relative to the substrate. Calculations are made for angles from θ = 0◦ to
θ = 16◦ with ∆θ = 1◦ increments. Fig. 4 shows the dependence of the moire pattern period d

on the rotation angle θ of graphene relative to the substrate.

Fig. 4. Plot for period of moire pattern d versus rotation angle θ of graphene relative to substrate
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Conclusion

The results of the simulation are in good agreement with the data of other works and ex-
perimental data. The experiment shows the distance from the substrate to the graphene film
(3.30± 0.05) Å [16]. DFT modeling gives a value 3.30 Å [18] for this distance. Our model shows
the distance from the substrate to carbon atoms in graphene in the range from 3.23 Å to 3.31 Å.
At the same time, our model requires significantly less calculations than the DFT method.

Theoretical values of the moire pattern period are based on the geometric model [20]. This
model predicts stable moire patterns only at certain angles between the principal directions of
the graphene and platinum crystal lattice. This model allows to calculate the period of moire
structures for these angles. DFT modeling [12, 19] performs calculations only for angles predicted
by the geometric model. Periods based on DFT modeling and geometric model coincide. Moire
pattern periods in our model (OUR) are also consistent with the DFT and geometric model (GM)
(θ = 0◦, d(GM) = 22.1 Å, d(OUR) = 21.7 Å; θ = 0.8◦, d(GM) = 21.0 Å, d(OUR) = 21.3 Å;
θ = 19◦, d(GM) = 7.4 Å, d(OUR) = 7.0 Å). The experimental value of the moire pattern period
at θ = 0◦ is d = 22 Å. Our model gives the same result.

Our model differs from the geometric model in that it predicts a moire pattern at different
angles. A moire pattern exists for any angle between the principal directions of the crystal lattice
of the Pt substrate and graphene. The moire pattern has a simple shape for the angles predicted
by the geometric model. The moire pattern is more complex for other angles. The highs and
lows of this pattern have a more complex shape. In this case, hexagonal symmetry is preserved.

Our model calculates the moire pattern in graphene on the Pt substrate. The model uses a
two-step approach. The first step calculates the surface potential of the substrate. The second
stage studies the behavior of graphene in the surface potential. The model uses the Lennard–
Jones potential to calculate the surface potential. The selection of the two-part potential is
based on the large distance from the substrate surface to the graphene film. Van der Waals
forces dominate such a system. Lennard-Jones’s potential describes these forces well.

This research was funded by Russian Science Foundation, project number 23-29-00108.
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Муаровые узоры в графене на подложке Pt(111):
компьютерное моделирование

Сергей В. Белим
Илья В. Тихомиров

Омский государственный технический университет
Омск, Российская Федерация

Аннотация. Исследование деформаций монослойной пленки графена на Pt подложке выполне-
но методом компьютерного моделирования. Влияние подложки моделируется с помощью поверх-
ностного потенциала. Атомы углерода в графене взаимодействуют между собой и с потенциалом
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подложки. Минимум потенциальной энергии определяет положение атомов углерода. Поиск рав-
новесного положения атомов углерода выполняется с помощью метода Монте–Карло. Попереч-
ные деформации графена являются энергетически выгодными из-за сильной связи между атома-
ми углерода. Продольные деформации графена являются малыми. Модель использует потенциал
Леннард–Джонса для вычисления потенциала подложки. Параметры потенциала вычисляются из
равновесного состояния невозмущенной системы. Поверхностный потенциал вычисляется для од-
ной элементарной ячейки и транслируется с помощью параллельного переноса на всю подложку.
Взаимодействие между атомами углерода также описывается потенциалом Леннард-Джонса. Му-
аровые узоры в графене имеют сотовую сверхструктуру. Модель вычисляет зависимость периода
муарового узора от угла между главными направлениями кристаллической решетки подложки и
графена. Период муаровой сверхрешетки убывает при повороте пленки по нелинейному закону.
Расчеты показывают наличие большого расстояния между подложкой и графеновой пленкой. Ре-
зультаты моделирования находятся в хорошем согласии с экспериментальными данными.

Ключевые слова: графен, поверхностный потенциал, муаровый узор, потенциал Леннард-
Джонса.
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Abstract. In this study, thulium and holmium codoped yttrium sesquioxide (Tm,Ho:Y2O3) transparent
ceramics were fabricated using solid-state vacuum sintering of nano-sized particles with complex chemical
composition synthesized by the laser ablation method. The as-produced powder was in the form of
soft aggregates composing of individual spherical particles with a diameter of 16 nm, whose crystal
structure underwent conversion from the monoclinic (space group C2/m) to the cubic (space group
Ia-3) modification after consolidation into ceramic material. The morphological properties along with
their correlation to the optical quality of Tm,Ho:Y2O3 ceramics vacuum sintered at 1700–1775 ◦C were
investigated. The sample sintered at 1750 ◦C featured higher transmittances (81.6% at λ= 600 nm
and 83.0% at λ= 1000 nm) and lower content of scattering centers of 0.00014 vol.%. The absorption
cross-section at 797 nm due to the 3H6→3H4 transition of Tm3+ ions was 4.44×10−21 cm2. The broad
luminescence band was observed from 1750 nm to 2100 nm owing to the combination of cross-relaxation
of Tm3+ ions and nonradiative energy transfer from the 3F4 level (Tm3+) to the 5I7 level (Ho3+). These
results suggest that Tm,Ho-codoped Y2O3 transparent ceramics are promising gain media for broadly
tunable and mode-locked lasers emitting in the 2-µm spectral range.
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Introduction

In recent years, solid-state lasers emitting in the 2-µm spectral range have gained signifi-
cant attention owing to their diverse applications in industry, medicine and fundamental science
[1–3]. Trivalent thulium (Tm3+) and holmium (Ho3+) ions possess the most notable optical
transitions for laser emission in the 1.9–2.1 µm region. Tm3+-doped active elements can be
efficiently pumped at 0.8 µm by commercially available high-power AlGaAs diodes to achieve
laser emission due to the 3F4→3H6 transition. Regarding Ho3+ ions, laser operation on the
5I7→5I8 transition is usually demonstrated under resonant pumping at 1.93 µm using expensive
Tm3+-fiber lasers or GaSb (InP) diodes. To address this issue, gain media codoped with Tm3+

and Ho3+ are currently being actively developed [4–6]. Due to the proximity of the energy lev-
els of Tm3+ (3F4) and Ho3+ (5I7), non-radiative energy transfer from Tm3+ to Ho3+ occurs
enabling laser oscillation based on the 5I7→5I8 optical transition in Ho3+ ions through diode
pumping of the 3H4 level of Tm3+ at around 0.8 µm. Additionally, this approach is promising
for tunable and mode-locked lasers generating ultrashort pulses owing to the broadening of the
gain spectrum by combining the individual emission bands of Tm3+ and Ho3+.

Yttrium sesquioxide (Y2O3) is a promising host material for Tm3+, Ho3+-codoping owing to
its excellent optical and thermo-mechanical properties [7]. However, the current Y2O3 crystal
growth technologies do not enable the synthesis of a material with both high optical quality and
large volume. This is due to the fact that melt growth of large-sized single-crystals is practically
impossible because of the reversible transition of Y2O3 from a cubic to a hexagonal structure
near 2300 ◦C [8], which leads to the destruction of the sample during cooling. In this regard,
producing polycrystalline materials based on Y2O3 through the sintering of ultrafine powders
could serve as an alternative approach to crystal growth, as ceramic technology offers several
key advantages, including the possibility to achieve large sizes, composite structures and lower
synthesis temperatures [9–11].

Ultrafine powders are crucial as the starting material in the production of optical ceram-
ics. Synthesizing these nanopowders is a particularly challenging and critical stage due to the
stringent requirements for high purity, small particle sizes, minimal agglomeration, and complex
chemical composition. We employed laser synthesis to produce the nanopowders, a method that
effectively meets all these requirements [12]. With respect to Tm3+, Ho3+-codoping, laser abla-
tion synthesis allows for the uniform incorporation of multiple active ions throughout the volume
of individual nanoparticles during the vapor condensation process.

In this study, we investigate the properties of Tm3+, Ho3+-codoped Y2O3 nanoparticles pro-
duced by the laser ablation method, as well as the structural, optical, and spectroscopic properties
of transparent ceramics sintered at various temperatures.

1. Materials and methods

Nano-sized particles with a complex chemical composition synthesized by laser evapora-
tion of solid target in an air flow were used as the starting material for the fabrication of
Tm,Ho:Y2O3 ceramics. A detailed description of the experimental setup based on the LS-07N
ytterbium fiber laser (λ=1070 nm, NTO "IRE-Polus", Russia) is presented in [13].The prepa-
ration of a solid target was carried out by uniaxial pressing of yttrium, thulium and holmium
oxide powders with a purity of at least 99.99 wt.% (LANHIT, Russia) mixed in the proportion
(Tm0.03Ho0.003Y0.967)2O3. Next the resulting green body with a diameter of 65 mm and a thick-
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ness of 25 mm was annealed in air for 5 h at 1250 ◦C.
The synthesized nanoparticles were compacted into cylindrical samples with a diameter of 14

mm and a thickness of 3 mm by uniaxial static pressing at 200 MPa. After calcination in air for
3 h at a temperature of 900 ◦C, the compacts were vacuum sintered for 5 h at 1700 ◦C, 1725 ◦C,
1750 ◦C or 1775 ◦C under a residual gas pressure of 10−3 Pa. The sintered ceramic samples were
annealed in air for 2 h at 1400 ◦C to eliminate oxygen vacancies and then mirror polished on
both sides for structural and spectroscopic characterization.

The morphology of the as-synthesized nanopowder was studied using a JEM 2100 (TEM,
JEOL Ltd., Japan) transmission electron microscope. The specific surface area of the nanopowder
was measured by the Brunauer-Emmett-Teller (BET) method with a TriStar 3000 gas adsorption
analyzer (Micromeritics, USA). The crystal structures of the as-obtained nanoparticles and the
sintered ceramics were identified by means of X-ray diffraction (XRD) analysis using a D8 Dis-
cover diffractometer (Bruker AXS, Germany). The chemical composition of the as-synthesized
nanopowder was analyzed by inductively coupled plasma mass spectrometry (ICP MS) using an
Optima 2100 DV spectrometer (PerkinElmer, USA).

In order to assess the optical quality of the obtained ceramics, the transmission spectra were
measured at room temperature in the wavelength range 200–1100 nm using a UV-1700 dou-
ble beam spectrophotometer (Shimadzu, Japan). The absorption spectra of the samples were
recorded in the interval from 300 to 2200 nm by a Lambda 950 UV-VIS-NIR double beam
spectrophotometer (PerkinElmer, USA). The luminescence spectrum was registered in the range
1600–2200 nm under excitation at 811 nm using a FLS980 fluorescence spectrometer (Edinburgh
Instruments, UK).

The average content of scattering centers throughout the depth of the samples was estimated
by means of the direct count method using an optical microscope BX51TRF (Olympus Corp.,
Japan).

2. Results and discussion

2.1. Properties of Tm,Ho:Y2O3 nanoparticles

To accurately calculate the lattice constant and absorption characteristics of the fabricated
ceramics, it is crucial to specify the precise Tm3+ and Ho3+ contents in the nanopowder.
Through ICP-MS analysis, the chemical composition of the synthesized nanoparticles was
determined to be (Tm0.032Ho0.003Y0.965)2O3 corresponding to the doping concentrations
N Tm =6.46×1020 at/cm3 and NHo = 0.61×1020 at/cm3. For clarity, this composition will
henceforth be referred to as Tm,Ho:Y2O3.

Fig. 1 shows a TEM image illustrating the morphology of Tm,Ho:Y2O3 nanopowder
synthesized using the laser ablation method. The sample primarily consists of ultrafine, loosely
aggregated, and weakly faceted particles, with sizes ranging from 10 to 40 nm. The specific
surface area of the powder, as measured by the BET method, reached 67 m2/g corresponding to
an average particle diameter of around 16 nm. This small particle size results in a high surface
area-to-volume ratio, which increases surface forces such as van der Waals forces. However
surface charges from ionization during ablation or from adsorbed molecules create electrostatic
repulsion between particles preventing close contact and significant agglomeration. These
characteristics are beneficial for fabricating transparent ceramics, as they help reduce density
variations in pressed compacts, promoting more uniform densification.
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Fig. 1. TEM image of the as-produced Tm,Ho:Y2O3 nanoparticles

The crystal structure of the synthesized Tm,Ho:Y2O3 nanoparticles was examined through
powder X-ray diffraction analysis (Fig. 2a). In addition to the peak broadening attributed to the
small crystal size, approximately 14 nm, which aligns with TEM observations, it is apparent that
the nanoparticles do not exhibit the equilibrium structure (space group Ia-3, No. 206). Instead,
the positions and relative intensities of the diffraction peaks correspond to the monoclinic B-type
modification of Y2O3 (space group C2/m), as identified in ICDD PDF No. 00-044-0399 (Fig. 2b).
The lattice parameters obtained from crystal structure refinement using the Rietveld method
were determined as follows: a =13.916 Å, b =3.502 Å, c = 8.634 Å, and β=100.35◦. However,
as discussed in the following section, the nanoparticles underwent a phase transformation to the
stable cubic modification of Y2O3 after vacuum sintering (Figs. 2c,d).

The presence of the monoclinic phase in the synthesized Tm,Ho:Y2O3 nanoparticles can be
attributed to several factors including the high-pressure conditions during the laser ablation
process and the resulting strain within the crystal structure. The gas-phase synthesis of the
Tm2O3–Ho2O3–Y2O3 solid solution may lead to its crystallization in a metastable state, a phe-
nomenon explained by the Gibbs-Thomson effect [14]. Specifically, the pressure difference (∆p)
across the curved surface of a spherical particle with a radius (r) is related to the surface tension
(γ) by the equation ∆p =2γ/r. For a particle radius of 8 nm and a surface tension of 0.74 N/m
near the melting point [15], the calculated pressure difference is approximately 0.185 GPa. In
nanoparticles surface tension can be higher than on a flat surface further increasing the internal
pressure. Previous research using high-pressure powder and single-crystal X-ray diffraction has
demonstrated that Y2O3 undergoes a phase transformation from its stable cubic bixbyite-type
structure to the monoclinic B-phase at pressures of 11.7 GPa at room temperature or 3 GPa
when heated to 900 ◦C [16,17].
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Fig. 2. XRD patterns of the as-synthesized Tm,Ho:Y2O3 nanoparticles and sintered ceramics
(a, c) and theoretical reflections of monoclinic and cubic Y2O3 (b, d)

2.2. Characterization of Tm,Ho:Y2O3 transparent ceramics

Fig. 2c shows the XRD pattern of the Tm,Ho:Y2O3 ceramic sintered at 1750 ◦C, revealing
diffraction peaks consistent with a single-phase material possessing a cubic bixbyite structure.
This pattern aligns with the theoretical reflections of cubic Y2O3 (ICDD PDF No. 00-041-1105,
as shown in Fig. 2d), indicating the formation of a substitutional solid solution of thulium,
holmium, and yttrium sesquioxides. The incorporation of Tm2O3 and Ho2O3 into the Y2O3

lattice results in a slight shift of the diffraction peaks toward larger angles, which suggests a
compression of the unit cell. This shift is anticipated given that the ionic radii of Tm3+ (0.880 Å)
and Ho3+ (0.901 Å) for VI-fold oxygen coordination are comparable to or smaller than that of
Y3+ (0.900 Å) [18]. The lattice parameter of the ceramic was determined to be 10.595± 0.005 Å.

Fig. 3 shows the transmission spectra of Tm,Ho:Y2O3 ceramics sintered at various temper-
atures and the theoretical curve for Y2O3 (dashed line) calculated using refractive index data
[19] and the expression T =2n/(n2 + 1) taking into account Fresnel losses and multiple light
reflections from the sample’s interfaces. The samples sintered at 1725 ◦C and 1750 ◦C exhibit
transparency levels that approach the theoretical limit, particularly in the visible and near-IR
spectral ranges. However, when the sintering temperature is increased to 1775 ◦C, the optical
transmittance decreases significantly. The higher optical transmittance (81.6% at λ=600 nm
and 83.0% at λ=1000 nm) was observed in the Tm,Ho:Y2O3 ceramic sintered at 1750 ◦C.

The transmission properties of the samples sintered at different temperatures correlate with
the content of scattering centers detected using optical microscopy. Spherical pores ranging in
size from 2 to 8 µm were relatively uniformly distributed throughout the depth of the sam-
ples, as shown in Fig. 4. The average pore volume contents were measured as 0.00153 vol.%,
0.00037 vol.%, 0.00014 vol.%, and 0.01332 vol.% for ceramics sintered at 1700 ◦C, 1725 ◦C,
1750 ◦C, and 1775 ◦C, respectively. Consequently, the considerable reduction of transparency af-
ter sintering at 1775 ◦C is attributed to the intragranular pores formed as a result of overheating.
In turn, the slight decrease in transparency of the sample sintered at 1700 ◦C, compared to those
sintered at 1725 ◦C and 1750 ◦C, can be explained by the lower intensity of bulk and surface
diffusion processes, as well as insufficient energy to close residual pores at this temperature.

– 450 –



Roman N.Maksimov, Vladislav A. Shitov . . . Synthesis and Spectroscopy of Tm, Ho-codoped . . .

Fig. 3. Transmission spectra of the fabricated Tm,Ho:Y2O3 ceramics and the theoretical curve
for Y2O3 calculated using refractive index data [19]. Inset shows the photograph of samples
sintered at various temperatures (from left to right): 1700 ◦C, 1725 ◦C, 1750 ◦C and 1775 ◦C

Fig. 4. Distributions of pores through the depth of the samples sintered at various temperatures

Fig. 5 presents the absorption spectrum of Tm,Ho:Y2O3 ceramic over the wavelength range
of 300–2100 nm. The spectrum reveals six primary absorption peaks located around 362 nm,
477 nm, 684 nm, 797 nm, 1209 nm, and 1630 nm, which correspond to the transitions from the
3H6 level of trivalent thulium ions to 1D2, 1G4, 3F2,3, 3H4, 3H5, and 3F4 levels, respectively.
Further, seven additional absorption peaks appear near 360 nm, 385 nm, 420 nm, 460 nm,
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485 nm, 540 nm, 640 nm, 1140 nm, and 1930 nm, associated with the transitions from the
ground state 5I8 of trivalent holmium ions. In addition, the inset of Fig. 5 shows the absorption
cross-section spectrum of Tm,Ho:Y2O3 ceramic for the 3H6→3H4 transition of Tm3+. The peak
absorption cross-section (σabs) reached 4.44×10−21 cm2 at 797 nm, with a full width at half
maximum (FWHM) of 7.2 nm, which is advantageous for pumping with AlGaAs laser diodes.

Fig. 5. Room temperature absorption spectrum of Tm,Ho:Y2O3 ceramic sintered at 1750 ◦C.
The inset depicts the absorption cross-section spectrum for the 3H6→3H4 transition of Tm3+

Fig. 6 shows the luminescence spectrum of the obtained Tm,Ho:Y2O3 ceramic recorded in the
2-µm region under excitation to the 3H4 level of Tm3+ ions at 811 nm. The observed spectrum
is a combination of bands corresponding to the 3F4→3H6 transition of Tm3+ (with peaks around
1950 nm) and the 5I7→5I8 transition of Ho3+ ions (with peaks around 2050 nm), extending from
1750 nm to about 2100 nm. This broad spectral range of the emission is well-suited for tunable
laser operation. Appearance of two luminescence bands indicates the presence of nonradiative
energy transfer (ET) from the 3F4 level of Tm3+ ions to the 5I7 level of Ho3+ ions. In this
case, the primary mechanism responsible for populating the 3F4 energy level of Tm3+ ions in
Tm,Ho:Y2O3 ceramic is the cross-relaxation (CR) process (3H4→3F4, 3H6→3F4) of Tm3+ ions.
The features of this process in Tm:Y2O3 ceramics were studied in detail in [20]. The scheme
of the population of the 5I7 level of Ho3+ ions considering CR of Tm3+ ions and nonradiative
energy transfer from the 3F4 level of Tm3+ ions to the 5I7 level of Ho3+ ions in Tm,Ho:Y2O3

ceramics is shown in the inset of Fig. 6.

Conclusion

Transparent Tm,Ho-codoped Y2O3 ceramics were successfully fabricated through solid-state
vacuum sintering of nano-sized particles with a complex chemical composition synthesized by the
laser ablation method. The high sintering activity of the nanoparticles attributed to their small
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Fig. 6. Luminescence spectrum of Tm,Ho:Y2O3 ceramic sintered at 1750 ◦C under pumping at
811 nm and schematic diagram of population of Ho3+: 5I7 level

size and weak agglomeration, as confirmed by TEM observations, enabled full densification of
the ceramics at temperatures approximately 700 ◦C lower than the melting point of Y2O3. The
monoclinic phase present in the initial nanopowder was completely transformed into the stable
cubic phase of Y2O3 after sintering.

The sintering temperature plays a critical role in determining the optical quality and porosity
of Tm,Ho-codoped Y2O3 ceramics. At a sintering temperature of 1775 ◦C, the ceramics exhibited
the lowest optical quality due to the formation of residual porosity and grain growth. In con-
trast, at slightly lower temperatures of 1725 ◦C and 1750 ◦C, the ceramics achieved the highest
and almost identical optical qualities indicating that temperatures near this range are ideal for
achieving high transparency and minimal porosity. These results suggest that precise control of
the sintering temperature is essential to balance full densification and limit grain growth, which
significantly impacts the overall optical performance of the ceramics.

Spectroscopic investigation have shown that non-radiative energy transfer between Tm3+ and
Ho3+ ions in the obtained polycrystalline materials enables intense luminescence around 2.1 µm,
specifically on the 5I7→5I8 transition of Ho3+ ions. As a result, Tm,Ho:Y2O3 ceramics are
promising gain media for compact 2-µm lasers capable of generating broadly tunable emission
or ultra-short pulses under diode pumping of the 3H4 level of Tm3+ ions at ∼800 nm thanks to
high absorption cross-section.

The reported study was carried out with the use of grant of the Russian Science Foundation
no. 24-23-00460, https://rscf.ru/project/24-23-00460/
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Синтез и спектроскопия прозрачных Y2O3 керамик,
соактивированных Tm и Ho, для 2-мкм лазеров

Роман Н. Максимов
Владислав А. Шитов
Владимир В. Осипов

Альберт Н. Орлов
Институт электрофизики УрО РАН

Екатеринбург, Российская Федерация
Екатерина М. Бузаева
Полина А. Рябочкина

Александр О.А̇рискин
Национальный исследовательский Мордовский государственный университет им. Н. П. Огарёва

Саранск, Российская Федерация

Аннотация. В данной работе были получены прозрачные керамические материалы на основе ок-
сида иттрия, соактивированного тулием и гольмием (Tm,Ho:Y2O3), посредством твердофазного
вакуумного спекания наноразмерных частиц со сложным химическим составом, синтезированных
методом лазерной абляции. Синтезированный порошок представлял собой мягкие агрегаты, состо-
ящие из отдельных сферических частиц диаметром 16 нм, кристаллическая структура которых
преобразовывалась из моноклинной (пространственная группа C2/m) в кубическую модификацию
(пространственная группа Ia-3) в процессе спекания. Были изучены морфологические свойства и их
корреляция с оптическим качеством керамик Tm,Ho:Y2O3, спечённых при температурах 1700–1775
◦C. Образец, спечённый при 1750 ◦C, обладал более высокой прозрачностью (81.6% при λ= 600 нм
и 83.0% при λ= 1000 нм) и наименьшим содержанием рассеивающих центров 0.00014 об.%. Сечение
поглощения при 797 нм для перехода 3H6→3H4 ионов Tm3+ составляло 4.44×10−21 см2. Широкая
полоса люминесценции, наблюдаемая в диапазоне от 1750 нм до 2100 нм, обусловлена комбина-
цией процессов кросс-релаксации ионов Tm3+ и безызлучательного переноса энергии с уровня
3F4 (Tm3+) на уровень 5I7 (Ho3+). Эти результаты указывают на перспективность использований
прозрачных Tm,Ho:Y2O3 керамик в качестве активных сред для лазеров с широким диапазоном
плавной перестройки и синхронизацией мод, генерирующих излучение в области 2 мкм.

Ключевые слова: нанопорошок, сесквиоксид иттрия, оптическая керамика, микроструктура, со-
допирование, безызлучательный перенос энергии.
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Abstract. The one-dimensional inverse problem of determining the kernel of the integral term of
the integro-differential viscoelasticity equation with constant density and constant Lame coefficients
is considered. Firstly, the direct problem is studied and equivalent integral equation for the desired
function u(x,t) together with the necessary conditions for this problem are obtained. Secondly, the
inverse problem of determining the kernel of the integral term is studied. Using the additional condition,
the inverse problem is replaced by an equivalent system of integral equations for unknown functions. The
contraction mapping principle is applied to the system of integral equations in the space of continuous
functions with weighted norms. Theorem of global unique solvability of the inverse problem is proved.
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1. Introduction and problem statement

Problems of mechanics and thermophysics lead to the study of inverse problems for integro-
differential equations. Such problems arise in many areas of physics such as electrodynamics,
acoustics, quantum scattering theory, geophysics, astronomy, etc.

Problems of propagation of elastic, electromagnetic waves in media where the state of the
medium at a given moment in time depends on its state at all previous moments in time are
described by integro-differential equations. Mathematically, convolution-type integrals describing
the phenomenon of delay are added to the right-hand sides of the corresponding classical wave
propagation equations.

One of the fields of science where integro-differential equations arise in the study of medium
properties using seismic waves is geophysics. In fact, under the assumption of smoothness the
system of equations for the inelastic Boltzmann model [1] (one of the most general for linear
inelastic medium) reduces to equation

utt(x, t)= uxx(x, t)+λ
−1(x)λ′(x)ux(x, t)+ρ(x)

∫ t

0

h(t−α)
(
uxx(x, α) + λ−1(x)λ′(x)ux(x, α)

)
dα.

∗j.safarov65@mail.ru https://orcid.org/0000-0001-9249-835X
c⃝ Siberian Federal University. All rights reserved
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Functions λ(x) and ρ(x) in this equation are related to the Lame parameters and the density
of the considered viscoelastic medium. Assuming that they are constant (λ = ρ = 1), this
equation can be reduced to the form

utt(x, t) = wx(x, t).

where u(x, t) is the displacement function and w is the stress function that has the following
form

w(x, t) = ux(x, t) +

∫ t

0

h(t− τ)ux(x, τ)dτ.

This relation for a linear inelastic medium describes the relationship between stress and
displacement of the medium. The study of inverse problems of determining the kernel of integral
operators in these equations with the use of some information about the wave field plays an
important role in the study of the structure and properties of the medium.

Various formulations of inverse problems for the viscoelasticity equation can be found [2–11].
In particular, one-dimensional problems of finding the kernel included in an integro-differential
equation with the delta function in the right side or in the boundary condition were considered
[2–7]. For the inverse problems formulated in these works existence and uniqueness theorems
were proved on the basis of the principle of contraction mappings, and estimates of conditional
stability were obtained.

For multidimensional inverse problems of finding the kernel in hyperbolic integro-differential
equations of the second order unique solvability theorems were proven in the class of functions
that are analytic in spatial variables and continuous in time [8–11]. Theorems on the global
unique solvability of two-dimensional inverse problems were proved when the kernel of the integral
term weakly depends on the horizontal variable [12–17].

The inverse problem of finding the one-dimensional convolution kernel of the integral term
of the integro-differential viscoelastic equation is studied in this work on the basis of conditions
constituting the initial-boundary (direct) problem and some additional condition.

Let us consider the initial boundary value problem for the string vibration equation with
memory in domain Ω = {(x, t) : x > 0, t ∈ R} :

utt − uxx −
∫ t

0

m(τ)uxx(x, t− τ)dτ = 0, (x, t) ∈ Ω. (1)

Initial and boundary conditions are
u |t<0≡ 0, (2)

u |x=0= δ(t), t ∈ R, (3)

where δ(t) — is the Dirac delta function. To determine the unknown function m(t), t > 0,
additional condition is specified in the following special form

ux(0, t) +

∫ t

0

m(τ)ux(0, t− τ)dτ = f(t), (4)

f(t) — given function for t > 0.
Additional information in form (4) was used [18, 19] to determine the memory function of

the medium included in the hyperbolic and parabolic equations. The direct problem was the
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initial-boundary value problem for equations with distributed sources in bounded domains. A
similar problem in a domain bounded in spatial variable was studied [20]. However, problems
with concentrated sources localized in the vicinity of a fixed point or on the surface of the region
under consideration are important in applications.

2. Study of the direct problem

Let us introduce new function p(x, t) that is defined as

p(x, t) :=

[
u(x, t) +

∫ t

0

m(t− τ)u(x, τ)dτ

]
exp (−m(0)t/2) . (5)

The following lemma holds.

Lemma 2.1. Function u(x, t) is expressed in terms of p(x, t) as

u(x, t) = exp (m(0)t/2) p(x, t) +

∫ t

0

h(t− τ) exp (m(0)τ/2) p(x, τ)dτ, (6)

where h is the solution of the Volterra integral equation

h(t) = −m(t)−
∫ t

0

m(t− τ)h(τ) dτ, t > 0. (7)

Proof. It follows from 1) that

u(x, t) = exp (m(0)t/2) p(x, t)−
∫ t

0

m(τ)u(x, t− τ)dτ = exp (m(0)t/2) p(x, t)− I(x, t), (8)

where the following designation is introduced

I(x, t) =

∫ t

0

m(τ)u(x, t− τ)dτ.

Expressing m(t) from (7) and substituting it into integral I(x, t), one can obtain

I(x, t) =

∫ t

0

m(τ)u(x, t− τ)dτ = −
∫ t

0

r(τ)u(x, t− τ)dτ −
∫ t

0

∫ τ

0

m(τ − α)h(α)u(x, t− τ)dαdτ.

Changing the order of integration in the second integral, one can obtain

I(x, t) = −
∫ t

0

h(τ)u(x, t− τ)dτ −
∫ t

0

h(α)

[∫ t

α

m(τ − α)u(x, t− τ)dτ

]
dα.

If the roles of the integration variables α and τ is reversed, i.e., α =: τ, τ =: α in the second
integral then I has the form

I(x, t) = −
∫ t

0

h(τ)u(x, t− τ)dτ −
∫ t

0

h(τ)

[∫ t

τ

m(α− τ)u(x, t− α)dα

]
dτ.

From here

I(x, t) = −
∫ t

0

h(τ)

[
u(x, t− τ) +

∫ t

τ

m(α− τ)u(x, t− α)dα

]
dτ.
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In the inner integral variable α is replaced with ξ by the formula α− τ = ξ. Then

I(x, t) = −
∫ t

0

h(τ)

[
u(x, t− τ) +

∫ t−τ

0

m(ξ)u(x, t− τ − ξ)dξ

]
dτ.

From here, according to formula (1)

I(x, t) = −
∫ t

0

h(τ) exp (m(0)(t− τ)/2) p(x, t− τ)dτ = −
∫ t

0

h(t− τ) exp (m(0)τ/2) p(x, τ)dτ

If found I(x, t) is substituted into equation (8), equality (6) is obtained. 2

The following problem for function p(x, t) is obtained from problems (1)–(2)

ptt − pxx + h0p+

∫ t

0

H(t− τ)p(x, τ)dτ = 0, (9)

p |x=0= δ(t) +m(t) exp (h(0)t/2) θ(t), p |t<0≡ 0. (10)

Additional condition (3) takes the form

px(0, t) = f(t) exp (h(0)t/2) ,

where the following notations are introduced

H(t) = h′′(t) exp (h(0)t/2) ,

h0 = h′(0)− h2(0)

4
.

(11)

Suppose that function f(t) has the form

f(t) = −δ′(t)− h(0)

2
δ(t) + θ(t)f0(t), (12)

where f0(t) is a regular function.
Let us represent function p(x, t) as p(x, t) = δ(t−x)+θ(t−x)p(x, t), where p(x, t) is a regular

function. Using the method of singularity extraction, one can obtain the following equality for
the regular part of the solution of the direct problem in the region t > x > 0 (p(x, t) = p(x, t)

for t > x)

ptt − pxx + h0p+H(t− x) +

∫ t−x

0

H(τ)p(x, t− τ)dτ = 0, (13)

p
∣∣
t=x+0

= −h(0)− h0
2
x, (14)

p(0, t) = m(t) exp

(
h(0)t

2

)
. (15)

Taking into account (12), the additional condition for function p(x, t) takes the following form

px(0, t) = f0(t) exp

(
h(0)t

2

)
. (16)
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Equations (13), (15), (16) represent the Cauchy problem for the equation of string vibration
with data on the axis x = 0. Using Dalember’s formula, integral equation for p(x, t) is obtained

p(x, t) =
1

2
[m̃(t+ x) + m̃(t− x)] +

1

2

∫ t+x

t−x
f̃0(τ)dτ+

+
1

2

∫ x

0

∫ t+x−ξ

t−x+ξ
+

[
h0p(ξ, τ)−H(τ − ξ) +

∫ τ−ξ

0

H(α)p(ξ, τ − α)dα

]
dτdξ, t > x

(17)

where the following notations are introduced m̃(t) = m(t) exp (h(0)t/2), f̃0(t) =

f0(t) exp (h(0)t/2) .

In domain D = {(x, t) : 0 6 x 6 t 6 T −x} equation (17) is a Volterra equation of the second
kind. Therefore, the solution of this equation is unique in the class of functions belonging to the
space C(D), and it can be obtained by the method of successive approximations. The existence
of a solution in this class follows from the fact that m(t) belongs to the class C2[0, T ]. Moreover,
direct differentiation of equation (17) shows that solution of this equation belongs to the class
C2(D).

3. Reducing the problem to an equivalent system of integral
equations

Let us set t = x+ 0 in equation (17). Taking into account equality (14), one can find that

−h(0)− h0
2
x =

1

2
[m̃(2x) + m̃(0)] +

1

2

∫ 2x

0

f̃0(τ)dτ+

+
1

2

∫ x

0

∫ 2x−ξ

ξ

[
h0p(ξ, τ)−H(τ − ξ) +

∫ τ−ξ

0

H(α)p(ξ, τ − α)dα

]
dτdξ.

Differentiating the last equality with respect to t(t = 2x), the following equation is obtained

−h0
4

=
1

2
m̃′(t) +

1

2
f̃0(t)+

+
1

2

∫ t
2

0

[
h0p(ξ, t− ξ) +

∫ t−2ξ

0

H(α)p(ξ, t− ξ − α)dα

]
dξ − 1

2

∫ t
2

0

H(t− 2ξ)dξ. (18)

In the last integral the change of variables η := t−2ξ is made. After this, once again differentiating
the last equality, integral equation for function H(t)isobtained :

H(t) = 2m̃′′(t) + 2f̃ ′0(t)− h0

(
h(0) +

h0
4
t

)
+ 2

∫ t
2

0

[
h0pt(ξ, t− ξ)−

−
(
h(0) +

h0
2
ξ

)
H(t− 2ξ) +

∫ t−2ξ

0

H(α)pt(ξ, t− ξ − α)dα

]
dξ.

(19)
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The integral equation for function pt(x, t) is obtained by directly differentiating equation (17)
with respect to variable t:

pt(x, t) =
1

2
[m̃′(t+ x) + m̃′(t− x)] +

1

2

[
f̃0(t+ x)− f̃0(t− x)

]
+
x

2
H(t− x)+

+
1

2

∫ x

0

[
h0
(
p(ξ, t+ x− ξ)− p(ξ, t− x+ ξ)

)
−H(t+ x− 2ξ)

]
dξ+

+
1

2

∫ x

0

∫ t+x−2ξ

0

H(α)p(ξ, t+ x− ξ − α)dαdξ − 1

2

∫ x

0

∫ t−x

0

H(α)p(ξ, t− x+ ξ − α)dαdξ.

(20)

Equations (17), (19)–(20) contain unknown functions m̃(t), m̃′(t), m̃′′(t). Therefore, to close
the system of integral equations (17), (19)–(20), the following obvious equalities are used

m̃(t) = −h(0) +
(
h2(0)

2
− h′(0)

)
t+

∫ t

0

(t− τ)m̃′′(τ)dτ, (21)

m̃′(t) =
h2(0)

2
− h′(0) +

∫ t

0

m̃′′(τ)dτ, (22)

m̃′′(t) = −H(t) +

(
h2(0)

4
− h′(0)

)
m̃(t)−

∫ t

0

H(t− τ)m̃(τ)dτ. (23)

Remark. The equations of system (17), (19)–(23) involve unknown numbers h(0) and h′(0). To
determine them one can proceed as follows. First, differentiating equation (7), m′(0) is expressed
in terms of h(0) and h′(0):

m′(0) = −h′(0) + h2(0). (24)

Further, assuming t = 0 and taking into account (11) and (24), one can obtain from equalities
(14) and (16) that

−7h2(0)− 4h′(0) = −8f0(0).

So there is one equation for unknown numbers. To obtain the second equation let us set t = 0

in equation (18). After simplifications the equation

−3h2(0)− 4h′(0) = −8f̃0(0)

is obtained. By solving this system of equations, the unknown numbers are found:

h(0) = 0, h′(0) = 2f̃0(0) = 2f0(0).

In addition, it follows from (11) that h0 = h′(0) = 2f0(0). In further studies, these numbers
will be replaced with the found values.

4. Theorem on the solvability of the inverse problem

The main result of this work is the following theorem on the global unique solvability of the
inverse problem.

Theorem 4.1. Let function f(t) be of form (12) and f0(t) ∈ C1[0, T ], T > 0. Then there exists
a single solution to inverse problem (1)–(4), m(t) ∈ C2[0, T ] for any T > 0.
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Proof. Let us represent the system of equations (17), (19)–(23) as an operator equation

φ = Aφ, (25)

where φ is a vector function with components φi, i = 1, 6

φ = [φ1(x, t), φ2(x, t), φ3(x, t), φ4(t), φ5(t), φ6(t)] =

=

[
v(x, t)− 1

2
[m̃(t+ x) + m̃(t− x)] , vt(x, t)−

1

2
[m̃′(t+ x) + m̃′(t− x)]− x

2
H(t− x),

H(t)− 2m̃′′(t), m̃(t), m̃′(t), m̃′′(t) +H(t)− 2f0(0)m̃(t)

]
,

and operator A is defined on the set of functions φ ∈ C[D] and according to equations (17),
(19)–(23) has the form A = (A1, A2, A3, A4, A5, A6) :

A1φ = φ01 +
1

2

∫ x

0

∫ t+x−ξ

t−x+ξ

[
2f0(0)

(
φ1(ξ, τ) +

1

2
(φ4(τ − ξ) + φ4(τ + ξ)

)
−

−1

3

(
2φ6(τ−ξ) + φ3(τ − ξ)− 2f0(0)φ4(τ − ξ)

)
+

1

3

∫ τ−ξ

0

(
2φ6(α) + φ3(α)− h0φ4(α)

)
×

×
(
φ1(ξ, τ − α) +

1

2
(φ4(τ − α− ξ) + φ4(τ − α+ ξ)

)
dα

]
dτdξ,

A2φ = φ02 +
1

2

∫ x

0

[
2f0(0)

(
φ1(ξ, t+ x− ξ)− φ1(ξ, t− x+ ξ)− 1

2

(
φ4(t+ x)+

+
1

3
φ4(t+ x−2ξ) + φ4(t− x) + φ4(t− x+2ξ)

)
− 1

3

(
2φ6(t+ x−2ξ) + φ3(t+ x−2ξ)

)]
dξ−

+
1

6

∫ x

0

∫ t+x−2ξ

0

(
2φ6(α) + φ3(α)− 2f0(0)φ4(α)

)
×

×
(
φ1(ξ, t+ x− ξ − α) +

1

2
(φ4(t− x− α) + φ4(t+ x− 2ξ − α)

)
dαdξ−

− 1

6

∫ x

0

∫ t−x

0

(
2φ6(α) + φ3(α)− 2f0(0)φ4(α)

)
×

×
(
φ1(ξ, t+ x− ξ − α) +

1

2
(φ4(t− x− α) + φ4(t+ x− 2ξ − α)

)
dαdξ,

(26)

A3φ = φ03 + 2

∫ t
2

0

[
2f0(0)

(
φ2(ξ, t− ξ) +

1

2
(φ5(t− 2ξ) + φ5(t))+

+
ξ

3

(
2φ6(t− 2ξ) + φ3(t− 2ξ)− 2f0(0)φ4(t− 2ξ)

))
+

+
(
φ2(ξ, t− ξ − α) +

1

2
(φ5(t− 2ξ − α) + φ5(t− α))+

+
ξ

6

(
2φ6(t− 2ξ − α) + φ3(t− 2ξ − α)− 2f0(0)φ4(t− 2ξ − α)

))
dα

]
dξ.

A4φ = φ04 +
1

3

∫ t

0

(t− τ)[φ6(τ)− φ3(τ)− 2f0(0)φ4(τ)]dτ,

A5φ = φ05 +
1

3

∫ t

0

[φ6(τ)− φ3(τ)− 2f0(0)φ4(τ)]dτ,
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A6φ = φ06 −
1

3

∫ t

0

[φ6(t− τ)− φ3(t− τ)− 2f0(0)φ4(t− τ)]φ4(τ)dτ,

where the following notation is introduced

φ0(x, t) = (φ01, φ02, φ03, φ04, φ05, φ06, φ07) :=[
1

2

∫ t+x

t−x
f̃0(τ)dτ,

1

2

[
f̃0(t+ x)− f̃0(t− x)

]
, 2f̃ ′0(t)−

h20
4
t,−2f0(0)t, −2f0(0), 0

]
.

Let Cσ be the Banach space of continuous functions generated by a family of weight norms

||φ||σ = max{ sup
(x,t)∈D

|φi(x, t)e−σ(t+(1+θ)x)|, i = 1, 2, sup
t∈[0,T ]

|φj(t)e−σt|, j = 3, 6},

where σ > 0, 0 < θ < 1.

For σ = 0 this space coincides with the space of continuous functions with the usual norm.
This norm is denoted hereafter as ∥φ∥|. It follows from the inequality e−σt∥φ∥ 6 ∥φ∥σ 6 ∥φ∥ that
norms ∥φ∥σ and ∥φ∥ are equivalent for any fixed T ∈ (0,∞). The number σ will be chosen later.
Let Qσ(φ0, ∥φ0∥) =:{φ|∥φ−φ0∥ 6 ∥φ0∥} be a ball of radius ∥φ0∥ with centre at the point φ0 of
some weighted space Cσ(σ > 0) in which ∥φ0∥ = max(∥φ01∥, ∥φ02∥, ∥φ03∥, ∥φ04∥, ∥φ05∥, ∥φ06∥∥).

It is easy to see that for Qσ(φ0, ∥φ0∥) the estimate

∥φ∥σ 6 ∥φ0∥σ + ∥φ0∥ 6 2∥φ0∥

is true. Let φ(x, t) ∈ Qσ(φ0, ∥φ0∥). Let us show that with a suitable choice of σ > 0 operator
A takes a ball to a ball, i.e., Aφ ∈ Qσ(φ0, ∥φ0∥). In fact, using equalities (26) and constructing
the norm of differences, one can find for (x, t) ∈ D2 that

∥A1φ− φ01∥ = sup
(x,t)∈D

|(A1φ− φ01)e
−σ(t+(1+θ)x)| =

= sup
(x,t)∈D

∣∣∣∣∣12
∫ x

0

∫ t+x−ξ

t−x+ξ

[
2f0(0)

(
φ1(ξ, τ)e

−σ(τ+(1+θ)ξ)e−σ(t−τ+(1+θ)(x−ξ))+

+
1

2

(
φ4(τ − ξ)e−σ(τ−ξ)e−σ(t−τ+ξ) + φ4(τ + ξ)e−σ(τ+ξ)e−σ(t−τ−ξ)

))
−

−1

3

(
2φ6(τ − ξ) + φ3(τ − ξ)− 2f0(0)φ4(τ − ξ)

)
e−σ(τ−ξ)e−σ(t−τ+ξ)+

−1

3

∫ τ−ξ

0

(
2φ6(α) + φ3(α)− h0φ4(α)

)
e−σα×

×
(
φ1(ξ, τ−α)e−σ(τ−α+(1+θ)ξ)e−σ(t−τ+(1+θ)(x−ξ)−α)+

1

2

(
φ4(τ−α− ξ)e−σ(τ−α−ξ)e−σ(t−τ+ξ)+

+φ4(τ − α+ ξ)e−σ(τ−α+ξ)e−σ(t−τ−ξ)
))
dα

]
dτdξ

∣∣∣∣∣ 6
6 ∥φ0∥

σ
T

[(
7h0
3

+ 1

)
+ 8h1∥φ0∥T

]
=:

∥φ0∥
σ

α1,

∥A2φ− φ02∥ = sup
(x,t)∈D

|(A2φ− φ02)e
−σ(t+(1+θ)x)| 6 ∥φ0∥

σ

[
11h0
3

+ 2(3 + 2f0(0)))∥φ0∥T
]
=:

1

σ
α2,

∥A3φ− φ03∥ = sup
t∈[0;T ]

|(A3φ− φ03)e
−σt| 6
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6 2∥φ0∥
σ

[
7f0(0) + h1T

(
1 + 2f0(0) + (4 + Th1)∥φ0∥

)]
=:

1

σ
α3,

∥A4φ− φ04∥ = sup
t∈[0;T ]

|(A4φ− φ04)e
−σt| 6 2∥φ0∥

σ

(2 + 2f0(0))

3
T =:

∥φ0∥
σ

α4,

∥A5φ− φ05∥ = sup
t∈[0;T ]

|(A5φ− φ05)e
−σt| 6 2∥φ0∥

σ

(2 + 2f0(0))

3
=:

∥φ0∥
σ

α5,

∥A6φ− φ06∥ = sup
(t∈[0;T ]

|(A6φ− φ06)e
−σt| 6

2∥φ0∥
σ

[
2f0(0)T +

2

3
∥φ0∥(2 + 2f0(0))T

2

]
(2 + 2f0(0))

3
=:

∥φ0∥
σ

α6.

where h1 := 1 +
2f0(0)

3
. The last inequality is obtained using the fourth and sixth equations of

system (26).
Choosing σ > α0 = max(α1, α2, α3, α4, α5, α6), one can obtain that A takes ball Qσ(φ0, ∥φ0∥)

to ball Qσ(φ0, ∥φ0∥).
Let now assume that φ1, φ2 are any two elements from Qσ(φ0, ∥φ0∥). Then, using auxiliary

inequalities of the form

|φ1
iφ

1
j − φ2

iφ
2
j |e−σt 6 |φ1

i ||φ1
j − φ2

j |e−σt + |φ2
j ||φ1

i − φ2
i |e−σt 6 4∥φ0∥∥φ1 − φ2∥σ,

one can find for (x, t) ∈ D, that

∥(Aφ1 −Aφ2)1∥σ = sup
(x,t)∈D

|(Aφ1 −Aφ2)1e
−σ(t+(1+θ)x)| 6

6∥φ1 − φ2∥σ
σ

T

[(
7f0(0)

3
+

1

2

)
+ 8h1∥φ0∥T

]
=:

∥φ1 − φ2∥σ
σ

β1,

∥(Aφ1 −Aφ2)2∥σ = sup
(x,t)∈D

|(Aφ1 −Aφ2)1e
−σ(t+(1+θ)x)| 6

6∥φ1 − φ2∥σ
σ

[
11f0(0)

3
+ 2(3 + 2f0(0)))∥φ0∥T

]
=:

∥φ1 − φ2∥σ
σ

β2,

∥(Aφ1 −Aφ2)3∥σ = sup
t∈[0;T ]

|(Aφ1 −Aφ2)1e
−σt| 6

6 ∥φ1 − φ2∥σ
σ

[
7f0(0) +

1

2
h1T

(
1 + 2f0(0) + 2(4 + Th1)∥φ0∥

)]
:=

∥φ1 − φ2∥σ
σ

β3,

∥(Aφ1 −Aφ2)4∥σ = sup
t∈[0;T ]

|(Aφ1 −Aφ2)1e
−σt| 6 ∥φ1 − φ2∥σ

σ

(2 + 2f0(0))

3
T :=

∥φ1 − φ2∥σ
σ

β4,

∥(Aφ1 −Aφ2)5∥σ = sup
t∈[0;T ]

|(Aφ1 −Aφ2)1e
−σt| 6 ∥φ1 − φ2∥σ

σ

(2 + 2f0(0))

3
:=

∥φ1 − φ2∥σ
σ

β5,

∥(Aφ1 −Aφ2)6∥σ = sup
t∈[0;T ]

|(Aφ1 −Aφ2)1e
−σt| 6

6 ∥φ1 − φ2∥σ
σ

[
(2f0(0)T +

4

3
∥φ0∥(2 + 2f0(0))T

2

]
(2 + 2f0(0))

3
:=

∥φ1 − φ2∥σ
σ

β6,

Let us introduce β0 := max
16i66

βi.
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It follows from the obtained estimates that if number σ is chosen from the condition
σ > max(α0, β0) then operator A is contractive on Qσ(φ0, ∥φ0∥). Then, according to Banach’s
Theorem [21], there is unique solution of equation (25) in Qσ(φ0, ∥φ0∥) for any fixed T > 0.

Since h(0) = 0 then m(t) = m̃(t).

The theorem is proved. 2
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Обратная задача для уравнения вязкоупругости с допол-
нительной информацией, имеющей специальный вид

Журабек Ш. Сафаров
Ташкентский университет информационных технологий

Ташкент, Узбекистан
Институт математики АН Республики Узбекистан

Ташкент, Узбекистан

Аннотация. Рассматривается одномерная обратная задача определения ядра интегрального члена
интегро-дифференциального уравнения вязкоупругости с постоянной плотностью и постоянными
коэффициентами Ламе. Сначала исследуется прямая задача, при этом мы получаем интегральное
уравнение относительно искомой функции u(x, t) и необходимые условия на данные задачи. Да-
лее исследуется обратная задача по определению ядра интегрального члена. Для отыскания его
вводится дополнительное условие, заданное в специальном виде при x = 0. Обратная задача заме-
няется эквивалентной системой интегральных уравнений для неизвестных функций. К последней
в пространстве непрерывных функций с весовыми нормами применяется принцип сжатых отобра-
жений. Доказана теорема глобальной однозначной разрешимости.

Ключевые слова: интегро-дифференциальное уравнение, обратная задача, ядро интеграла, тео-
рема Банаха.
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1. Fundamentals
Throughout this brief paper, all groups into consideration are additively written and Abelian.

Our basic notation and terminology will be provided in detail in what follows.

Recall that a subgroup F of an arbitrary group G is said to be fully invariant if ϕ(F ) ⊆ F
for any endomorphism ϕ of G as well as that a subgroup C of G is said to be characteristic if
ψ(C) ⊆ C for any automorphism ψ of G. In the same vein, mimicking [2], a subgroup S of G is
said to be strongly invariant in G if f(S) ⊆ S for every group homomorphism f : S → G.

It is routine to see that the following (strict) implications for these subgroups are true:

strongly invariant ⇒ fully invariant ⇒ characteristic.
On the other hand, imitating [4], a subgroup H of a group G is called fully inert, provided

(ϕ(H) + H)/H is finite for all endomorphisms ϕ of G as well as a subgroup K of G is called
∗cheklov@math.tsu.ru https://orcid.org/0000-0002-9078-128X
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characteristically inert, provided (ψ(K) + K)/K is finite for all automorphisms ψ of G. This
means that the intersections H ∩ ϕ(H) and K ∩ ψ(K) have finite index in ϕ(H) and ψ(K),
respectively. In the same aspect, refining only the first of these two given notions, in [5] a
subgroup T of G is called totally inert, provided that the intersection T ∩ ϕ(T ) has finite index
both in T and ϕ(T ) for all non-zero endomorphisms ϕ (notice that the case where this condition
is fulfilled for the automorphism ψ is not treated there — compare with Problem 2 posed below).
Likewise, in [1], a subgroup N of G is called strongly inert, provided (f(N) +N)/N is finite for
all homomorphisms f : N → G, that is, the intersection N ∩ f(N) has finite index in f(N) for
all such homomorphisms f . Proceeding in this way, a subgroup S of a group G is named totally
strongly inert, provided the intersection S ∩ f(S) has finite index in both S and f(S) for all
non-zero homomorphisms f : S → G.

It is obvious to verify that the following (strict) relationships for these subgroups are valid:

strongly inert ∨ totally inert ⇒ fully inert ⇒ characteristically inert.

For simplicity of our exposition, remember also that two subgroups B and C of a group G
are called commensurable, and thus we write for short that B ∼ C or, equivalently, that C ∼ B
since this is obviously a symmetric relation, whenever both quotients (B+C)/B and (B+C)/C
are finite.

Moreover, it is not so difficult to construct concrete examples such that a fully inert subgroup
is not commensurable with a fully invariant subgroup, such a characteristically inert subgroup
is not commensurable with a characteristic subgroup, and such that a strongly inert subgroup
is not commensurable with strongly invariant subgroup (see, e.g., [3] and [1] and compare with
Problem 1 arisen below).

Nevertheless, this commensurability is quite possible to hold for the following refinements
of the aforementioned group classes: in fact, in [4] a subgroup H of a group G is known to be
uniformly fully inert requiring the existence of a fixed positive integer m such that the factor-
group (ϕ(H)+H)/H has at mostm elements for every endomorphism ϕ of G, whereas a subgroup
K is known to be uniformly characteristically inert if the factor-group (ψ(K) + K)/K has at
most m elements for every automorphism ψ of G. As demonstrated above, it is evident that any
uniformly fully inert subgroup is always uniformly characteristically inert, whereas the reverse
implication is wrong in general.

In this direction, imitating the "uniformly" property as presented above, the notions of uni-
formly totally inert, uniformly totally strongly inert and uniformly strongly inert subgroups can
be successfully defined in a way of similarity keeping in mind the listed above relations between
them. And so, the subgroup T is uniformly totally inert if it has an intersection T ∩ ϕ(T ) which
cardinality is bounded by a fixed positive integer simultaneously in T and ϕ(T ) for any non-zero
endomorphism ϕ of G. However, as it will be emphasized below, the abundance of uniformly
totally inert subgroups is rather restricted.

Our pivotal tool here is the following quite more general setting: a subgroup S of a group G
is named uniformly totally strongly inert if S possesses an intersection S ∩ f(S) which power is
bounded by a fixed natural number simultaneously in S and f(S) for all non-zero homomorphisms
f : S → G.

Besides, we shall say that a fully invariant subgroup S of a group G is uniformly fully invariant
if the index [S : ϕ(S)] is bounded by a fixed natural number for all non-zero endomorphisms ϕ
of G.

Since a subgroup commensurable with a totally inert subgroup is always totally inert by
[5, Proposition 2.1], one has that the subgroup commensurable with some uniformly fully in-

variant subgroup must be uniformly totally inert.
On the other hand, it was shown in [4, Corollary 1.9] the important fact that any uniformly

characteristically inert subgroup is commensurable a characteristic subgroup and, in addition,
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in [3, Main Theorem] that every uniformly fully inert subgroup is commensurable with a fully
invariant subgroup.

Apart from the observation given above for a lack of too many uniformly totally inert sub-
groups, the objective of the present short article is to show that, based on the idea proposed
in [3], each uniformly totally strongly inert subgroup of a given group is commensurable with
some strongly invariant subgroup of this group, which fact will be illustrated in the next section.
Likewise, it is reasonably natural to ask what is the behavior of uniformly totally strongly inert
subgroups defined as above.

2. The chief results
We foremost begin our work with certain preliminaries. So, in what follows, all homomor-

phisms will be written to the right of their arguments.
If G is a group and A ⊇ B are subgroups of G, and C is some other subgroup, then the

quotient-group (A ∩ C)/(B ∩ C) apparently embeds in A/B, so that the inequality

[A ∩ C : B ∩ C] 6 [A : B]

is fulfilled always.
Even more clearly, if A ⊇ B ⊇ C, then the inequality

[A : B] 6 [A : C]

is always fulfilled.
Next, if X and Y are subgroups of G, then X := X/(X ∩ Y ) and Y := Y/(X ∩ Y ) are

subgroups of G/(X ∩ Y ) with X ∩ Y = {0} and X + Y = (X + Y )/(X ∩ Y ). So, it follows that

(X + Y )/(X ∩ Y ) ∼= [X/(X ∩ Y )]⊕ [Y/(X ∩ Y )].

Let us now define

q(X,Y ) := [X + Y : X ∩ Y ] = [X : X ∩ Y ] · [Y : X ∩ Y ].

We, thus, arrive at the following useful claim:

X ∼ Y if, and only if, q(X,Y ) is finite.

Furthermore, the first ingredient of the proof of the basic theorems quoted below is the
following one.

Lemma 2.1. Suppose G is a group, X, Y and Z are subgroups of G, and ϕ is an endomorphism
of G.

(a) If q(X,Y ) is finite, then q(Xϕ, Y ϕ) 6 q(X,Y ) is also finite.
(b) If q(X,Y ) and q(Y, Z) are both finite, then q(X,Z) 6 q(X,Y ) · q(Y, Z) is also finite.

Proof. Regarding (a), an elementary inspection shows that there is a natural surjection

(X + Y )/(X ∩ Y ) → (Xϕ+ Y ϕ)/(Xϕ ∩ Y ϕ),

which immediately implies the desired result.
Regarding (b), we derive the relations

q(X,Y ) · q(Y, Z) = [X : X ∩ Y ] · [Y : X ∩ Y ] · [Y : Y ∩ Z] · [Z : Y ∩ Z]
> [X : X ∩ Y ] · [Y ∩ Z : X ∩ Y ∩ Z] · [X ∩ Y : X ∩ Y ∩ Z] · [Z : Y ∩ Z]
> [X : X ∩ Y ∩ Z] · [Z : X ∩ Y ∩ Z]
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> [X : X ∩ Z] · [Z : X ∩ Z]
= q(X,Z),

as wanted. 2

For subgroups X, Y of G, let us now set the distance metric

d(X,Y ) := ln(q(X,Y )).

So, our next key instrument is the following consequence to the preceding assertion, which
technical proof is omitted as we leave it to the interested reader for checking.

Corollary 2.2. If X, Y and Z are subgroups of G, and ϕ is an endomorphism of G, then the
following two inequalities hold:

(a) d(Xϕ, Y ϕ) 6 d(X,Y );

(b) d(X,Z) 6 d(X,Y ) + d(Y, Z).

So, one may expect below that, if G is a group and X is a subgroup such that, for every
endomorphism ϕ of G, we have d(X,Xϕ) < ∞, then there will exist a fully invariant subgroup
Y such that, for every endomorphism ϕ of G, the inequality d(Y, Y ϕ) < ∞ holds. However, we
will restrict our attention to a more partial case.

Thus, we have now at our disposal all the machinery needed to establish the following main
statement.

Theorem 2.3. Let X be a subgroup of G. Then, X is uniformly totally strongly inert in G if,
and only if, one of following three conditions holds:

(a) X ∼= Q is the entire maximal divisible subgroup of G.
(b) X ∼= Z(p∞) is the entire maximal p-torsion divisible subgroup of G.
(c) X is finite.
In particular, every uniformly totally strongly inert subgroup of a given group is commensu-

rable with a strongly invariant subgroup of this group.

Proof. If (a) or (b) holds, then any non-zero homomorphism X → G must satisfy X = Xϕ, so
that d(X,Xϕ) = 0.

If (c) holds and X has order k, then, for any homomorphism ϕ : X → G, we must have
q(X,Xϕ) 6 k2.

Conversely, suppose X is uniformly totally strongly inert. Suppose n ∈ N is given such that
q(X,Xϕ) 6 n for all non-zero homomorphisms ϕ : X → G.

If X is not reduced, then one can decompose X = Y ⊕Z, where either Z ∼= Q or Z ∼= Z(p∞);
we want to show that (a) or (b) must hold. We first show that Y = {0}. If this failed, then the
composition of the natural idempotent projection ϕ : X → Y followed by the inclusion Y 6 G,
would not be the zero map. Since the group

Z ∼= X/Y = X/(X ∩Xϕ)

is infinite, this would contradict that X is uniformly totally strongly inert in G.
Next, suppose X ∼= Q and D is the maximal divisible subgroup of G; we want to verify that

(a) must hold. If X ̸= D, then one may decompose D = D′ ⊕X ′ ⊕X, where X ′ is isomorphic
to either Q or Z(p∞). There is, clearly, a non-zero homomorphism ϕ : X → X ′ 6 G. It thus
follows that X ∩ Xϕ = {0}, so that q(X,Xϕ) is infinite. Therefore, (a) must hold. A similar
contradiction can be used to show that, if X ∼= Z(p∞), then (b) must hold.

So, we may assume that X is reduced. We will show that the assumption that X is infinite
leads to a contradiction, which will establish (c) and complete the entire proof.
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To this aim, suppose first that X is not torsion-free but is reduced. Furthermore, for some
prime p, if X has non-zero p-torsion, there must be a decomposition X = Y ⊕Z, where Z ∼= Z(pk)
for some k ∈ N. Let ϕ : X → G be the natural idempotent projection onto Z followed by the
inclusion Z → G. Apparently, ϕ is not the zero homomorphism; however, the group

X/(X ∩Xϕ) = X/Z ∼= Y

is infinite, which contradicts that q(X,Xϕ) 6 n.
Suppose, on the other hand, that X is torsion-free. Since we know it is reduced, it follows

that, for some prime p, pX ̸= X. Let ϕ : X → G be the homomorphism given by yϕ = pn+1y.
Since X is torsion-free, ϕ is obviously not the zero map. Note that the quotients

X/(X ∩Xϕ) = X/Xϕ = X/pn+1X

will have order at least pn > n, which again contradicts that q(X,Xϕ) < n, as promised. 2

We are now also ready to establish the next major statement.

Theorem 2.4. Let X be a subgroup of G. Then, X is uniformly totally inert in G if, and only
if, one of following three conditions holds:

(a) X = G ∼= Q.
(b) X = G ∼= Z(p∞).
(c) X is finite.
In particular, every uniformly totally inert subgroup of a given group is commensurable with

a uniformly fully invariant subgroup of this group.

Proof. If (a) or (b) holds, then any non-zero homomorphism X → X is surjective, so that
d(X,Xϕ) = 0.

If (c) holds and X has order k, then, for any endomorphism ϕ : G → G, we must have
q(X,Xϕ) 6 k2.

Conversely, suppose X is uniformly totally inert. Suppose n ∈ N is given such that
q(X,Xϕ) 6 n for all non-zero endomorphisms ϕ : G→ G.

If X is not reduced, then one can decompose X = Y ⊕Z, where either Z ∼= Q or Z ∼= Z(p∞).
Suppose G = G′ ⊕ Z, where Y 6 G′; we want to show G′ = {0}. If this failed, then the natural
idempotent projection ϕ : G→ G onto G′ would not be the zero map. Since the group

Z ∼= X/Y = X/(X ∩Xϕ)

is infinite, this would contradict that X is uniformly totally inert in G.
So, we may assume that X is reduced. We will show that the assumption that X is infinite

leads to a contradiction, which will establish (c) and complete the whole proof.
To this purpose, suppose first that X is bounded. For some prime p, the group X has a

non-zero p-torsion subgroup. Therefore, G also has a non-zero p-torsion subgroup. This implies
that there is a decomposition G = G′ ⊕ A, where A is isomorphic to Z(p∞) or Z(pm) for some
m ∈ N. Let ϕ : G → G be the natural idempotent projection onto A; obviously, ϕ is non-zero.
Since X is bounded, it follows at once that Xϕ 6 A is also bounded and, consequently, is finite.
It follows now that the intersection X ∩Xϕ is also finite, and since X is infinite, we can conclude
that q(X,Xϕ) is infinite too, which contradicts that q(X,Xϕ) 6 n.

Suppose, on the other hand, that X is unbounded. We construct a sequence of primes
p1, p2, . . . such that, if µm is the product p1p2 . . . pm, then µmX ̸= µm+1X: having constructed
such a finite sequence p1, p2, . . . , pn and its resulting product µn, then since X is unbounded,
we must have µmX ̸= 0. And since X is reduced, there must be a prime, say pm+1, such that
pm+1(µmX) ̸= (µmX), completing the construction.
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Let ϕ : G → G be the endomorphism given by yϕ = µn+1y. Since X, and hence G, is
unbounded, ϕ is easily not the zero map. Note that the factors-groups

X/(X ∩Xϕ) ∼= X/µn+1X

will have order at least 2n > n, which again contradicts the condition q(X,Xϕ) < n, as expected.
2

Remark 1. We now give an independent confirmation that each uniformly totally inert subgroup
X of a group G is commensurable with a uniformly fully invariant subgroup Y of G. In fact,
suppose we have a fixed finite value δ such that, for every endomorphism ϕ : G → G, we write
d(X,Xϕ) 6 δ. It now follows from the previous two assertions listed above that X is totally
inert, so employing the main result from [3], there is a fully invariant subgroup Y such that
γ := d(X,Y ) is finite; one easily inspects that Y is, actually, uniformly fully invariant in G.

If we now take ϵ = 2γ + δ, then one finds with the help of Corollary 2.2 that, for every
endomorphism ϕ of G, it must be that

d(Y, Y ϕ) 6 d(X,Y ) + d(X,Xϕ) + d(Xϕ, Y ϕ) 6 γ + δ + d(X,Y ) 6 ϵ,

as required.

We next proceed with the following commentaries.

Remark 2. To keep a record straight, we should note that the last theorem could be deduced
indirectly with some more efforts from results established in [5]; however, we have obtained a
rather more conceptual and transparent proof.

Indeed, if G ∼= Z(p∞), then all the subgroups of G are uniformly totally inert, while if G is
not isomorphic to Z(p∞), then only its finite subgroups are uniformly totally inert — indeed, we
claim that these are only the rational torsion-free group Q and the quasi-cyclic p-group Z(p∞).
In fact, looking for infinite subgroups H of a group G different from Q and Z(p∞), respectively,
which are uniformly totally inert, from [5, Corollary 2.3] it follows that, in order to admit infinite
totally inert subgroups, G must be torsion-free reduced and indecomposable. Furthermore, for
such a group G, a subgroup H ̸= {0} is infinite, but and it cannot be uniformly totally inert,
because there is a prime p such that H/pH ̸= {0} (noticing that H is not divisible), so H/pH
has cardinality at least p and, therefore, H/pnH has cardinality at least pn, whence H cannot
be uniformly totally inert, as suspected.

However, the first theorem is somewhat independent from the corresponding results estab-
lished in [2] and [1], respectively.

The following principal affirmation, which takes into account the above discussion, is, hope-
fully, worthy of documentation to stimulate a further research on the subject.

Conjecture. Each uniformly strongly inert subgroup of an arbitrary group is commensurable
with a strongly invariant subgroup of the group.

In fact, it was established in [1, Theorem 4.5] that a subgroup of torsion group is strongly
inert if, and only if, it is commensurable with a strongly invariant subgroup of the whole group.

We finish our work with the next two questions of interest and importance. The first one
states thus:

Problem 1. Decide when a totally inert subgroup is commensurable with a fully invariant
subgroup (or, even, with a characteristic subgroup).

We shall say that a subgroup C of a group G is completely inert, provided that the intersection
C ∩ ψ(C) has finite index in both C and ψ(C) for any automorphism ψ of G. In case that this
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index is bounded by a fixed positive integer, simultaneously in C and ψ(C), this subgroup is said
to be uniformly completely inert.

So, we come to our second query.

Problem 2. Explore the structural properties of completely inert and uniformly completely
inert subgroups of a given group and provide, if possible, a close transversal with the (uniformly)
totally inert subgroups.

The scientific work of the first-named author, A.R.Chekhlov, is supported by the Ministry of
Science and Higher Education of Russia under agreement No. 075-02-2024-1437.
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Abstract. In this paper, an analogue of the Carleman formula is proved for A(z)-analytic functions
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One of the major challenges in the classical theory of complex analysis is the integral repre-
sentation of analytic functions, which allows us to recover a function within a domain from its
values along the boundary. Additionally, it is natural to inquire how an analytic function may be
reconstructed based on its value at a single point on the boundary of a simply-connected domain.
In 1926, T. Carleman achieved a significant breakthrough by solving this issue for certain types
of domains. He devised a strategy for constructing a "quenching" function in the context of
boundary-value problems. G.M. Goluzin and V. I. Krylov further extended Carleman’s findings
in 1933, employing a specialized holomorphic function to assist with the process, which relies on
a portion of the boundary of the domain. Another method based on the approximation of the
kernel of the integral representation was proposed by M. M. Lavrentiev in 1956. It turned out
that this method works successfully in the noted cases when the Goluzin-Krylov approach is not
applicable [2].
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1. Introduction and prelimiraries

1.1. A(z)-analytic functions

Let A(z) be an antianalytic function, i.e.
∂A

∂z
= 0 in the domain D ⊂ C and there is a

constant c < 1 such that |A(z)| 6 c for all z ∈ D. The function f(z) is said to be A(z)-analytic
in the domain D if for any z ∈ D, the following equality holds:

∂f

∂z̄
= A(z)

∂f

∂z
. (1)

We denote by OA(D) the class of all A(z)-analytic functions defined in the domain D. Since
an antianalytic function is smooth, OA(D) ⊂ C∞(D) (see [1]). In this case, the following takes
place:

Theorem 1.1 (see [3], analogue of the Cauchy integral theorem). If f ∈ OA(D)∩C
(
D̄
)
, where

D ⊂ C is a domain with smooth ∂D, then∫
∂D

f(z)(dz +A(z)dz̄) = 0.

Now we assume that the domain D ⊂ C is convex and ξ ∈ D is a fixed point in it. Since the
function A(z) is analytic, the integral

I(z) =

∫
γ(ξ,z)

A(τ)dτ

is independent of the path of integration; it coincides with the antiderivative I ′(z) = A(z).
Consider the function

K(z, ξ) =
1

2πi

1

z − ξ + I(z)
,

where γ(ξ, z) is a smooth curve which connects the points ξ, z ∈ D (see [5]).

Theorem 1.2 (see [5]). K(z, ξ) is an A(z)-analytic function outside of the point z = ξ, i.e.
K(z, ξ) ∈ OA(D\{ξ}). Moreover, at z = ξ the function K(z, ξ) has a simple pole.

Remark 1.1 (see [5]). If a simply connected domain D ⊂ C is not convex, then the function

ψ(ξ, z) = z − ξ + I(z),

although well defined in D, may have other isolated zeros except ξ : ψ(ξ, z) = 0 for z ∈
P\{ξ, ξ1, ξ2, ...}. Consequently, ψ ∈ OA(D), ψ(ξ, z) ̸= 0 when z /∈ P and K(z, ξ) is an A(z)-
analytic function only in D\P , it has poles at the points of P . Due to this fact we consider the
class of A(z)-analytic functions only in convex domains.

According to [5], Theorem 1.2, the function ψ(ξ, z) is an A(z)-analytic function.
The following set is an open subset of D:

L(a, r) = {z ∈ D : |ψ(a, z)| < r} .

For suffiently small r > 0, this set compactly lies in D (we denote it by L(a, r) ⊂⊂ D) and
contains the point a. The set L(a, r) is called an A(z)-lemniscate centered at the point a. The
lemniscate L(a, r) is a simply-connected set (see [5]).
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Theorem 1.3 (see [4], Cauchy’s integral formula). Let D ⊂ C be a convex domain and G ⊂⊂ D
be an arbitrary subdomain with a smooth or piecewise smooth ∂G. Then for any function f(z) ∈
OA(G)

∩
C(Ḡ), the following formula holds:

f(z) =

∫
∂G

f(ξ)K(z, ξ)
(
dξ +A(ξ)dξ̄

)
, z ∈ G. (2)

Note that from formula (2) it follows that if f(z) ∈ OA(L(a, r))
∩
C
(
L̄(a, r)

)
, where

L(a, r) ⊂⊂ D is a fixed A(z)-lemniscate, then in L(a, r) the function f(z) is expanded in a
Taylor series:

f(z) =

∞∑
k=0

ckψ
k(a, z), (3)

where ck =
1

2πi

∫
|ψ(a,ξ)|=ρ

f(ξ)

(ψ(a, ξ))k+1

(
dξ +A(ξ)dξ̄

)
, 0 < ρ < r, k = 0, 1, 2, . . . .

1.2. A(z)-harmonic functions
Theorem 1.4 (see [6]). The real part u(z) of the functions f(z) ∈ OA(D) satisfies the equation

∆Au :=
∂

∂z

(
1

1− |A|2

((
1 + |A|2

) ∂u
∂z̄

− 2A
∂u

∂z

))
+

+
∂

∂z̄

(
1

1− |A|2

((
1 + |A|2

) ∂u
∂z

− 2Ā
∂u

∂z̄

))
= 0

(4)

in the domain D.
Conversely, if D is a simply connected domain, and a function u ∈ C2(D) satisfies the

differential equation (4), then there is u(z) = Ref(z).

In connection with Theorem 1.4, it is natural to define A(z)-harmonic functions as follows.

Definition 1.1 (see [6]). A function u ∈ C2(D), u : D → R is called A(z)-harmonic if it
satisfies in the domain D the differential equation (4).

The class of A(z)-harmonic functions in the domain D is denoted as hA(D). Thus, the
operator △A in the theory of A(z)-harmonic functions plays the same role as Laplace operator
△ in the theory of harmonic functions. It follows from Theorem 1.4 that the real and imaginary
parts of A(z)-analytic function f = u + iv in the domain D are A(z)-harmonic functions. The
function v is called the A(z)-conjugate harmonic function to u.

Theorem 1.5 (see [6], analogue of the Poisson formula for A(z)-harmonic functions). If the
function ω(ζ) is continuous on the boundary of the lemniscate L(a, r), then the function

u(z) =
1

2πr

∫
|ψ(a,ζ)|=r

ω(ζ)
r2 − |ψ(a, z)|2

|ψ(ζ, z)|2
∣∣dζ +A(ζ)dζ̄

∣∣ (5)

is the solution of the Dirichlet problem in L(a, r), i.e. u(z) ∈ hA(L(a, r)) ∩ C
(
L̄(a, r)

)
:

u(z)|∂L(a,r) = ω(ζ). Conversely, any function u(z) ∈ hA(L(a, r)) ∩ C(L̄(a, r)) is represented
in L(a, r) by the Poisson integral:

u(z) =
1

2πr

∫
|ψ(a,ζ)|=r

u(ζ)
r2 − |ψ(a, z)|2

|ψ(ζ, z)|2
∣∣dζ +A(ζ)dζ̄

∣∣, z ∈ L(a, r). (6)
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Formulas (5) and (6) are analogues of the Poisson formula for A(z)-harmonic functions. Here,

P (z, ζ) =
r2 − |ψ(a, z)|2

|ψ(ζ, z)|2
is the Poisson kernel.

1.3. Angular limits and Hardy classes for A(z)-analytic functions

Let L(a, r) ⊂⊂ D and f(z) ∈ OA(L(a, r)). We define the concepts of angular and radial
limits of A(z)-subharmonic and A(z)-analytic functions in lemniscate L(a, r). The radial limits
of the function f(z) at some point ζ ∈ ∂L(a, r) are denoted as f∗(ζ) and the angular limits are
denoted as f∗^(ζ) (see [8]).

In the classical case of the disk U = {w ∈ C : |w| < 1} ⊂ Cw, the limit by the radius
τζ = {w = tζ}, 0 6 t 6 1, ζ ∈ ∂U of the function g(w),

g∗(ζ) = lim
w→ζ,w∈τζ

g(w)

is called the radial limit, and the limit by the angle ^ ⊂ U , ending at the point ζ ∈ ^, is called
the angular limit,

g∗^(ζ) = lim
w→ζ,w∈^ζ

g(w).

Since lemniscate L(a, r) is a simply connected domain with a real analytic boundary, according
to Riemann’s theorem there exists a conformal map χ(z) : U → L(a, r), which is also conformal
in some neighborhood of closure Ū . Let χ maps the boundary point λ ∈ ∂U to the boundary
point ζ ∈ ∂L(a, r). Then the curve γζ = χ(τλ) has the property that it connects points a, ζ
and is perpendicular to all lines of level ∂L(a, ρ) = {|ψ(a, z)| = ρ}, 0 < ρ 6 r. In the theory
of A(z)-analytic functions, the curve γζ = χ(τλ) plays the role of the radial direction, and the
image of the angle χ(^) plays the role of the angular set at the point ζ ∈ ∂L(a, r). We will
denote this angle by ^ = ^ζ . The limit f∗(ζ) = lim

z→ζ,z∈γζ
f(z) is called the radial limit, and

f∗^(ζ) = lim
z→ζ,z∈^ζ

f(z) is the angular limit of the function f(z) at the point ζ ∈ ∂L(a, r) (see [8]).

Now we will show the smoothness of the boundary of lemniscate L(a, r). For this, we take the
automorphism χ−1(z) : L(a, r) → U by Riemann’s theorem. Let there be some neighborhood
V = {ψ(a, ζ) = reiθ, |θ| < ε} for ∀ε > 0. Also has χ−1(V ) ⊂ ∂U and χ−1(ζ0) = λ0 ∈ ∂U . Fur-
ther, there is a diffeomorphism π = −i lnχ−1(ζ) : V → [−1; 1]. This diffeomorphism represents
all boundary points of differentiability of the function f∗(ζ) and f∗^(ζ) (see [8]).

Next we introduce the Hardy class for A(z)-analytic functions:

Definition 1.2 (see [8]). The Hardy class Hp, p > 0, for A(z)-analytic functions is the set of
all functions f(z) such that its averages

1

2πρ

∫
|ψ(a,z)|=ρ

|f(z)|p
∣∣dz +A(z)dz̄

∣∣ (7)

are uniformly bounded for ρ < r, i.e. sup
ρ<r

{
1

2πρ

∫
|ψ(a,z)|=ρ

|f(z)|p
∣∣dz +A(z)dz̄

∣∣} <∞.

The Hardy class for A(z)-analytic functions in the domain L(a, r) is denoted as Hp
A(L(a, r)).

The norms in them are defined by the formula (see [8]):

∥ f ∥Hp
A
= sup

|ψ(a,z)|<r

(
1

2πρ

∫
|ψ(a,z)|=ρ

|f(z)|p
∣∣dz +A(z)dz̄

∣∣) 1
p

<∞.
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Further, from the inequality bq < bp+1, 0 < q < p, b > 0 we conclude that f ∈ Hp
A follows

f ∈ Hq
A, i.e. Hp

A ⊂ Hq
A for all p and q. Let us define a class of bounded functions

H∞
A (L(a, r)) =

{
f(z) ∈ OA(L(a, r)) : sup

|ψ(a,z)|<r
{|f(z)|} <∞

}
.

The norm in H∞
A (L(a, r)) is defined as ∥ f(z) ∥H∞

A
= sup
z∈L(a,r)

{|f(z)|} (see [8]).

1.4. The Fatou theorems and Cauchy’s integral formula for the Hardy
class H1

A

Now, we will consider the Fatou theorem for the class of functions H1
A :

Theorem 1.6 (See [8], the Fatou theorem for the class of functions H1
A). If f(z) ∈ H1

A(L(a, r)),
then the angular limit

f∗^(ζ) = lim
z→ζ,z∈^ζ

f(z)

exists and is finite for almost all ζ ∈ ∂L(a, r), except, perhaps, the points of some set E of
measure zero.

The following statements follow from Theorem 1.6:

Theorem 1.7 (see [8]). If f(z) ∈ H1
A(L(a, r)), then f∗(ζ) ∈ L1

A(∂L(a, r)). As ρ→ r∫
|ψ(a,z)|=ρ

f(z)
∣∣dz +A(z)dz̄

∣∣−→ ∫
|ψ(a,ζ)|=r

f∗(ζ)
∣∣dζ +A(ζ)dζ̄

∣∣ (8)

and ∫
|ψ(a,z)|=ρ

|f(z)− f∗(ζ)|
∣∣dz +A(z)dz̄

∣∣−→ 0. (9)

According to Cauchy integral formula (2) for lemniscates L(a, r)

f(z) =
1

2πi

∫
|ψ(a,ξ)|=ρ

f(ξ)K(ξ, z)
(
dξ +A(ξ)dξ̄

)
,

we conclude that
f(z) =

1

2πi

∫
|ψ(a,ζ)|=r

f∗(ζ)K(ζ, z)
(
dζ +A(ζ)dζ̄

)
. (10)

This is the Cauchy integral formula for functions of H1
A.

We show a boundary uniqueness theorem for the Hardy class H1
A:

Theorem 1.8 (see [8]). Let f(z) ∈ H1
A(L(a, r)). Suppose that for some set M ⊂ ∂L(a, r) of

positive measure f∗(ζ) = 0, ∀ζ ∈M . Then f(z) ≡ 0.

2. Carleman’s formula for A(z)-analytic functions

2.1. A(z)-harmonic measure of a boundary set

For a measurable boundary subset of a lemniscate L(a, r), the A(z)-harmonic measure
ω(z,M,L(a, r)) is defined very simply, according to the Poisson formula. If

ℵM (ζ) =

{
−1, ζ ∈M,

0, ζ ∈ ∂L(a, r)\M
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is a characteristic function of the set M ⊂ ∂L(a, r), then the A(z)-harmonic measure is

ω(z,M,L(a, r)) =
1

2πr

∫
|ψ(a,ζ)|=r

P (z, ζ)ℵM (ζ)
∣∣dζ +A(ζ)dζ̄

∣∣. (11)

Note that the A(z)-harmonic measure ω(z,M,L(a, r)) is a A(z)-harmonic function inside the
lemniscate L(a, r) and

−1 6 ω(z,M,L(a, r)) 6 0.

Theorem 2.1 (see [9]). The function ω(z,M,L(a, r)) either does not vanish anywhere,
ω(z,M,L(a, r)) < 0, or is identically zero, ω(z,M,L(a, r)) ≡ 0. Moreover, ω(z,M,L(a, r)) ≡ 0
if and only if the bounded set M ⊂ ∂L(a, r) has measure zero.

The following theorem is very important in qualitative estimates of A(z)-analytic functions.

Theorem 2.2 (see [9]). Let M ⊂ ∂L(a, r) be a measurable boundary set of positive measure.
Then for almost all points ζ0 ∈M there exist radial (angular) limits ω∗(ζ0,M,L(a, r)) = −1.

2.2. Construction of a quenching function and the Carleman formula in
class H1

A.

Let D ⊂ C be a convex domain, L(a, r) ⊂⊂ D be some lemniscate, on the boundary of
which the set M ⊂ ∂L(a, r) of positive measure is given. The task is to restore the function
f(z) ∈ H1

A(L(a, r)) to L(a, r) by its boundary values given not over the entire boundary ∂L(a, r),
as in (10), but only on M . Applying Carleman’s simple idea, we will construct a "quenching"
function that will allow us to get rid of (10) by integrating over ∂L(a, r)\M . For this purpose,
it is necessary to construct an auxiliary function φ(z) ∈ H∞

A (L(a, r)) satisfying two conditions
(see [9]):

1. |φ∗(ζ)| = 1 almost everywhere on ∂L(a, r)\M .

2. |φ(z)| > 1 at L(a, r).

This can be done by constructing the A(z)-harmonic measure ω(z,M,L(a, r)) of the bound-
ary set M ⊂ ∂L(a, r). According to Theorem 2.2, ω(z,M,L(a, r)) ∈ hA(L(a, r)), −1 6
ω(z,M,L(a, r)) < 0 and

ω∗(ζ,M,L(a, r)) = lim
z→ζ,z∈^

ω(z,M,L(a, r)) = −1

almost everywhere at M and

ω∗(ζ, ∂L(a, r)\M,L(a, r)) = lim
z→ζ,z∈^

ω(z, ∂L(a, r)\M,L(a, r)) = 0

almost everywhere at ∂L(a, r)\M (see [9]).
Since L(a, r) ⊂⊂ D is simply connected, there is an A(z)-harmonic function v(z), conjugated

to ω(z,M,L(a, r)). Then ω(z,M,L(a, r)) + iv(z) = w(z) ∈ OA(L(a, r)). Consider function
φ(z) = e−w(z) ∈ OA(L(a, r)). It satisfies the above conditions:

|φ(z)| = e−ω(z,M,L(a,r)) 6 e

everywhere in L(a, r), i.e.

φ(z) ∈ H∞
A (L(a, r)), |φ∗(ζ)| = e−ω

∗(ζ,M,L(a,r)) = e0 = 1
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almost everywhere on ∂L(a, r)\M and

|φ(z)| = e−ω(z,M,L(a,r)) > 1, ∀z ∈ L(a, r).

This function is called the quenching function with respect to the set M (see [9]).
Now we look at the important formula:

Theorem 2.3 (see [9]). If f ∈ H1
A(L(a, r)) and M ⊂ ∂L(a, r) is the set of positive measure,

then the formula

f(z) =
1

2πi
lim
m→∞

∫
M

f∗(ζ)

[
φ∗(ζ)

φ(z)

]m
K(ζ, z)

(
dζ +A(ζ)dζ̄

)
, (12)

will be true for any point z ∈ L(a, r). Moreover, the convergence in (12) will be uniform on
compacts from L(a, r).

3. M. M. Lavrentiev’s method Carleman’s formula for
A(z)-analytic functions

Let in the set ∂L(a, r)\M with the Cauchy kernel K (z, ζ) (here z ∈ L(a, r) is fixed) be ap-
proximated by A(z)-analytic functions gz,m (ζ) ∈ H∞

A (L(a, r)). These functions are orthogonal
to the considered A(z)-analytic functions f ∈ H1

A (L(a, r)) and integration over ∂L(a, r). In
addition,

lim
m→∞

∫
∂L(a,r)\M

f∗ (ζ) (K (z, ζ)− gz,m (ζ))
(
dζ +A(ζ)dζ̄

)
= 0. (13)

We arrive at the following formula:

f(z) = lim
m→∞

∫
M

f∗ (ζ) (K (z, ζ)− gz,m (ζ))
(
dζ +A(ζ)dζ̄

)
. (14)

In formula (14), z is included as a parameter under the integral sign.
Now we construct the Carleman function for A(z)-analytic functions. This idea of obtaining

the Carleman formula (12) with kernel approximation can be described using the Carleman
concept introduced by M. M.Lavrentyev for A(z)-analytic functions. A function of two complex
ζ, z and a positive variable α, which we denote by G (z, ζ, α), is called the Carleman function
A(z)-analytic set M in the domain D if:

1) G (z, ζ, α) =
1

ψ (z, ζ)
+ G̃ (z, ζ, α), where G̃ to ζ is a function of class H∞

A (L(a, r));

2)
1

2π

∫
∂L(a,r)\M

|G (z, ζ, α)|
∣∣dζ +A(ζ)dζ̄

∣∣ 6 |C(z)|α, where the constant C(z) depends on z.

An example of a generalized Carleman function is the kernel in formula (12):

G (z, ζ, α) =

[
φ∗ (ζ)

φ(z)

] 1
α 1

ψ (z, ζ)
.

And in general, if the Carleman function is A(z)-analytic G, then the Carleman formula for
A(z)-analytic functions is also true:

f(z) =
1

2πi
lim
α→0

∫
M

f∗(ζ)G (z, ζ, α)
(
dζ +A(ζ)dζ̄

)
, (15)
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It is obvious that generalized formulas (14) and (15) are equivalent.
Let us prove the theorem of M. M. Lavrentiev for the A(z)-analytic function:

Theorem 3.1. Let L(a, r) ⊂⊂ D be a set whose boundary consists of a finite number of closed
piecewise smooth Jordan disjoint curves, and let M be an open subset of ∂L(a, r). Then there is
a Carleman formula (14) for function f(z) from class H1

A(L(a, r)):

f(z) = lim
m→∞

∫
M

f∗ (ζ) (K (z, ζ)− gz,m (ζ))
(
dζ +A(ζ)dζ̄

)
which we construct using a chain of integrals and expansions in series.

We first check the limit (13) for uniform convergence by representing gz,m(ζ), the approxi-
mating Cauchy kernel K(z, ζ), as a series. ∀z ∈ L(a, r), ζ ∈ ∂L(a, r) of

2πiK(z, ζ) =
1

ψ(ζ, z)
=

1

ζ − z +
∫

γ(z,ζ)

A(τ)dτ
=

1

(ζ − a) +
∫

γ(a,ζ)

A(τ)dτ − (z − a)−
∫

γ(a,z)

A(τ)dτ
=

=
1

ψ(a, ζ)

1

1− ψ(a,z)
ψ(a,ζ)

=

∞∑
k=0

(ψ(a, z))k

(ψ(a, ζ))k+1
.

The Cauchy kernel K(z, ζ) is extended to L(a, r) lemniscates as indicated above. Now let us
check gz,m(ζ) functions. From the end of subsection 1 we select a function in the form of a finite
series:

gz,m(ζ) =
1

2πi

m∑
k=0

(ψ(a, z))k

(ψ(a, ζ))k+1
.

Now we move on to limit

lim
m→∞

∫
M

f∗ (ζ) (K (z, ζ)− gz,m (ζ))
(
dζ +A(ζ)dζ̄

)
=

= lim
m→∞

∫
M

f∗ (ζ)

( ∞∑
k=0

(ψ(a, z))k

(ψ(a, ζ))k+1
−

m∑
k=0

(ψ(a, z))k

(ψ(a, ζ))k+1

)(
dζ +A(ζ)dζ̄

)
.

Now let us prove Theorem 3.1:

Proof. From the generalized Runge theorem (see [10], p. 20) it follows that the compact set
∂L(a, r)\M is, for small ε > 0, a compact set OA(L(a, r)ε) — convex. Consider a sequence of

compacts Km,m ∈ N,Km ⊂ Km+1,
∞∪
m=1

Km = L(a, r) each Km is OA(L(a, r)ε) — convex. For

example, we choose this compact set in this form:

Km = L

(
a,

(
1− 1

m+ 1

)
r

)
= L

(
a,

mr

m+ 1

)
.

Function K(z, ζ) is A(z)-analytic on (∂L(a, r)\M) × Km, and each function from
OA ((∂L(a, r)\M)×Km) is uniformly approximated on this compact by functions from
OA (L(a, r)ε × L(a, r)ε). We showed uniform convergence above by representing the gz,m(ζ)
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functions as a series. Indeed, from OA (L(a, r)ε) — the convexity of (∂L(a, r)\M) and Km fol-
lows OA (L(a, r)ε × L(a, r)ε) — the convexity of (∂L(a, r)\M)×Km, which is easy to prove using
the double integral Cauchy formula (in the special case of space C2, formula (4) from [7]):

f(z) =
1

(2πi)2

∫
(∂L(a,r)\M)×Km

fm,n(z, ζ)
(
dζ +A(ζ)dζ̄

)
∧ (dz +A(z)dz̄)

ψ(z, ζ)× ψ(a, z)
,

applied to the neighborhood of (∂L(a, r)\M)×Km, and the fact that the integral is the limit of
integral sums. So, evenly on

K(z, ζ) = lim
n→∞

fm,m(n)(ζ, z),

where
fm,m(n)(ζ, z) ∈ OA (L(a, r)ε × L(a, r)ε) .

Function gz,m(ζ) is A(z)-analytic on L(a, r)ε×L(a, r)ε and Carleman’s formula (14) is valid. �

In this proof we actually did not use the openness of M , but only the fact that M contains
a neighborhood of some point, so we have

Corollary 3.1. The statement of Theorem 3.1 holds if M contains at least one point from
∂L(a, r) together with its neighborhood on ∂L(a, r).

Finally, we note that the A(z)-analytic kernel K(z, ζ) in the Carleman formula for A(z)-
analytic functions from Theorem 3.1 or Corollary 3.1 is constructed as constructively as one can
construct an approximation in Runge’s theorem (see [10]), i.e. using a chain of integrals and
expansions in series.

M. M. Lavrentiev’s method has found important applications in the theory of ill-posed prob-
lems of analysis and mathematical physics in [11]. And the method of A.M. Kytmanov appeared
in relation to homogeneous domains in Cn (see [12]).
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Аннотация. В работе для A(z)-аналитических функций из класса Харди доказывается аналог
формулы Карлемана. Идея получения формулы Карлемана и понятие функции Карлемана для
A(z)-аналитических функций из класса Харди принадлежат М. М. Лаврентьеву. В доказательстве
формулы Карлемана существенно используются A(z)-гармонические функции и формула Пуассона
в лемнискатах L(a, r), компактно принадлежащих в рассматриваемой области D ⊂ C.

Ключевые слова: A(z)-аналитическая функция, класс Харди, A(z)-лемниската, кратная инте-
гральная формула Коши для A(z)-аналитических функций.
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Abstract. This paper considers Carleman’s integral formula for a function of matrices in the space
Cn [m×m]. The resulting formula is a general case of G. Khudayberganov’s result.
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1. Introduction, preliminaries and problem statement

It is known that Carleman formulas solve the problem of reconstructing a holomorphic func-
tion in a domain D (that behaves quite well when approaching the boundary ∂D), from its values
on some uniqueness set M ⊂ ∂D that does not contain the Shilov boundary.

The problem of reconstructing a holomorphic function goes back to the Cauchy integral
formula, which is unique in the case of the complex plane. It reconstructs a holomorphic function
in a domain using its values on the boundary. Naturally, the question arises whether is it possible
to reconstruct a holomorphic function inside a domain using its values not on the entire boundary,
but on a part of it. A positive answer to this question first appeared in the works of T. Carleman
in 1926 (see [1,2]) in one particular case, and this explains the name of these formulas after him.
He proved a formula that reconstructs a holomorphic function in a sector using its values on
the arc of the sector. Later, in 1933, G.M. Goluzin and V. I.Krylov (see [2, 3]) found a method
based on the introduction of a damping function, which allows one to solve this problem for an
arbitrary simply connected domain of the complex plane.
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He proved the following: If f ∈ H1 (D) and a set M ⊂ ∂D has positive Lebesgue measure,
then for any point z ∈ D the following Carleman formula is true

f (z) = lim
m→∞

1

2πi

∫
M

f (ξ)

[
φ (ξ)

φ (z)

]m
dξ

ξ − z
, (1)

where φ (z) = exp (u+ iv), the function u (x, y) is the solution of the Dirichlet problem for the
domain D, and v (x, y) is the conjugate harmonic function to u (x, y).

In 1956, M. M.Lavrentiev (see [2]) proposed a method for obtaining Carleman’s formula
by approximating the kernel. Further development of this theory in multidimensional complex
analysis can be found in the book by L. A.Aizenberg (see [2, 4]). Also in multidimensional
complex analysis, this problem was studied in the works of N. N. Tarkhanov [5], Sh.A. Dautov
[6], A. M.Kytmanov [7, 8], T. N.Nikitina, G. Khudayberganov [9, 10], S. Kosbergenov [11],
B.A. Shaimkulov [12] and others (see [13,14]).

A.M. Kytmanov proposed a new method for obtaining the Carleman formula for homogeneous
domains using automorphisms of these domains: if we can restore a function at one point of
the domain, then using automorphisms we can restore it at any point of the domain. And
G.Khudaiberganov in his work [9] considered Carleman’s formula for matrix functions. We will
use G. Khudaiberganov’s method to obtain the Carleman formula in our studies.

2. Carleman’s formula for matrix functions

Consider Cm2

the space of m2 complex variables space. In some questions, it is convenient
to represent the point Z of this space as Z = (zij)

m
i,j=1, i.e., as square [m×m]-matrices. With

this point of representation, the space Cm2

can be denoted by C[m×m]. Denote by Cn[m×m]

the direct product of n copies of [m×m]-matrix spaces: C[m×m]× · · · × C[m×m]︸ ︷︷ ︸
n

.

Let Z = (Z1, . . . , Zn) be a vector composed of square matrices Zj of order m, considered
over the field of complex numbers C. Let us write the elements of the vector Z = (Z1, . . . , Zn)

as points z of the space Cnm2

:

z = (z
(1)
11 , . . . , z

(1)
1m, . . . , z

(1)
m1, . . . , z

(1)
mm, . . . , z

(n)
11 , . . . , z

(n)
1m , . . . , z

(n)
m1 , . . . , z

(n)
mm) ∈ Cnm

2

. (2)

Hence, we can assume that Z is an element of the space Cn [m×m], i.e., we arrive at the
isomorphism Cn [m×m] ∼= Cnm2

.
Denote by D ⊂ Cn2

a bounded set of [n× n] matrices W . By Gershgorin’s theorem (see [15],
p. 198) there exists a bounded simply-connected domain D ⊂ C1 with piecewise-smooth bound-
ary that contains all eigenvalues of all matricesW ∈ D. Then for every function f ∈ O(D)∩C(D)

is defined f (W ), where W ∈ D (see [15], Sec. 5.8), using the Cauchy formula we have

f (W ) =
1

2πi

∫
∂D

f (z) (zI −W )
−1
dz, (3)

here I is the identity matrix of order n.
Note that the Hardy class H1 (D) consists of all functions f that are holomorphic in D and

for which

∥f∥H1 = sup
0<r<1

∫
∂D

|f (rZ)| dµ

 <∞.
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The definition of (3) can be easily extended to the class H1 (D). The following is a result
of G.Khudaiberganov where a matrix analogue of the classical Carleman formula is obtained
(see [9]).

Theorem 2.1. If f ∈ H1 (D) and M ⊂ ∂D is the set of positive Lebesgue measure, then for any
matrix W ∈ G the Carleman formula is true:

f (W ) = lim
m→∞

1

2πi

∫
M

f (ζ) (ζI −W )
−1
{
φ (ζ) [φ (W )]

−1
}m

dζ, (4)

where the function φ is the same as in the one-dimensional Carleman formula.

Note that for n = 1 the relation (4) is a generalized Carleman formula (1).
For the matrix unit disc

τ = {Z ∈ C [m×m] : ZZ∗ < I}

we can take the usual unit disc

U (0, 1) = {z ∈ C : |z| < 1} ,

as D, therefore the next statement is true.

Corollary 2.1. If D = τ , then the formula (4) is valid, where M ⊂ ∂U (0, 1).

Corollary 2.2. If m1 = m2 = · · · = ms = 1, then

f (W ) = lim
m→∞

1

2πi

s∑
k=1

s∏
ν=1
ν ̸=k

W − λkI

λk − λν

∫
M

f (ζ)

[
φ (ζ)

φ (λk)

]m
dζ

ζ − λk
. (5)

where λ1, λ2, . . . , λs different eigenvalues of the matrix W with multiplicities m1, m2, . . . ,ms

respectively.

The proof of Corollary 3.1 becomes obvious if we take into account that the eigenvalues of the
matrices from τ lie in the unit disc [16]. Corollary 3.2 is proved with the use of Theorem 5.5.2
from [15], according to which

zkj =
1

(j − 1)!
(ω − λkI)

j−1
s∏

ν=1

ω − λνI

λk − λν

where k = 1, 2, . . . , s; j = 1, 2, . . . ,mk. We note that from (5), by virtue of equality (1), there
follows the Sylvester interpolation formula [17,18]

f(w) =

s∑
k=1

f(λk)

s∏
ν=1
ν ̸=k

w − λvI

λk − λv
.

This means that these results were used to find the Sylvester interpolation formula in the space
C [m×m]. In this paper, we present an analogue of Theorem 2.1 for Cn [m×m], and using the
resulting theorem, we write the interpolation formula in the space for the case Cn [m×m].
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3. Carleman’s formula for functions of matrices
in Cn [m×m]

Let A = (A1, A2, . . . , An) ∈ Cn [m×m] and λ
(1)
ν , . . . , λ

(sν)
ν be different eigenvalues of the

matrix with multiplicities m1, . . . ,msν and Aν ∈ Cn [m×m], ν = 1, . . . , n, and Dν ⊂ C1 domain
containing λ(1)ν , . . . , λ

(sν)
ν and lying in the ν-th coordinate plane of the space Cn, ν = 1, . . . , n.

According to Gershgorin’s theorem such Dν exist (see e.g. [15]).
Let us assume that the function f(t) = f(t1, . . . , tn) ∈ H1(D), where D = D1×D2×· · ·×Dn.

Let us define a holomorphic function of several matrices variables using the formula:

f(A) =
1

(2πi)

∫
Tn

f(t)(tI −A)
−1
dt (6)

where Tn = ∂D1 × ∂D2 × · · · × ∂Dn, dt = dt1 . . . dtn and

(tI −A)
−1

= (t1I −A1)
−1
. . . (tnI −An)

−1
.

The following spectral expansion theorem holds for f(A) .

Theorem 3.1. If f ∈ H1(D), then there exist matrices

Z(1)
r1p1 , . . . , Z

(1)
r1p1 rν = 1, . . . , sν , pν = 1, . . . ,mrν , ν = 1, . . . , n,

independent of f such that

f(A) =

s1,...,sn∑
r1,...,rn=1

mr1
,...,mrn∑

p
1,...,pn=1

[
∂|p|−n

∂λ|p|−n
f(λ)

]
λ=λ(rn)

Zrp , (7)

where
r = (r1, . . . , rn), p = (p1, . . . , pn),

|p| = p1 + p2 + · · ·+ pn,

Zrp = Z
(1)
r1p1 . . . Z

(n)
rnpn , λ = (λ1 . . . λn), where the entry λ = λ(r) means that λ1 = λ(r1)

1
, . . . , λn =

λ
(rn)
n . The component Z(ν)

rνpν of the matrix Aν , ν = 1, . . . , n is determined by the formula:

Z
(ν)
rνpν =

1

(pν − 1)!
(Aν − λrνν I)

pν−1
Sν∏
jν=1
jν ̸=rν

Aν − λ
(jν)
ν I

λ
(rν)
ν − λ

(jν)
ν

, ν = 1, . . . , n. (8)

Let D = D1 × · · · ×Dn ∈ Cn [m×m] be a bounded domain. Then by Gershgorin’s theorem
(see [15]) there exists a polydisc Un(0, R) = {z ∈ Cn : ∥z∥ < R} containing all eigenvalues of all
matrices Wν ∈ Dν , ν = 1, . . . , n. Let ΛWν

be the spectrum of the matrix Wν , ν = 1, . . . , n, then

ΛW = (ΛW1
, . . . ,ΛWn

) ⊂ Un(0, R).

Consider the set E ⊂ Tn(0, R), mnE > 0. For points 8ξ = (ξ2, . . . , ξn) ∈ Tn(0, R),
a = (a1, . . . , an) ∈ ΛW and parameter l ∈ C1. Let us introduce the set

Ea′ξ = {t ∈ E : t1 = t1(l), tj(l, ξj), j = 2, . . . , n, |l| = R} ,

where

t1(l) = (a1 − l)(1− ā1
R2

l)
−1

, tj(l, ξj) =
ξ
(
l − |aj |2

R l
)
+ aj(1− l)

āj
R ξj(l − 1) + 1− |aj |2

R l
. (9)
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By E′
a we denote the set {8ξ ∈ Tn(0, R) : mn−1Ea8ξ > 0

}
. (10)

From Fubini’s theorem it follows that mn−1E
′
a > 0 . Let us put

ψa(t) =
1

2πi

∫
Ea,8ξ

(
η + a1 − t1

(
1 + ā1

R2 η
)

t1
(
1− ā1

R2 η
)
+ η − a1

)
dη

η

where t and ′ξ are related by the relation (9) and (10).

Theorem 3.2. Let f(t) ∈ H1(Un(0, R)), E ⊂ Tn(0, R) and mn(E) > 0, then for an arbitrary
W = (W1, . . . ,Wn) ∈ D the next formula holds:

f(W ) = G(E′
ΛW

)
−1

lim
p→∞

1

(2πi)
n

∫
E

f(t)ep(ψW (t)−ψW (W ))(tI −W )
−1
dt, (11)

where
G(E′

ΛW
) =

∫
E′

ΛW

P (
′
ξI,′W )dmn−1,

P (
′
ξI,′W ) =

[
(ξ2I −W2)(ξ2I −W2)

∗]−1
(R2I −W2W2

∗) . . .[
(ξnI −Wn) (ξnI −Wn)

∗]−1 (
R2I −WnW

∗) ,
(tI −W )

−1
=(t1I −W1)

−1
. . . (tnI −Wn)

−1
,

dt =dt1 ∧ dt2 ∧ · · · ∧ dtn,

the set E′
ΛW

is defined in the same way as in the formula (10).

Proof. Let λ1, . . . , λs be distinct eigenvalues of the matrix W with multiplicities m1,m2, . . . ,ms.
By virtue of the definition of a holomorphic function of several matrices and by formula (7) we
have

(2πi)
n
f(W ) =

∫
Tn

f(t)f(tI −W )
−1
dt =

∫
Tn

S∏
ν=1

sν∑
rν=1

mr∑
pν=1

f(t)(pν − 1)!

(tν − λ
(rν)
ν )

pν dtZ
(ν)
rνpν =

=

s1,...,sn∑
r1,...,rn=1

m1,...,mrn∑
p1,...,pn=1

1

G(E′
λ)

×

× lim
p→∞

∫
E

{
f(t)

∂|p|−n

∂λp1−1
1 . . . ∂λpn−1

1

(
ψ−p
λ (λ)

t− λ

)∣∣∣∣∣∣
λν=λ

(rν )
ν

ψpλ (t)

n∏
ν=1

Z(ν)
rνpν

 dt

 ,
where Z

(ν)
rνpν components of matrix Wν . Here we have used the fact that the formula

λ
(1)
ν , . . . , λ

(Sν)
ν can be differentiated and

∫
Tn

S∏
ν=1

Sν∑
rν=1

mrν∑
pν=1

f(t)(pν−1)!(
tν−λ(rν )

ν

)pν dt = (2πi)
n

[
∂|p|−n

∂λ
p1−1
1 ...∂λpn−1

n

(f (λ1 . . . λn))

]
λν=λ

(rν )
ν

=

= G−1 (E′
Λλ

) lim
p→∞

∫
E

f (t) ∂|p|−n

∂λ
p1−1
1 ...∂λpn−1

n

(
ψ−p

λ (λ)

t−λ

)∣∣∣∣
λν=λ

(rν )
ν

ψpλ (t) dt.
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The proof of Theorem 3.2 completed. 2

Note that when n = m = 1 the formula (11) turns into the formula of Goluzin and Krylov,
and in the case of n = 1, when D is matrix unit disc, into the Carleman formula obtained by
G.Khudayberganov [9].
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Об одной формуле Карлемана в Cn [m×m]
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Аннотация. В работе рассмотрена интегральная формула Карлемана для функции от ма-
триц, в пространстве Cn [m×m]. Полученная формула является обобщением результата
Г.Худайберганова.

Ключевые слова: формула Карлемана, голоморфная функция, пространство Харди, голоморф-
ное продолжение, матричный единичный круг, автоморфизм.
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Introduction

Currently, the problem of obtaining various biomaterials from supporting connective tissues
capable of providing conductive and osteoinductive properties of the natural matrix is topi-
cal. These materials can be used in various branches of medicine: dentistry, traumatology and
orthopaedics, maxillofacial surgery [1]. Dental tissues are promising and accessible sources that
can be used to correct disorders of bone metabolism and mineral homeostasis. Bone mineral
content (BMC) is obtained by demineralisation of human and animal dental tissues. It is used
to fill defects after injuries and traumas, in endoprosthetics in dentistry, to regulate metabolic
processes by exogenous introduction into the body, has pronounced osteoinductive properties
due to preserved bone morphogenetic proteins. Also this material can be used as a compo-
nent of toothpastes and various professional dental compositions for prevention of caries and
destructive processes of tooth enamel, because the mineral component of dental tissues along
with the hexagonal crystalline structure of hydroxyapatite (HAP) contains an amorphous phase,
which has the best adhesion to enamel [2]. This raises the need to assess the quality of xeno-
geneic bone-plastic materials from animal teeth. Optical methods are one of the most common
operational methods for evaluating biomaterials for various purposes [3, 4–5]. Among them, Ra-
man spectroscopy [3], IR spectroscopy [4], energy dispersive X-ray fluorescence analysis, atomic
adsorption analysis and scanning electron microscopy are widely used to assess the composi-
tion of biomaterials [5]. For example, in [3], single crystals of synthetic hydroxyapatite were
studied by the method of orientation micro-Raman spectroscopy, as a result, it was found that
the crystallites in the studied region have a high orientation. In [4], the analysis using Fourier
transform infrared spectroscopy was performed on hydroxyapatite doped with europium, then
the antimicrobial activity of nanoparticles of hydroxyapatite doped with europium depends on
the concentration of europium. In [5], samples of hydroxyapatite of various species of wild and
domestic animal species, as well as humans, were studied using a complex of methods of electron
microscopy and atomic adsorption analysis. It was found that bone hydroxyapatite samples con-
tain trace elements, and the mass ratio of calcium and phosphorus corresponds to their ratio in
native bone tissue. Images of the microstructure of the surface of hydroxyapatite obtained from
the bone tissue of some animals and energy dispersion analysis data reflecting the composition
of the samples are presented. Purpose of the work: evaluation of the demineralisation efficiency
of xenomaterials of different origin using Raman spectroscopy.

Materials and methods of research

The objects of the study were groups of BMC samples manufactured using the Lioplast R⃝
technology from the teeth of Bos taurus cow (TU-9398-001-01963143-2004). The dental material
was mechanically cleaned of soft tissues, poured into a 3% hydrogen peroxide solution and left for
a day at room temperature, then the solution was drained. The samples were then infused with
an alcohol-ether mixture, left for 24 hours at room temperature, then the solution was drained
and each tooth was washed with distilled water. The samples were then dried on filter paper.
Hydrochloric acid in two concentrations (1.8 n and 2.4 n) was used for demineralisation, with a
change once every three days. Teeth for the study were divided into 2 main groups according
to the degree of demineralization in hydrochloric acid: group 1 — demineralized in 1.8 n HCl,
group 2 — demineralized in 2.4 n HCl. In each group, cow molars and incisors were used to
make MCIs. The MIC samples were obtained by sodium hydroxide precipitation followed by
washing with distilled water, centrifugation and drying in a drying oven at 180 C for 3 hours.
Raman spectroscopy was used as the main method of xenomaterials investigation, implemented
by high resolution digital spectrometer AndorShamrockSR-303i with built-in cooled chamber
DV420A-OE providing spectral resolution of 0.15 nm and fibre optical probe for Raman spec-
troscopy RPB785, combined with LuxxMaster LML-785 laser module. 0RB-04 (up to 500 mW,
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wavelength 785 nm) [6]. The spectra were taken at three different points and averaged using the
Wolframmathematica software package.[7] Linear discriminant analysis in IBM SPSS Statistics
software environment was performed for the obtained split CR spectra. A biochemical analysis
of the calcium ion concentration in the demineralising solution was performed as an additional
method of investigation.

Analysis
Fig. 1 shows the results of the Raman studies of xenomaterial samples. With different de-

grees of demineralisation depending on the sample types changes in the CD amplitude are ob-
served in the lines 956 cm−1 (PO,P-O symmetrical valence), 1071 cm−1 (CO2−

3 ,C-O flat valence),
1129–1242 cm−1 (Amide III (C-N-H stretching) bending N-H). No significant changes are ob-
served in the other Raman lines. These changes are due to the peculiarities of the enamel
structure of molars and incisors.

Fig. 1. Averaged Raman spectra of xenomaterials obtained at degree of demineralisation: 1 —
1.8 n and 2 — 2.4 n; by origin a — Molar, b — Chisel

Fig. 1 shows that in xenomaterials derived from molars there is a 956 cm−1 decrease in
phosphate line intensity (PO3−

4 , P-O symmetrical valence) both at 1.8 n acid concentration and
at 2.4 n and respectively the line intensity ratio changes at 956 cm−1 (PO3−

4 , P-O symmetrical
valence) and 1071 cm−1 (CO2−

3 , C-O flat valence), indicating mineral component leaching during
demineralisation of xenomaterials. It can be seen that at an acid concentration of 2.4 n, the
mineral components are almost completely leached, indicating that the demineralisation process
is effective. In contrast, the xenomaterials obtained from incisors show a more saturated content
of mineral components. Fig. 1 shows that at acid concentration of 2.4 n the xenomaterials
obtained from the incisors are highly mineralized, as evidenced by the CD line intensity at
956 cm−1 (PO3−

4 (ν4), P-O symmetric valence). To increase the information content of obtained
Raman spectra a non-linear regression analysis of spectra was performed consisting of their
decomposition into spectral lines. Fig. 2 shows the result of spectral contour decomposition into
the sum of Gauss line distributions. The mean value of the coefficient of determination of the
resulting spectrum from the baseline in the range 800-1780 cm−1 was R2 = 0.99, the relative
error in the intensity of spectral lines a does not exceed 5%, the mean standard deviation of line
coordinate x0 is 1 cm−1, the mean standard deviation of line width (HWHM) of Gauss dx is 1
cm−1. In Fig. 3(A), 12 spectra with a degree of demineralisation of 1.8n are analysed. The LD-1
discriminant function describes the variance by 100%. Positive LD-1 values are more common in
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Fig. 2. Spectral contour decomposition of the BMC samples

the CR spectra of incisors. Negative ones for molars. In Fig. 3(B), 18 spectra with a degree of
demineralisation of 2.4 n are analysed. The discriminant function LD-1 describes the variance at
100%. Positive LD-1 values are more common in the CR spectra of incisors. Negative values for
molars. Fig. 4 shows the coefficients of the factor structure matrix with the physical meaning of
the correlation between the variables in the model and the discriminatory function. The higher in
modulo the LD-1 value for a variable, the more it determines the difference in the discriminatory
model between groups of samples. It is also clear from the extended analysis that xenomaterials
from molars are not completely demineralised by grade 2,4 acid. These changes are due to the
peculiarities of the enamel structure of molars and incisors. Enamel hydroxyapatite has a highly
crystalline calcium phosphate structure, which is less susceptible to degradation, making incisor
enamel denser and more saturated with mineral components. In [8], differences in the organic
and inorganic composition of enamel and dentin of human, cattle, pigs and sheep teeth were
established, which should be taken into account when interpreting the results of studies using
xenogenic animal materials as bioimplants. Human and bovine dental tissues were the most
similar in composition. An important issue is the selection of the optimum acid concentration
for rapid but gentle demineralisation. The rate of demineralisation is also highly dependent
on the density and structure of the specimens (it is more convenient to estimate this from the
calcium concentration in the solution). A more intensive yield of mineral elements compared
to molars is noted from incisors, which is due to the peculiarities of their enamel structure and
thickness [9], as well as when using acid with a concentration of 2.4 n relative to the concentration
of 1.8 n (Fig. 5). Therefore, when obtaining the mineral component from xenomaterials, incisors
and a hydrochloric acid concentration of 2.4 n are preferable for demineralisation.

Conclusions

As a result of this research, an extended analysis of xenomaterial samples during their dem-
ineralisation has been carried out. The spectral changes of xenomaterial samples at different
degrees of demineralisation have been established. It is shown that full demineralization of xeno-
materials occurs at a degree of 2.4 as evidenced by the decrease of CD intensity at 956 cm−1
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Fig. 3. Graph of values of linear discriminant function of xenomaterials samples: 1 — Molars;
2 — Incisors. A) with degree of demineralisation 1.8 n; B) with degree of demineralisation 2.4 n

(PO3−
4 ,P-O symmetric valence), 1071 cm−1 (CO2−

3 ,C-O flat valence) lines. Thus, using Raman
spectroscopy, it was found that xenomaterials derived from incisors are preferable for the min-
eral component because the demineralisation of molars is slower. The results were confirmed by
biochemical analysis.
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Аннотация. В данной статье представлены результаты спектральных исследований ксеномате-
риалов, полученных из разных источников и при разной степени деминерализации. Образцы ми-
нерального компонента кости получены из дентальных ксеноматериалов после деминерализации
в соляной кислоте со степенью нормальности 1.8 н, 2.4 н. Все исследования проводились с помо-
щью метода Рамановской спектроскопии. В результате исследований был проведен расширенный
анализ ксеноматериалов в процессе их изготовления. С помощью спектроскопии комбинационно-
го рассеяния установлено, что выход минеральных компонентов при деминерализации происходит
эффективнее из резцов при использовании соляной кислоты концентрацией 2,4 н, что позволяет
оптимизировать процесс изготовления ксеноматериалов.

Ключевые слова: спектроскопия комбинационного рассеяния, ксеноматериалы, минеральный
компонент кости, деминерализация, изготовление ксеноматериалов.
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Abstract. It is proved that if a finite group G is generated by three involutions α, β and γ, such that
α and γ commute, and the orders of the products αβ and βγ are greater than 2, then the generating
set {α, β, γ} makes G the automorphism group of a regular 3-polytope if and only if the intersection
⟨αβ⟩ ∩ ⟨βγ⟩ contains no non-trivial normal subgroup of G, and the intersection ⟨α, β⟩ ∩ ⟨β, γ⟩ is not
an elementary abelian subgroup of order 4. This criterion complements a theorem by M. Conder and
D. Oliveros (J. Combin. Theory Ser. A, 2013, v. 120, no. 6, pp. 1291–1304
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Introduction

Groups generated by three involutions, two of which commute, have found various applications
in graph theory and discrete geometry, such as Cayley graphs [5] and edge-transitive maps [3]).
In considering conditions for the existence of regular polytopes of small ranks, M. Conder and
D. Oliveros established the following theorem:

Theorem A [2, Theorem 4.1]. Let G be a finite group generated by three involutions α, β and
γ, such that α and γ commute, and the orders of the products αβ and βγ are greater than 2.
Then either G is the automorphism group of a regular 3-polytope, or G has a non-trivial cyclic
normal subgroup N contained in ⟨αβ⟩ or ⟨βγ⟩.

Examples show that both of the two possible conclusions of Theorem A can be satisfied
simultaneously. More specifically, there exist groups that are automorphism groups of regular
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3-polytopes and yet also contain distinct non-trivial normal subgroups N1 and N2 lying respec-
tively in ⟨αβ⟩ and ⟨βγ⟩; see Example 2 in Section 4 below.

We have obtained the following criterion for the existence of a 3-polytope with a given auto-
morphism group, which complements Theorem A:

Theorem B. Let G be a finite group generated by three involutions α, β and γ, such that α and
γ commute, and the orders of the products αβ and βγ are greater than 2. Then the generating set
{α, β, γ} makes G the automorphism group of a regular 3-polytope if and only if the intersection
⟨αβ⟩ ∩ ⟨βγ⟩ contains no non-trivial normal subgroup of G, and the intersection ⟨α, β⟩ ∩ ⟨β, γ⟩ is
not elementary abelian of order 4.

This theorem is proved in Section 3, following some preliminary observations (including back-
ground theory) in Section 2, and then some associated examples are presented in Section 4, and
some consequences are given in Section 5.

Note that the finiteness condition for G in Theorem B (above) and Corollaries 1 and 2 (in
Section 5) can be replaced by the weaker condition that the orders of the products αβ and βγ

are greater than 2 and finite, since only this weakened finiteness condition is used in the proofs.

1. Preliminary observations

An abstract n-polytope P is a partially ordered set with strictly monotone rank function
having range {−1, 0, 1, . . . , n}, and satisfying the axioms (P1) to (P4) below.

In this context, an element F ∈ P of rank j is called a j-face and is often denoted by Fj . Any
two faces Fj and Gj of the same rank j are incomparable. A flag of P is a maximal chain in P,
and two flags of P are said to be adjacent if they differ in exactly one element. For example, the
flags Φ = {F−1, F0, F1, F2} and Ψ = {F−1, G0, F1, F2} are adjacent for the polytope in Fig. 1.

F−1
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@
@@

�
�
�

�
�@

@
@

@
@h

h

h

h

F0 G0

F1 G1

Fig. 1. A polytope of rank 2

The required properties (P1) to (P4) are as follows:

(P1) In P there exists a least element F−1 and a greatest element Fn. These two elements are
called improper faces, while all other faces are called proper.

(P2) Each flag of P contains exactly n+ 2 faces, including F−1 and Fn.

(P3) If F and H are any two faces of respective ranks j−1 and j+1 with F < H in P, then there
exist exactly two faces G of rank j in P such that F < G < H. This is called the homogeneity
condition, or diamond condition.
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(P4) For every two flags Φ and Ψ in P, there exists a sequence Φ = Φ0,Φ1, . . . ,Φk = Ψ of flags
in P such that Φi−1 and Φi are adjacent for 1 6 i 6 k, and Φ ∩ Ψ ⊆ Φi for 0 6 i 6 k. This
condition is called strong (flag)-connectedness.

Two abstract polytopes P and Q are said to be isomorphic if there exists an order-preserving
bijection θ : P → Q, and then the automorphism group Aut(P) of the polytope P is naturally
defined as the group of all such bijections from P to itself. This group permutes the flags of P,
and preserves the set of its j-faces, for 0 6 j 6 n.

The number n is called the rank of the polytope, and we assume that n > 1. Obviously, up
to isomorphism, a polytope of rank 1 is unique, namely as in Fig. 2.

h
�
��h
@

@@

h
�
��h
@

@@

F1

F0 G0

F−1

Fig. 2. A polytope of rank 1

The diamond condition (P3) and strong connectedness (P4) imply that every automorphism
of P is uniquely determined by its effect on any given flag, and it follows that the number
of automorphisms of P is bounded above by the number of flags of P. If this upper bound is
attained, then Aut(P) acts transitively and hence regularly on flags, and in that case the abstract
n-polytope P is said to be regular.

Next, a group G is called a C-group if it is generated by a set of involutions I = {ρ0, . . . ρn−1}
which satisfy the following, known as the Intersection Condition:

⟨ρi | i ∈ J⟩ ∩ ⟨ρi | i ∈ K⟩ = ⟨ρi | i ∈ J ∩K⟩ for all subsets J and K of {0, 1, . . . , n− 1}. (1)

Note that taking J and K to be singletons implies that the involutions in I must be distinct.
Such a group is called a string C-group, or an n-string group, or simply a string group, if also

(ρiρj)
2 = 1 for |i− j| > 2, (2)

or in other words, if its Coxeter graph is a string (chain). A string group is said to be irreducible
if every two neighbouring vertices ρi−1 and ρi of its Coxeter graph do not commute, that is, if
ρi−1ρi has order greater than 2, for 1 6 i < n.

The following two facts about string groups are obvious:

Lemma 1. The direct product of two string groups is a string group.

Lemma 2. If I = {ρ0, . . . ρn−1} is the generating set for the n-string group G, then for 0 6 r <
s < n, the subgroup generated by {ρr, ρr+1 . . . , ρs} is an (s− r + 1)-string group.

Now let ki be the order of the product of the involutions ρi−1 and ρi, for 1 6 i < n. Then
the ordered set [k1, k2, . . . , kn−1] of natural numbers is called the type of the n-string group G.

The following fundamental lemma gives a strong relationship between string groups and
regular polytopes, as explained for example in [4, Section 2E].
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Lemma 3. The automorphism group Aut(P) of every regular polytope P is a string group.
Moreover, there is a one-to-one correspondence between regular n-polytopes and n-string groups.

The correspondence in Lemma 3 can be realised as follows. Let G = ⟨ρ0, ρ1, . . . ρn−1⟩ be an
n-string group, so that conditions (1), (2) are satisfied, and define Hi = ⟨ρj | j ̸= i⟩ for 0 6 i < n.
We may introduce a partial order on the set of all right cosets of all the subgroups Hi by setting

Hiu 6 Hjv if and only if i 6 j and Hiu ∩Hjv ̸= ∅.

Adding the identity subgroup {1} as a unique minimal element and the group G itself as a unique
maximal element, we obtain a regular polytope P = P(G), with flags

{1} < H0g < H1g < . . . < Hn−1g < G

as g ranges through all elements of G. The automorphism group of P is the group G, which acts
by right multiplication on the elements of P.

In what follows, we denote by Cm the cyclic group of order m, and by Dm the dihedral group
of order 2m.

Example 1. The dihedral group D6 is a 2-string group with type [6], and by Lemma 3 is the
automorphism group of a regular polytope of rank 2 (namely the regular hexagon). But also
D6 is isomorphic to D3 × C2, which is a reducible 3-string group with type [3, 2], and hence
is the automorphism group of a regular polytope of rank 3. This shows that a group can be
the automorphism group of two non-isomorphic regular polytopes, even two such polytopes with
different types and ranks.

Example 1 shows that a dihedral group can be a reducible 3-string group. But also the
following holds.

Lemma 4. A finite dihedral group is not an irreducible n-string group, for any n > 3.

Proof. By Lemma 2 and the fact that every subgroup of a finite dihedral group is either cyclic
or dihedral, it suffices to prove this for n = 3. So let G be the dihedral group Dm = ⟨u, v | u2 =

v2 = (uv)m = 1 ⟩, and suppose (in aiming to prove the contrary) that G is an irreducible 3-string
group with respect to a triple T = {α, β, γ} of three generating involutions such that α and γ

commute. Then m must be even (so that αγ has order 2), and furthermore, in order for αβ
and βγ to have order greater than 2, we see that m > 4, and G has a unique central involution,
namely z = (uv)m/2, and z ̸∈ T .

Now every involution in G = Dm is either equal to z = (uv)m/2, or has the form u(uv)k

where 0 6 k < m. Also it is both well known and easy to prove that the centraliser in Dm of
any non-central involution w is the subgroup ⟨w,wz⟩, of order 4. As z ̸∈ T , we may now suppose
without loss of generality that α = u and γ = uz, and then β = u(uv)k for some k. Clearly
the involution u normalises ⟨u, u(uv)k⟩ = ⟨α, β⟩, and therefore so does uz = γ. Thus ⟨α, β⟩ has
index 1 or 2 in G, and so must be the unique dihedral subgroup of order m or 2m in G. Similarly
u centralises uz = γ, and as βu = (βu)z = βγ , we find that u normalises ⟨β, γ⟩, which must also
be the unique dihedral subgroup of of order m or 2m in G. Hence in particular, ⟨α, β⟩ ∩ ⟨β, γ⟩
contains that dihedral subgroup, contradicting the intersection condition (1).

This completes the proof. 2
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2. Proof of Theorem B

Let the group G and its involutory generators α, β and γ be as in the statement of Theorem B,
with associated Coxeter graph as in Fig. 3, and let L = ⟨α, β⟩ and M = ⟨β, γ⟩, which are dihedral
subgroups of orders 2l and 2m, say.

gg g
α

l m

β γ

Fig. 3

Here (and for later) we list three conditions that may hold in the formulation of Theorem B:
(a) The generating set {α, β, γ} makes G the automorphism group of a regular 3-polytope.
(b) The intersection ⟨αβ⟩ ∩ ⟨βγ⟩ contains a non-trivial normal subgroup of G.
(c) The intersection ⟨α, β⟩ ∩ ⟨β, γ⟩ is an elementary abelian subgroup of order 4.

We can now proceed as follows.
If L ∩ ⟨γ⟩ = {1} and M ∩ ⟨α⟩ = {1} and L ∩M = ⟨β⟩, then G is a 3-string group and so

condition (a) holds.
So now suppose that G is not a 3-string group. Then either L∩⟨γ⟩ ̸= {1}, or M ∩⟨α⟩ ̸= {1},

or L ∩M ̸= ⟨β⟩.
In the first case (where L∩ ⟨γ⟩ ̸= {1}), we find that γ ∈ L = ⟨α, β⟩ and so G = ⟨α, β, γ⟩ = L,

and therefore G itself is dihedral of order 2ℓ. Also M = ⟨β, γ⟩ 6 ⟨α, β⟩ = L = G, and so ⟨βγ⟩
is not only a cyclic normal subgroup of the dihedral subgroup ⟨β, γ⟩ = M , but also a subgroup
of the cyclic normal subgroup ⟨αβ⟩ of the dihedral group L = G, and so itself is a cyclic normal
subgroup of G. Hence the intersection ⟨αβ⟩ ∩ ⟨βγ⟩ contains a non-trivial normal subgroup of G,
so condition (b) holds. The analogous argument holds in the second case (where M ∩⟨α⟩ ̸= {1}),
again showing that condition (b) holds.

This leaves the third case, namely where L ∩M ̸= ⟨β⟩. In this case there exists an element
g ∈ L ∩M distinct from 1 and β, and by the symmetry of occurrences of the involutions α and
γ, we have three sub-cases to consider:

(1) g = (αβ)j = (βγ)k,
(2) g = (αβ)jβ = (βγ)kβ, or
(3) g = (αβ)j = (βγ)kβ, where 1 6 j < l = o(αβ) and 1 6 k < m = o(βγ).

In all three sub-cases, let N = ⟨g⟩.
In sub-case (1), all three of the involutions α, β, and γ invert g, so N = ⟨g⟩ is normal in G,

and then since N lies in both ⟨αβ⟩ and ⟨βγ⟩, condition (b) is satisfied.
In sub-case (2), we find that (αβ)j = gβ = (βγ)k, so gβ is an element of L∩M distinct from

both 1 and β, and therefore sub-case (1) applies, and again condition (b) is satisfied.
Next, consider sub-case (3). Here (αβ)j = g = (βγ)kβ which is an involution, so l = o(αβ)

is even, with j = l/2, and g is the central involution (αβ)l/2 of ⟨α, β⟩ = L, as well as being an
element of ⟨β, γ⟩ = M . Similarly (αβ)jβ = gβ = (βγ)k and therefore m = o(βγ) is even, with
k = m/2, and gβ is the central involution (βγ)m/2 of ⟨β, γ⟩ = M , as well as being an element
of L. Also g ̸= gβ since β is non-trivial. Hence L ∩M contains the two involutions g = (αβ)l/2

and gβ = (βγ)m/2, with the former being central in L and the latter being central in M , and
therefore the subgroup E := ⟨g, β⟩ = ⟨g, gβ⟩ is elementary abelian of order 4.

Now if ⟨g, β⟩ = L ∩M = ⟨α, β⟩ ∩ ⟨β, γ⟩, then the intersection ⟨α, β⟩ ∩ ⟨β, γ⟩ is elementary
abelian of order 4, as in condition (c). On the other hand, if ⟨g, β⟩ ̸= L∩M , then L∩M contains
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an element h that is not in E. In this case h = (αβ)r or h = (αβ)rβ where 1 6 r < n, but
r ̸= j = l/2, and since β ∈ L ∩M , we find that in both cases, L ∩M contains (αβ)r, which
has order greater than 2. In particular, N = ⟨(αβ)r⟩ must be a cyclic normal subgroup of each
of the dihedral subgroups L and M , and hence must be normal in ⟨L,M⟩ = G, but also being
cyclic of order greater than 2, this normal subgroup is contained in the maximal cyclic normal
subgroup of each of L and M , namely ⟨αβ⟩ and ⟨βγ⟩, and hence is contained in their intersection
⟨αβ⟩ ∩ ⟨βγ⟩, as in condition (b).

Finally, if either (b) or (c) holds, then ⟨α, β⟩ ∩ ⟨β, γ⟩ cannot be ⟨β⟩, as the latter has order 2

and is not normal in G, and so (a) cannot hold.
This completes the proof.

3. Some examples associated with Theorems A and B

The following example shows that both conclusions of Theorem A can be satisfied at once.

Example 2. Let F4 be the field of order 4, with t as one of its primitive elements, and then
define three unitriangular matrices α, β and γ over F4 as follows:

α =

 1 0 0

0 1 0

0 1 1

 , β =

 1 0 0

1 1 0

0 0 1

 and γ =

 1 0 0

0 1 0

0 t 1

 .

These three matrices are involutions, and α and γ commute, and also

(αβ)2 =

 1 0 0

0 1 0

1 0 1

 and (βγ)2 =

 1 0 0

0 1 0

t 0 1

 ,

so αβ and βγ both have order 4.
Now let G = ⟨α, β, γ⟩. Then it is easy to check (using Magma [1] for example) that |G| = 32,

with γ ̸∈ ⟨α, β⟩ and α /∈ ⟨β, γ⟩, and that ⟨α, β⟩∩⟨β, γ⟩ = ⟨β⟩. Hence G is a 3-string group of type
[4, 4], making it the automorphism group of a regular 3-polytope. On the other hand, ⟨(αβ)2⟩
and ⟨(βγ)2⟩ are distinct non-trivial normal subgroups of G lying in ⟨αβ⟩ and ⟨βγ⟩ respectively,
and generating the centre of G.

For the rest of this section, let G be a finite group generated by three involutions α, β and γ,
such that α and γ commute, and the orders of the products αβ and βγ are greater than 2.

Below we give three more examples, in each of which at least one of the conditions (b) and
(c) from the proof of Theorem B holds, while condition (a) does not hold.

Our first example shows that condition (c) can hold when conditions (a) and (b) do not.
There are many other (and similar) examples like this one, including some where the group G

has order 60, 84 and 100.

Example 3. Let G be the group of order 36 with presentation

⟨α, β, γ | α2 = β2 = γ2 = (αγ)2 = (αβγβ)2 = αβαγβαγβγ = 1 ⟩,

which has a faithful permutation representation of degree 6 given by α → (1, 2)(3, 4)(5, 6),
β → (2, 3)(4, 5) and γ → (1, 3)(2, 4)(5, 6).
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In the latter representation, αβ → (1, 3, 5, 6, 4, 2) and βγ → (1, 3, 4, 6, 5, 2), so the intersection
of the cyclic subgroups of order 6 they generate is trivial, and hence this group does not satisfy
condition (b). Also the generating triple {α, β, γ} fails the intersection condition for regular
polytopes, because the dihedral subgroups of order 12 generated by {α, β} and {β, γ} intersect
in the elementary abelian subgroup of order 4 generated by β and (αβ)3, with (αβ)3 = β(βγ)3 →
(1, 6)(2, 5)(3, 4). In particular, the latter subgroup of order 4 is the intersection of ⟨α, β⟩ and
⟨β, γ⟩, so condition (c) is satisfied, while (a) does not.

Our second example is the following.

Example 4. Let u and v be involutions that generate a dihedral group G of order 8. Then
G is also generated by the involutions α = u, β = v and γ = vuv, where α and γ commute,
⟨αβ⟩ ∩ ⟨βγ⟩ = ⟨αβ⟩ and ⟨α, β⟩ ∩ ⟨β, γ⟩ = G. Hence condition (b) holds, but (a) and (c) do not.

Finally, our third example shows that (b) and (c) can both hold when (a) does not.

Example 5. Let G = ⟨α, β⟩×⟨δ⟩, where α, β, δ are involutions, and the order of the product αβ
is 4. Then G = ⟨α, β, γ⟩ where γ = αδ, and αγ = γα and (βγ)2 = (βαδ)2 = (βα)2δ2 = (αβ)2.
Hence G is generated by three involutions α, β, and γ such that α and γ commute and the
orders of the products αβ and βγ are greater than 2. Moreover, the subgroup ⟨(αβ)2⟩ lies in the
intersection ⟨αβ⟩∩ ⟨βγ⟩ and is normal in G. On the other hand, (αβ)2, β ∈ ⟨α, β⟩∩ ⟨β, γ⟩, so the
intersection ⟨α, β⟩ ∩ ⟨β, γ⟩ is an elementary abelian subgroup of order 4, and is not equal to ⟨β⟩.

4. Some consequences of Theorem B

Corollary 1. Let G be a finite group generated by three involutions α, β and γ, such that α and
γ commute, and the orders of αβ and βγ are greater than 2, with at least one of them being an
odd prime number p. Then exactly one of the following two conditions holds:

(a) The generating set {α, β, γ} makes G the automorphism group of a regular 3-polytope.
(b) The group G is dihedral, and the order of one of αβ and βγ is even (and the other is p).

Proof. Without loss of generality, we may assume that the order of αβ is p, and now suppose
that condition (a) does not hold. Then by Theorem B either G contains a non-trivial normal
subgroup lying in the intersection ⟨αβ⟩ ∩ ⟨βγ⟩, or it contains an elementary abelian subgroup of
order 4 lying in the intersection L ∩M , where L = ⟨α, β⟩ and M = ⟨β, γ⟩. The latter case is
impossible, since L has twice odd order (namely 2p), so the former holds. Thus ⟨βγ⟩ contains a
non-trivial normal subgroup of ⟨αβ⟩, and then since αβ has odd prime order p, it follows that M
contains L, so G = ⟨L,M⟩ = M , making G dihedral. But also α and γ are distinct commuting
involutions in G, so M = G must have twice even order, and therefore βγ must have even order.

Finally, if G is a dihedral group, then since we have assumed that the orders of αβ and βγ

are greater than 2, it follows from Lemma 4 that the generating set {α, β, γ} cannot make G the
automorphism group of a regular 3-polytope, and this completes the proof. 2

The next corollary is an immediate consequence of the one above.

Corollary 2. Let G be a finite group generated by three involutions α, β and γ, such that α and
γ commute, and the orders of αβ and βγ are odd integers greater than 2. If at least one of those
orders is prime, then the generating set {α, β, γ} makes G the automorphism group of a regular
3-polytope.
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Аннотация. Доказано, что если конечная группа G порождается тремя инволюциями α, β и γ,
такими что α и γ перестановочны, а порядки произведений αβ и βγ больше 2, тогда порождающее
множество {α, β, γ} делает G группой автоморфизмов регулярного 3-политопа тогда и только тогда,
когда она не содержит нетривиальных нормальных подгрупп, лежащих в пересечении ⟨αβ⟩ ∩ ⟨βγ⟩,
и пересечение ⟨α, β⟩ ∩ ⟨β, γ⟩ не является элементарной абелевой подгруппой порядка 4. Данный
критерий дополняет один результат М. Кондера и Д. Оливерос (J. Combin. Theory Ser. A, 2013,
v. 120, no. 6, pp. 1291–1304).

Ключевые слова: регулярные политопы, струнные C-группы, порождающие тройки инволю-
ций.
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Abstract. We introduce novel families of recursive kernel estimators for the regression function of
a real response variable given a random variable that takes values in a semimetric space. Then, we
investigate the rate of the almost complete convergence, which is stronger than almost sure convergence.
A simulation study is conducted to illustrate the performance of the proposed recursive estimators.
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Introduction

The nonparametric estimation of regression function for functional data has garnered sig-
nificant attention in recent years due to its applications in diverse fields, including finance,
biometrics, medicine, econometrics, and environmental science. Functional data encompasses
information that can be represented as curves, surfaces, or images, rather than traditional scalar
values. This complexity necessitates the development of advanced estimation techniques to study
the underlying relationships effectively.

One promising nonparametric approach is the use of kernel methods, which provide a flexible
framework for estimating regression function. The pioneer work in the nonparametric setting is
found in the monograph of [7], where the authors established pointwise almost-complete (a.co.)
convergence for various kernel-type estimators. However, while these classical kernel methods are
effective, they can be computationally intensive, particularly when dealing with large datasets.
In contrast, recursive estimators, as highlighted by [2] and [8], offer significant advantages in
computation time and memory efficiency, particularly for large sequential datasets. Unlike the
classical kernel estimator defined in [7], these methods allow for iterative updates without the
need for full recalculations, making them both practical and easy to implement. This efficiency
makes recursive estimators especially suitable for applications like weather forecasting, where the
sample size is not fixed in advance.
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The first results relating to the recursive kernel estimators of the regression function with
functional explanatory variables were obtained by [4], where the author adapted the families of
recursive estimators studied in [3] for multivariate data to functional data. These families, in
turn, generalized previous research by [1, 9, 10], and [6].

In 2014, [4] investigated the mean square error, almost sure convergence with rates, and a
central limit theorem for a family of recursive kernel estimates in functional regression when
the observations are independent and identically distributed, while [5] extended these results to
dependent functional data.

It is clear from the Borel–Cantelli lemma that almost complete convergence is stronger than
almost sure convergence. Therefore, we will focus on studying this mode of convergence, which
we believe has not been previously explored. More precisely, we first present novel families of
recursive kernel estimators for functional regression in Section 2 of our paper. Then, in Section 3,
we establish the rate of their almost complete convergence. Finally, the performance and good
behavior of the proposed estimators are illustrated through a simulation study.

1. Novel families recursive kernel regression estimators

Consider n pairs of random variables (Xi, Yi)16i6n independent and identically distributed
as the pair (X,Y ) which is valued in F × R, where F is an infinite-dimensional space equipped
with a semi-metric d.

Using the same idea as in [4], we construct a family of recursive estimators indexed by a
smoothing parameter ℓ ∈ [0, 1] defined as follows

r̂[ℓ]n (x) =

n∑
i=1

1
ψℓ

x(hi)
K
(
d(x,Xi)
hi

)
Yi

n∑
i=1

1
ψℓ

x(hi)
K
(
d(x,Xi)
hi

) ,

with
ψx(hi) = E

[
K

(
d(x,Xi)

hi

)]
,

where the function K is a kernel and hn is a given positive sequence decreasing to 0. Notice that
the parameter ℓ is used to obtain a more general recursive estimator.

This family of estimators is a recursive modification of the classical regression estimator
introduced by [7] and can be computed recursively through

r̂
[ℓ]
n+1(x) =

(
n∑
i=1

ψ1−ℓ
x (hi)

)
r̂
[ℓ]
n,1(x) +

(
n+1∑
i=1

ψ1−ℓ
x (hi)

)
Yn+1K

[ℓ]
n+1(x)(

n∑
i=1

ψ1−ℓ
x (hi)

)
r̂
[ℓ]
n,0(x) +

(
n+1∑
i=1

ψ1−ℓ
x (hi)

)
K

[ℓ]
n+1(x)

,

with

r̂[ℓ]n,s(x) =
1(

n∑
i=1

ψ1−ℓ
x (hi)

) n∑
i=1

1

ψℓx(hi)
K

(
d(x,Xi)

hi

)
Y si , s ∈ {0, 1}

and
K

[ℓ]
i (x) =

1

ψℓx(hi)
n∑
i=1

ψ1−ℓ
x (hi)

K

(
d(x,Xi)

hi

)
.
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2. Main results

In this section, we investigate the almost complete convergence of the estimator r̂[ℓ]n (x) for a
fixed x ∈ F , under the following assumptions.

(H1) ∀r > 0, Φx(r) := P (d(x,Xi) 6 r) > 0.

(H2) There exists ∃b > 0 such that for all x′ ∈ B(x, h),

|r(x)− r(x′)| 6 Cxdb (x, x′) ,

where Cx is a positive constant depending on x.

(H3) The bandwidth hn satisfies

lim
n→∞

hn = 0, and lim
n→∞

√
log n

nΦx(hn)
= 0.

(H4) K is a nonnegative bounded function with compact support [0, 1].

(H5) ∀m > 2, σm : x→ E (|Yi|m | Xi) is a continuous operator at x.

(H6) An,ℓ :=
1

n

n∑
i=1

(
hi
hn

)b(
Φx(hi)

Φx(hn)

)1−ℓ

→ Aℓ <∞, as n→ ∞.

Assumptions (H1)–(H5) and are standard in nonparametric regression. The assumptions
(H1)–(H3) and (H5) were utilized by [7] and align with those commonly employed in func-
tional settings, while, the assumption (H4) was used by [4]. Furthermore, the condition (H6) is
specific to the recursive problem and is consistent with those used in functional cases.

If X is a fractal process, then the small ball probabilities are of the form Φx(hn) ∼ Cxh
κ
n,

where Cx and κ are positive constants. The choice of bandwidth hn = An−δ with A > 0 and

0 < δ < 1 implies Φx(hn) = Cxn
−δκ, Cx > 0. If b + κ(1 − ℓ) < 1/δ, then

n∑
i=1

i−δ(b+κ(1−ℓ)) ∼

n1−b+κ(1−ℓ)

1− b+ κ(1− ℓ)
. Thus, the condition (H6) holds when Al =

1

1− b+ κ(1− ℓ)
. This choice of hn

also satisfies the condition (H3), see [4] for more details.

Theorem 2.1. Under hypotheses (H1)–(H6), we have

r̂[ℓ]n (x)− r (x) = O
(
hbn
)
+Oa.co.

(√
log n

nΦx (hn)

)
. (1)

Notice that this rate of convergence is the same as that of [7] (classical kernel estimator) as
well as that of [4] (recurssive estimator).

Proof. The proof of this Theorem is based on the following decomposition

r̂[ℓ]n (x)−r(x) = 1

r̂0(x)

[(
r̂
[ℓ]
n,1(x)− E

(
r̂
[ℓ]
n,1(x)

))
−
(
r(x)− E

(
r̂
[ℓ]
n,1(x)

))]
− r(x)

r̂
[ℓ]
n,0(x)

[
r̂
[ℓ]
n,0(x)− 1

]
,

in addition of the following Lemmas, which study eatch term separately. �

Lemma 2.1. Assume that hypotheses (H1)–(H5) hold, then

r̂
[ℓ]
n,1 (x)− E

(
r̂
[ℓ]
n,1 (x)

)
= Oa.co.

(√
log n

nΦx(hn)

)
.
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Proof.

r̂1 (x)− E (r̂1 (x)) =
1

n∑
i=1

ψ1−ℓ
x (hi)

n∑
i=1

1

ψℓx(hi)

[
K

(
d(x,Xi)

hi

)
Yi − E

(
K

(
d(x,Xi)

hi

)
Yi

)]

:=

n∑
i=1

Zi,

where
Zi =

1

ψℓx(hi)
n∑
i=1

ψ1−ℓ
x (hi)

[
K

(
d(x,Xi)

hi

)
Yi − E

(
K

(
d(x,Xi)

hi

)
Yi

)]
.

To apply an exponential inequality, we concentrate on the absolute moments of order m of the
random variable Zi, we have

|E (Zmi )| = 1

ψmℓx (hi)

(
n∑
i=1

ψ1−ℓ
x (hi)

)mE ∣∣∣∣[K (d(x,Xi)

hi

)
Yi − E

(
K

(
d(x,Xi)

hi

)
Yi

)]m∣∣∣∣ 6
6 1

ψmℓx (hi)

(
n∑
i=1

ψ1−ℓ
x (hi)

)m m∑
k=0

CkmE

∣∣∣∣Kk

(
d(x,Xi)

hi

)
Y ki

∣∣∣∣E ∣∣∣∣K (d(x,Xi)

hi

)
Yi

∣∣∣∣m−k

6

6 1

ψmℓx (hi)

(
n∑
i=1

ψ1−ℓ
x (hi)

)m m∑
k=0

CkmE

∣∣∣∣Kk

(
d(x,Xi)

hi

)
σk(Xi)

∣∣∣∣E ∣∣∣∣K (d(x,Xi)

hi

)
r(Xi)

∣∣∣∣m−k

,

the last inequality is derived by conditioning on Xi. Additionally, the condition (H2) implies that
r(Xi) = r(x) + o(1), while σk(Xi) = σk(x) + o(1) follows once (H5) is verified. This, combined
with

C ′Φx(hi) 6 ψx(hi) 6 CΦx(hi), (2)

enables us to write

|E (Zmi )| 6 C

Φmℓx (hi)

(
n∑
i=1

Φ1−ℓ
x (hi)

)m m∑
k=0

CkmΦ
1+m−k
x (hi) 6

6 m!

2

Φx(hi)

nΦ2
x(hn)

(
C

nΦx(hn)

)m−2

.

Finally, it suffices to apply Corollary A.7 in [7] with a2i =
Φx(hi)

nΦ2
x(hn)

, b =
C

nΦx(hn)
, (An)2 =

n∑
i=1

a2i

and ε = ε0
√
log n, ε0 > 0 to obtain

P

(∣∣∣∣∣
n∑
i=1

Zi

∣∣∣∣∣ > εAn

)
6 2 exp

 −ε2

2
(
1 + εb

An

)
 6

6 2 exp

 −ε20 log n

2
(
1 + ε0

√
logn

nΦx(hn)

)
 6
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6 2 exp
{
−Cε20 log n

}
6

6 2n−Cε
2
0 ,

the last result coming the fact that (An)
2 >

1

nΦx (hn)
. Thus, it exists some real number ξ > 0

such that

P

(∣∣∣r̂[ℓ]n,1 (x)− E
(
r̂
[ℓ]
n,1 (x)

)∣∣∣ > ε0

√
log n

nΦx (hn)

)
6 P

(∣∣∣∣∣
n∑
i=1

Zi

∣∣∣∣∣ > εAn

)
6 2n−1−ξ.

�

Lemma 2.2. Assume that hypotheses (H1)–(H4) hold, then

r̂
[ℓ]
n,0 (x)− E

(
r̂
[ℓ]
n,0 (x)

)
= Oa.co.

(√
log n

nΦx (hn)

)
.

Proof. This result can be derived directly from Lemma 2.1 by taking Yi = 1. �

Lemma 2.3. If assumptions (H1)–(H4) and (H6) are satisfied, we have

E
(
r̂
[ℓ]
n,1 (x)

)
− r (x) = O

(
hbn
)
.

Proof. We have

E
(
r̂
[ℓ]
n,1 (x)

)
=

1(
n∑
i=1

ψ1−ℓ
x (hi)

) n∑
i=1

1

ψℓx(hi)
E

[
K

(
d(x,Xi)

hi

)
Yi

]
=

=
1(

n∑
i=1

ψ1−ℓ
x (hi)

) n∑
i=1

1

ψℓx(hi)
E

[
K

(
d(x,Xi)

hi

)
E (Yi | Xi)

]
=

=
1(

n∑
i=1

ψ1−ℓ
x (hi)

) n∑
i=1

1

ψℓx(hi)
E

[
K

(
d(x,Xi)

hi

)
r(Xi)

]
.

The relation (2) and the condition (H2) give

1

hbn

∣∣∣E (r̂[ℓ]n,1 (x))− r(x)
∣∣∣ =

1(
hbn

n∑
i=1

ψ1−ℓ
x (hi)

) n∑
i=1

1

ψℓx(hi)
E

[
K

(
d(x,Xi)

hi

)
|r(Xi)− r(x)|

]
6

6 C

hbn

(
n∑
i=1

Φ1−ℓ
x (hi)

) n∑
i=1

1

Φℓx(hi)
E

[
K

(
d(x,Xi)

hi

)
|r(Xi)− r(x)|

]
6

6 C
1

n

n∑
i=1

(
hi
hn

)b(
Φx(hi)

Φx(hn)

)1−ℓ

6

6 CAn,ℓ,

the result follows from the condition (H6). �
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3. Simulation study

In this section, we present two examples of simulation to investigate the performance of our
studied estimator (RRE) for finite sample.

For the computation of the our estimator (RRE) and the classical kernel regresion estimator
(RKE) defined in [7] by

r̃n(x) =

n∑
i=1

K
(
d(x,Xi)
hn

)
Yi

n∑
i=1

K
(
d(x,Xi)
hn

) , (3)

we use the quadratic kernel K(x) =
3

2
(1 − x2)1[0,1](x) and the smoothing bandwith hi =

Ci−
1
5 , C > 0 and 1 6 i 6 n. Take into account of the smoothness of the curves

Xi(t), we choose the semi-metric based on the derivative (for the first example in sim-
ulation study) and the semi-metric PCA (for the second example in simulation study)
described in [7] (see routines "semimetric.pca"), see the website https://www.math.univ-
toulouse.fr/∼ferraty/SOFTWARES/NPFDA/npfda-routinesR.txt.

We consider the following nonparametric functional regression model

Y = r(X) + ϵ

where X and ϵ are independent. Notice that the conditional mean function on x will coincide
and will be equal to r(x).

Example 1. The functional covariate X(t) is defined, for t ∈ [0, 1] by

X(t) = A (2− cos(πtW )) + (1−A) cos(πtW ),

where W is a centered random variable normally distributed with a variance equal to 1 (W  
N (0, 1)) and A is a random variable having a Bernoulli distribution with parameter p = 0.5.
The curves are discretized on the same grid which is composed of 100-equidistant values in [0, 1]

in Fig. 1.
The error ϵ N (0, 0.1) and

r(X) =
1

4

∫ 1

0

(X ′(t))
2
dt.

We present another example to ensure a more effective decision.

Example 2. The functional covariate X(t) is defined, for t ∈ [0, 1] by

X(t) = a sin [4 (b− t)] + b+ ηt,

where a N (5, 2), b N (0, 0.1) and ηt  N (0, 0.2). See Fig. 2 for a sample of these curves.
The error ϵ N (0, 0.01) and

r(X) =

∫ 1

0

dt

1 + |X(t)|
.

In order to illustrate the performance of our estimator, we proceed with this algorithm.
• Step 1. For a sample sizes, we generate n i.i.d. ϵi, the covariable Xi and we compute Yi.
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Fig. 1. A sample of 100 curves representing a realization of the functional random variable X
for the second example

Fig. 2. A sample of 100 curves representing a realization of the functional random variable X
for the first example

Furthermore, we split our data into two subsets.
- (Xi, Yi)16i6n1

: The learning sample used to build the estimators, where n1 = 2n/3.
- (Xi, Yi)n1+16i6n: The testing sample used to make a comparison.
• Step 2. We calculate the RRE estimator r̂[ℓ]n (Xi) and RKE estimator r̃n(Xi) by using the
learning sample.
• Step 3. We evaluate the prediction error given by

EMSE :=
1

n− n1

n∑
i=n1+1

(
Ŷi − r(Xi)

)2
.

where Ŷi is the estimated values of both methods (RRE and RKE).
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3.1. Effect of the parameter ℓ

We examine the impact of the parameter ℓ while keeping the sample size fixed at n = 600.
The results are provided in Tab. 1, for both examples.

Table 1. Comparison of EMSE errors computed on 600 simulations for different values of ℓ for
both examples

ℓ 0 0.25 0.5 0.75 1
First example EMSE 0.0449 0.0459 0.047 0.0482 0.0470

Second example EMSE 8.7249 8.7540 8.7780 8.8257 8.8661

We observed that the EMSE values are close, indicating that the parameter ℓ does not
significantly affect the quality of the recursive estimator.

3.2. Effect of the sample size

To assess the effect of the sample size n, we first plot the true values (r(Xi)) for all i (n1+1 6
i 6 n) against the predicted values from both estimators (RRE and RKE), with each estimator
displayed in a separate graph. This is illustrated in Figs. 3–10.

Fig. 3. The RRE and RKE estimators of the regression when n = 200 for the first example

Then, for more precisely, we evaluate the prediction error for different values n. The results
are presented in Tab. 2, for both examples.

The results indicate that the non-recursive estimator is not significantly better than our
estimator in terms of MSE when ℓ = 0. However, for ℓ = 0.5 and ℓ = 1, the MSE values of
both the recursive and classical estimators are very close, making it challenging to differentiate
between the two. Finally, without surprise, we observe a decrease in MSE values with an increase
in sample size n.
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Fig. 4. The RRE and RKE estimators of the regression when n = 400 for the first example

Fig. 5. The RRE and RKE estimators of the regression when n = 600 for the first example

3.3. Computational time

This subsection emphasizes a key advantage of the recursive estimator compared to classical
one defined by (3) in terms of the computational time required in seconds to make predictions.
The obtained results are given in Tab. 3, for both examples.

As anticipated, the computational time increases with the sample size. Furthermore, there are
notable differences in computational time between the two estimators. Specifically, the recursive
estimator requires significantly less computation time compared to the classical kernel estimator.
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Fig. 6. The RRE and RKE estimators of the regression when n = 1000 for the first example

Fig. 7. The RRE and RKE estimators of the regression when n = 200 for the second example

Conclusion

In this study, we presented a recursive estimator for the regression function with functional
explanatory variables. Our analysis established the almost complete convergence of the proposed
estimator.

The simulation study provided numerical support for our theoretical findings, illustrating
the estimator’s effective performance. The results indicate that the recursive approach not only
maintains desirable statistical properties but also offers practical advantages in computational
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Fig. 8. The RRE and RKE estimators of the regression when n = 400 for the second example

Fig. 9. The RRE and RKE estimators of the regression when n = 600 for the second example

efficiency, making it suitable for applications in functional data analysis.
Overall, this work contributes to the growing of literature on nonparametric estimation in

functional contexts and opens avenues for further research, including extensions to dependent
functional data, exploration of other convergence modes, and extending our results to the case
of dependent data.

The authors wish to extend their heartfelt thanks to the editor and reviewers for their insightful
suggestions and constructive comments.
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Fig. 10. The RRE and RKE estimators of the regression when n = 1000 for the second example

Table 2. Comparison of EMSE errors computed for different values of n for both examples

n 200 400 600 1000
First exmaple RRE (l=0) 0.0678 0.0592 0.0431 0.0393

RRE (l=0.5) 0.0720 0.0596 0.0438 0.0404
RRE (l=1) 0.0765 0.0603 0.0450 0.0417

RKE 0.0664 0.0591 0.0430 0.0385
Second exmaple RRE (l=0) 10.10019 10.0010 8.3191 7.4964

RRE (l=0.5) 10.1012 10.0005 8.8541 7.3870
RRE (l=1) 10.1015 10.0007 8.8655 7.4084

RKE 10.1014 10.0006 8.3091 7.4852

Table 3. Comparison of the time computation of RRE estimator and RKE one according to the
different sample size n for both examples

n 200 400 600 1000
First exmaple RRE (l=0) 0.6523 0.9206 1.3696 3.4398

RRE (l=0.5) 0.4639 0.7554 1.0475 3.3003
RRE (l=1) 0.46116 0.8818 1.0158 3.2272

RKE 2.8572 9.9402 18.7379 152.7180
Second exmaple RRE (l=0) 1.7425 3.1703 7.6563 25.1040

RRE (l=0.5) 1.6280 3.3831 7.5189 25.0967
RRE (l=1) 1.6347 3.1942 7.5855 25.0803

RKE 4.8130 5.1873 19.9055 161.8191
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Почти полная сходимость оценки функциональной
регрессии: рекурсивный непараметрический подход
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Константин 1, Алжир
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Аннотация. Мы вводим новые семейства рекурсивных ядерных оценок для функции регрессии
действительной переменной отклика, заданной случайной величиной, которая принимает значения
в полуметрическом пространстве. Затем мы исследуем скорость почти полной сходимости, которая
сильнее, чем почти надежная сходимость. Проводится имитационное исследование для иллюстра-
ции производительности предлагаемых рекурсивных оценок.

Ключевые слова: почти полная сходимость, функциональные данные, ядерная оценка, рекур-
сивная оценка, функция регрессии.
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Abstract. In this paper, we explore the evaluation of the dark energy parameter within a spatially
homogeneous and anisotropic Bianchi type-V I0 spacetime, incorporating Lyra geometry. To obtain a
determinate solution, we solve the field equations using the linearly varying deceleration parameter pro-
posed by Akarsu and Dereli (2012). We analyze two scenarios involving interacting and non-interacting
fluids (barotropic and dark energy) and derive general results for each case. The physical implications
of these findings are also discussed.
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1. Introduction and preliminaries
In recent years, there has been significant interest in cosmological models involving dark

energy within the framework of general relativity. This interest is driven by the fact that our
observable universe is undergoing accelerated expansion, as confirmed by various cosmological
observations such as Type Ia supernovae [1–7], cosmic microwave background (CMB) anisotropy
[8, 9], and large-scale structure [10]. These observations strongly suggest that dark energy is
the dominant component in the present universe, driving its accelerated expansion. Based on
these findings, cosmologists have widely accepted the concept of dark energy as a fluid with
negative pressure, comprising approximately 70% of the energy content of the current universe.
This negative pressure is thought to be responsible for the observed cosmic acceleration due to its
repulsive gravitational effects. To explain the nature of dark energy and fit the observational data,
many candidates have been proposed, such as the cosmological constant, tachyon, quintessence,
phantom, and others. For instance, quintessence models, which involve scalar fields, lead to a
time-dependent equation of state (EoS) parameter, ω =

p

ρ
, where p is the fluid pressure and ρ is

the energy density [11]. Unlike the cosmological constant, this parameter in quintessence models
is not necessarily constant. Various researchers, including Ray et al. (2010) [12], Akarsu and
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Kilinc (2010a, b) [13,14], Yadav et al. (2011) [15], Pradhan et al. (2010) [16], Yadav (2011) [17],
and Amirhashchi et al. (2011c) [18], have investigated different aspects of dark energy models
in general relativity with a variable EoS parameter.

Several modifications to Riemannian geometry have been proposed in attempts to unify gravi-
tation, the electromagnetic field, and other fundamental interactions in the universe. Weyl(1918)
[19] made one such attempt by trying to unify gravitation and electromagnetism within a single
spacetime geometry. However, Weyl’s theory faced criticism due to its reliance on the non-
integrability of length transfer. Later, Lyra (1951) [20] introduced a further modification to
Riemannian geometry by incorporating a gauge function into a structureless manifold, thereby
eliminating the issue of non-integrability in length transfer. This modification naturally gave rise
to a displacement vector. Building on Lyra’s work, Sen(1957) [21] and Sen and Dunn(1971) [22]
developed a new scalar-tensor theory of gravitation and formulated an analog of the Einstein field
equations based on Lyra’s geometry. Halford(1970) [23] noted that the constant vector displace-
ment field ϕi in Lyra’s geometry functions similarly to the cosmological constant Λin conventional
general relativity. Furthermore, Halford(1973) [24] demonstrated that the scalar-tensor theory
derived from Lyra’s geometry yields predictions consistent with observational limits, matching
the results of Einstein’s theory.

Cosmological observations of the universe’s expansion history suggest that the current uni-
verse is not only expanding but also undergoing accelerated expansion. This late-time accel-
eration has been confirmed by high-redshift supernova experiments (Riess et al. (1998); Perl-
mutter et al. (1999); Bennett et al. (2003) [25–27]. Additionally, observations of the cosmic
microwave background radiation (Spergrl, D.N et al. (2003); Oli,S (2012)) [28–29] and large-
scale structure [30] offer indirect evidence supporting this late-time acceleration. The simplest
model describing the observed universe is well represented by the Friedmann–Robertson–Walker
(FRW) models, which are both spatially homogeneous and isotropic. These models provide a
good global approximation of the present-day universe. However, on smaller scales, the universe
is neither perfectly homogeneous nor isotropic. Theoretical arguments (Chimento,L.P (2004);
Misner,C.n (1968) [31,32] and recent experimental data on cosmic microwave background radia-
tion anisotropies suggest the existence of an anisotropic phase that gradually transitions toward
isotropy [33]. Bianchi types I–IX cosmological models are significant because they are homoge-
neous yet anisotropic, allowing the study of the universe’s process of isotropization over time.
Among these, Bianchi type-VI0 spacetime holds special interest in anisotropic cosmology. [34]
highlighted that Bianchi type-V I0 models provide a better explanation for certain cosmological
issues, such as primordial helium abundance, and exhibit isotropization in a unique manner. San-
thikumar et al. (2017) [35] discussed an accelerating anisotropic model to explain the universe’s
expansion, while [36] explored the accelerated expansion of the universe within the framework
of Lyra geometry

To determine the scale factor a(t), the Hubble parameter (H) and the dimensionless decel-
eration parameter (q) are crucial for understanding the universe’s dynamic history. The time
dependence of the cosmic scale factor a(t) is particularly significant, as both H and q are defined
in terms of this scale factor. The study of cosmological models with a time-varying deceleration
parameter (DP) has gained significant attention since the discovery of the universe’s accelerating
expansion, as confirmed by two independent research teams (Perlmutter et al. 1998; Riess et al.
1998, 2001) [37–39]. The variable DP plays a vital role in measuring the universe’s expansion
rate. In this context, several researchers have explored cosmological models assuming a constant
DP law, q = m− 1, as suggested by Berman (1983) [40]. Many others have investigated models
with a time-dependent DP, following the approach of Akarsu and Dereli ( 2012) [41] and Misra et
al. (2012, 2013a, 2013b, 2016a) [42–45], along with physically suitable relations with the cosmic
scale factor. Akarsu and Dereli (2012) [41] proposed a linearly varying deceleration parameter
(LVDP) law, q = −kt +m − 1 where k > 0 is a constant with the dimension of inverse time,
and m > 1 is a dimensionless constant. When k = 0, the LVDP reduces to Berman’s law. This
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LVDP law enables the generalization of cosmological solutions. According to this framework, the
universe’s expansion behaviour can be classified based on the value of q : it exhibits accelerated
expansion for q < −1, an exponential expansion phase for −1 6 q < 0, constant rate expansion
for q = 0, and a power-law accelerating expansion phase for 1 < q < 0. It is also noted that the
super-exponential expansion represents a rapid expansion rate when q < −1 under the LVDP
law with a suitable ansatz. This understanding of the deceleration parameter helps to provide a
clearer picture of the universe’s expansion dynamics over time.

Liang et al. (2000) [46] investigated the cosmological evolution of a two-field dilation model of
dark energy. [47] studied viscous dark tachyon cosmology in both interacting and non-interacting
scenarios within a non-flat FRW universe. [48] explored a two-fluid scenario for dark energy
models, demonstrating that such interactions could help alleviate the coincidence problem. UM
[49] examined a Kantowski–Sachs two-fluid radiating cosmological model in Brans–Dicke theory
of gravitation. Syed Sabanam et al. (2023) [50] investigated a two-fluid higher-dimensional FRW
cosmological model to revisit cosmological tests of Hubble parameter parametrization within
Lyra geometry. Praveen Kumar et al. (2022) [51] studied a two-fluid cosmological model in a
(2+1)-dimensional Saez–Ballester scalar-tensor theory of gravitation.

Motivated by these studies, we investigate the evolution of the dark energy parameter in an
FRW cosmological model filled with two fluids (barotropic fluid and dark energy) within the
framework of the scalar-tensor theory of gravitation proposed by Saez and Ballester. We analyze
both interacting and non-interacting scenarios and discuss the physical aspects of the two-fluid
model. This chapter is organized as follows: Section 2 is dedicated to deriving the field equations
using the spatially homogeneous and anisotropic Bianchi type-V I0 metric in the presence of a
barotropic fluid and dark energy within the framework of Lyra geometry. Section 3 focuses
on the case of non-interacting two fluids. Section 4 examines the scenario of interacting two
fluids. Section 5 provides a detailed discussion of the behaviour of the physical and kinematical
parameters in the developed model. Section 6 presents the conclusion.

2. Metric and field equation
We consider spatially homogeneous and anisotropic Bianchi type-V I0 space time in the form

ds2 = −dt2 +A2dx2 +B2e2xdy + C2e−2xdz2 (1)

Einstein modified field equation in normal gauge for Lyra’s manifold

Rji −
1

2
gjiR+

3

2
ϕiϕ

j − 3

4
ϕkϕ

kgki = −T ji (2)

Where is the displacement vector defined as ϕi = (0, 0, 0, β (t)) and other symbols have their
usual meaning as in Riemannian geometry. Also , we have

T ij;j = 0 (3)

which is a consequence of the field equation (1) and (2). T ij;j is the two fluid energy momentum
tensor consisting of dark energy and barotropic fluid and comma and semicolon denote partial
and covariant differentiation respectively.

For the metric (1) the field equations (2)–(3) are

B̈

B
+
C̈

C
+
ḂĊ

BC
+

1

A2
+

3

4
β2 = −ptotal (4)

Ä

A
+
C̈

C
+
ȦĊ

AC
− 1

A2
+

3

2
β2 = −ptotal (5)
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Ä

A
+
B̈

B
+
ȦḂ

AB
− 1

A2
+

3

4
β2 = −ptotal (6)

ȦḂ

AB
+
ḂĊ

BC
+
ȦĊ

AC
− 1

A2
− 3

4
β2 = ρtotal (7)

Ḃ

B
− Ċ

C
= 0 (8)

In a co-moving coordinate system the field equations (2)–(3) for the metric (1), in the two
fluid scenario, lead to

Eq. (3) leads to

ρ̇total + (ρtotal + ptotal)

(
Ȧ

A
+
Ḃ

B
+
Ċ

C

)
= ρ̇total +

ȧ

a
(ρtotal + ptotal) = 0 (9)

where
Ȧ

A
+
Ḃ

B
+
Ċ

C
=
ȧ

a
= H and

ptotal = pm + pd, ρtotal = ρm + ρd (10)

Here pmandρm are pressure and energy density of barotropic fluid and pDandρD are pressure
and energy density of dark fluid respectively.

Also, The equation of state (EoS) parameters of the barotropic fluid and dark fluid are given
by

ωm =
pm
ρm

and ωD =
pD
ρD

(11)

The Conservation of LHS of equation (2) leads to(
Rji −

1

2
gjiR

)
+

(
3

2
ϕiϕ

j

)
;j

− 3

4

(
ϕkϕ

kgji

)
;j
= 0 (12)

3

2
ββ̇ +

3

2
β2

(
Ȧ

A
+
Ḃ

B
+
Ċ

C

)
=

3

2
ββ̇ +

3

2
β2

(
ȧ

a

)
= 0 (13)

In the following section we consider two cases: non – interacting two fluid model
and interacting fluid model. Solving the field equations in both the cases we determine
a (t) , ρm, pm, ρD, pD, ωmandωD then study their physical behavior.

3. Non – interactin two – fluid model

Here we consider that two fluid (barotropic fluid and dark energy) which do not interact with
each other. Hence the general form of conservation equation (9) leads us to write the conservation
equations for the dark fluid and barotropic fluid separately as

ρ̇m +
ȧ

a
(ρm + pm) = 0 and ρ̇D +

ȧ

a
(ρD + pD) = 0 (14)

We can observe that there is a structural difference between equations in Eq. (14). In view
of the fact that EoS parameter of barotropic fluid ωm is constant (Akarsu and Kilinc 2010) [52]
while ωD is allowed to be function of time, integration of equation (14) leads to

ρm = ρ0a
−3(1+ωm) and pm = ωmρ0a

−3(1+ωm) (15)
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Using equation (14) in the equations (4)–(7), we first obtain pDandρD, in terms of scale factor
a(t), as

ρD =
(
n2 + 2n

)( Ȧ
A

)2

− 1

A2
− 3

4
β2−ρm and pD = −

[
2
B̈

B
+

(
Ḃ

B

)2

+
1

A2
+

3

4
β2

]
+pm (16)

The spatial volume, The average scale factor, The Hubble’s parameter, The scalar expansion,
The shear scalar for the metric (1) are given by

V = ABC (17)

a = (ABC)
1
3 (18)

H =
ȧ

a
=

1

3

(
Ȧ

A
+
Ḃ

B
+
Ċ

C

)
(19)

θ = 2
Ȧ

A
+
Ḃ

B
(20)

σ2 =
1

3

(
Ȧ

A
− Ḃ

B

)2

(21)

The field equations (4)–(8) are highly non-linear in nature and therefore we require the
following plausible physical conditions:

1. By Integrating Es. (8) we have,
B = lC (22)

Without loss of generality we shall consider l = 1
Hence,

B = C (23)

2. The shear scalar σ is proportional to scalar expansion θ, so that we can take (Collins et
al.1980)[53]

A = Bn (24)

where n ̸=1 is a constant, it takes care of the anisotropic nature of the model.

3. Akarusu and Dereil(2012) [41] proposed LVDP law given as

q = −kt+m− 1 (25)

Here k > 0 is constant with the dimension of time inverse and m > 0 is dimension free
constant. Solving Equation (25) we have different solutions for the scale factor for LVDP law is
given by

a = a1e
2
m tanh−1( k

m t−1) fork > 0andm > 1 (26)

a = c(mt+ d)
1
m fork = 0andm > 1 (27)

a = cedt fork = 0andm = 0 (28)

Therefore, we consider eq. (26) for the scale factor a = a1e
2
m tanh−1( k

m t−1)for LVDP law is
The Hubble’s parameter

H =
ȧ

a
=

−2k[
(kt)

2 − 2km
] and

ä

a
= 4k2m

2k2 [t+ 2]− 2km[
(kt)

2 − 2kmt
]2
 (29)
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A = a
3

2n+1 =
[
a1e

2
m tanh−1( k

m t−1)
] 3

2n+1

= (a1)
3

2n+1 e
6

m(2n+1)
tanh−1( k

m t−1) (30)

B = C = An = (a1)
3n

2n+1 e
6n

m(2n+1)
tanh−1( k

m t−1) (31)

The form of metric Eq.(1) after substituting A(t), B(t) and C(t) for LVDP model is given by

ds2= −dt2+
[
a1e

2
m tanh−1( k

m t−1)
] 6

2n+1

dx2+
[
a1e

2
m tanh−1( k

m t−1)
] 6n

2n+1 [
e2xdy + e−2xdz2

]
(32)

Equation (32) represents non-interating two fluid model in Lyra’s Geometry with linearly
varying decelerating parameter(LVDP) law.

Using equations (29)–(31) in equation (16) we obtain pDandρD as

ρD =
9
(
n2 + 2n

)
(2n+ 1)

2

(
ȧ

a

)2

+ a−
6

2n+1 − 3

4
β2 − ρ0a

−(1+ωm) (33)

ρD =
36k2

(
n2 + 2n

)
(2n+ 1)

2 (
(kt)

2 − 2kmt
)2 + (a1)

− 6
2n+1 e−

12
m(2n+1)

tanh−1( k
m t−1)−

− 3

4
β2
0a

−2
1 e−

4
m tanh−1( k

m t−1) − ρ0 (a1)
−(1+ωm)

e−
−2(1+ωm)

m tanh−1( k
m t−1)

(34)

pD = −

[(
6n

2n+ 1

)(
ä

a

)
+

3n (5n− 2)

(2n+ 1)
2

(
ȧ

a

)2

+ a−
6

2n+1 +
3

4
β2

]
+ ρ0ωma

−(1+ωm) (35)

pD = −

{(
24k2mn

(2n+ 1)

)[
2k2 [t+ 2]− 2km[
(kt)

2 − 2kmt
]2
]
− 12n (5n− 2) k2

(2n+ 1)
2
(
(kt)

2 − 2kmt
)2−

− (a1)
− 6

2n+1 e−
12

m(2n+1)
tanh−1( k

m t−1) − 3

4
β2
0a

−2
1 e−

4
m tanh−1( k

m t−1)

}
+

+ρ0ωm (a1)
−(1+ωm)

e−
2(1+ωm)

m tanh−1( k
m t−1)

(36)

Using equations (35) and (36) in equation (16) we obtain

ωD=

[{
−
{(

24k2mn
(2n+1)

)[
2k2[t+2]−2km

[(kt)2−2kmt]
2

]
− 12n(5n−2)k2

(2n+1)2((kt)2−2kmt)
2− (a1)

− 6
2n+1 e−

12
m(2n+1)

tanh−1( k
m t−1)

− 3
4β

2
0a

−2
1 e−

4
m tanh−1( k

m t−1)
}
+ρ0ωm (a1)

−(1+ωm)
e−

2(1+ωm)
m tanh−1( k

m t−1)

}
÷

÷

{{
36k2(n2+2n)

(2n+1)2((kt)2−2kmt)2
+ (a1)

− 6
2n+1 e−

12
m(2n+1)

tanh−1( k
m t−1)−

− 3
4β

2
0a

−2
1 e−

4
m tanh−1( k

m t−1)−ρ0 (a1)−(1+ωm)
e−

2(1+ωm)
m tanh−1( k

m t−1)
}}]

(37)

which is the equation of state (EoS) parameter of the dark fluid in terms of the cosmic time t.
It can be observed that for t→0, ρDandpD diverge while for large t they vanish. Equation (37)

gives the behavior of EoS in terms of cosmic time t. It is observed that ωD is increasing function
of cosmic time t. The rapidity of their growth at the early stage depends on the type of the
universes, while later on they all tend to a constant value.
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The expressions of the matter-density Ωm and dark-energy density ΩD are given by

Ωm =
ρm
3H2

=

[(
(kt)

2 − 2kmt
)2
ρ0 (a1)

−(1+ωm)
e

−2(1+ωm)
m tanh−1( k

m t−1)

12k2

]
(38)

ΩD =
ρD
3H2

=

{(
36k2

(
n2 + 2n

)
(2n+ 1)

2
(
(kt)

2 − 2kmt
)2 + (a1)

− 6
2n+1 e−

12
m(2n+1)

tanh−1( k
m t−1)−

− 3

4
β2
0a

−2
1 e−

4
m tanh−1( k

m t−1) − ρ0 (a1)
−(1+ωm)

e−
−2(1+ωm)

m tanh−1( k
m t−1)

)(
(kt)

2 − 2kmt
)2}

÷

÷ 12k2 (39)

By adding Eq. (38) and (39) gives us the density parameter

Ω = Ωm +ΩD =
36
(
n2 + 2n

)
(2n+ 1)

2 +

+

(
(a1)

− 6
2n+1 e−

12
m(2n+1)

tanh−1( k
m t−1) − 3

4β
2
0a

−2
1 e−

4
m tanh−1( k

m t−1)
)(

(kt)
2 − 2kmt

)2
12k2

(40)

4. Interacting tow fluid model
Here we consider the interaction between dark energy and barotropic fluid. For this purpose

we can write the continuity equation for dark fluid and barotropic fluid as

ρ̇m + 3
ȧ

a
(ρm + pm) = Q (41)

ρ̇D + 3
ȧ

a
(ρD + pD) = −Q (42)

where the quantity Q represents the interaction between dark energy components. Also Q > 0
ensure that the second law of thermodynamics is satisfied (Pavon and Wang, 2009) [54]. Following
Amendola et al. (2007) [55] and [56], we consider,

Q = 3Hσρm (43)

where σ is a coupling constant.
Using [42] in (42) and integrating we obtain

ρm = ρ0a
−3(1+am−σ) = ρ0

[
a1e

2
m tanh−1( k

m t−1)
]−(1+ωm−3σ)

(44)

pm = ωmρm = ωmρ0a
−(1+ωm−3σ) = ωmρ0

[
a1e

2
m tanh−1( k

m t−1)
]−(1+ωm−3σ)

(45)

Now using Eqs. (42)–(44) in [33] and [35] we get (by a straight forward calculation)

ρD =

[
36k2

(
n2 + 2n

)
(2n+ 1)

2 (
(kt)

2 − 2kmt
)2 + (a1)

− 6
2n+1 e−

12
m(2n+1)

tanh−1( k
m t−1)−

−3

4
β2
0a

−2
1 e−

4
m tanh−1( k

m t−1) − ρ0 (a1)
−(1+ωm−3σ)

e−
−2(1+ωm−3σ)

m tanh−1( k
m t−1)

] (46)
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pD =−

{(
24k2mn

(2n+ 1)

)[
2k2 [t+ 2]− 2km[
(kt)

2 − 2kmt
]2
]
− 12n (5n− 2) k2

(2n+ 1)
2 (

(kt)
2 − 2kmt

)2−
− (a1)

− 6
2n+1 e−

12
m(2n+1)

tanh−1( k
m t−1) − 3

4
β2
0a

−2
1 e−

4
m tanh−1( k

m t−1)
}
+

+ ρ0ωm (a1)
−(1+ωm−3σ)

e−
2(1+ωm−3σ)

m tanh−1( k
m t−1)

(47)

ωD=

{
−

{(
24k2mn

(2n+ 1)

)[
2k2 [t+ 2]−2km[
(kt)

2 −2kmt
]2
]
− 12n (5n− 2)k2

(2n+ 1)
2 (

(kt)
2 −2kmt

)2−
− (a1)

− 6
2n+1 e−

12
m(2n+1)

tanh−1( k
m t−1)−3

4
β2
0a

−2
1 e−

4
m tanh−1( k

m t−1)

}
+

+ρ0ωm (a1)
−(1+ωm−3σ)

e−
2(1+ωm−3σ)

m tanh−1( k
m t−1)

}
÷

÷

{
36k2

(
n2+2n

)
(2n+ 1)

2 (
(kt)

2 −2kmt
)2+(a1)

− 6
2n+1 e−

12
m(2n+1)

tanh−1( k
m t−1)

−3

4
β2
0a

−2
1 e−

4
m tanh−1( k

m t−1)−ρ0 (a1)−(1+ωm−3σ)
e−

2(1+ωm)
m tanh−1( k

m t−1)

}
(48)

The model with ρD, pD and ωD given by equations (46)–(48) represent two fluid interacting
dark energy model.

The expressions of the matter-density Ωm and dark-energy density ΩD are given by

Ωm =
ρm
3H2

=

[(
(kt)

2 − 2kmt
)2
ρ0 (a1)

−(1+ωm−3σ)
e

−2(1+ωm−σ)
m tanh−1( k

m t−1)

12k2

]
(49)

ΩD =
ρD
3H2

=

[{(
36k2

(
n2+2n

)
(2n+ 1)

2 (
(kt)

2 −2kmt
)2+(a1)

− 6
2n+1 e−

12
m(2n+1)

tanh−1( k
m t−1)−

−3

4
β2
0a

−2
1 e−

4
m tanh−1( k

m t−1)−ρ0 (a1)−(1+ωm−3σ)
e−

−2(1+ωm−3σ)
m tanh−1( k

m t−1)
)
×

×
(
(kt)

2 −2kmt
)2}

÷ 12k2

] (50)

Using Eq. (49) and [50] gives us the density parameter

Ω = Ωm +ΩD =

[
3
(
n2 + 2n

)
(2n+ 1)

2 +

+

(
(a1)

− 6
2n+1 e−

12
m(2n+1)

tanh−1( k
m t−1) − 3

4β
2
0a

−2
1 e−

4
m tanh−1( k

m t−1)
)(

(kt)
2 − 2kmt

)2
12k2

 (51)

which is same as Eq. (40). Hence the behavior of the density parameter, in this case, is same as
that in the non-interacting case.

5. Discussion
Let us now discuss the physics of the universe as described by equation [40]. The universe

begins with a Big Bang at t=0 and ends at t =
2m

k
. The increase in spatial volume with cosmic
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time indicates the universe’s spatial expansion. Key parameters, such as the scale factor, Hubble

parameter, energy density, shear scalar, and scalar expansion, diverge at the finite time t =
2m

k
,

suggesting a "Big Rip" scenario, as proposed by Caldwell et al. (2003) [57]. Additionally, when
n = 1 the anisotropy parameter Am = 0 becomes zero, resulting in a shear-free universe (σ2 = 0).
This implies that the universe initially undergoes deceleration but eventually transitions to late-
time acceleration, a process that can occur through "cosmic recollapse," as described by [58]. At
late times, the deceleration parameter turns negative, indicating that the universe transitions to
an accelerated expansion, consistent with the current understanding of the universe’s evolution.

Conclusion

In this study, we have examined a two-fluid scenario within a spatially homogeneous and
anisotropic Bianchi type V I0 spacetime in Lyra geometry. The field equations were solved
using the linearly varying deceleration parameter (LVDP) proposed by [41]. The universe begins

with a Big Bang at t = 0 and ends at t =
2m

k
. The increase in spatial volume with cosmic

time indicates the universe’s spatial expansion. Key quantities such as the scale factor, Hubble

parameter, energy density, shear scalar, and scalar expansion diverge at the finite time t =
2m

k
,

indicating a "Big Rip" scenario.
Initially, the universe undergoes deceleration, but it transitions to late-time acceleration,

potentially through a process called "cosmic recollapse." At late times, the deceleration parameter
becomes negative, leading to accelerated expansion, which aligns with the current understanding
of the universe’s accelerated expansion.

Moreover, the study of both interacting and non-interacting cases of Bianchi type models
with LVDP in Lyra geometry proves significant in relation to the accelerated universe scenario,
as it offers solutions to some longstanding issues in standard Big Bang cosmology. The results
obtained in this paper contribute to a deeper understanding of the universe’s evolution.
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Двухжидкостный сценарий космологической модели
темной энергии с линейно изменяющимся параметром
замедления в геометрии Лиры
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Инженерный колледж Рагху

Вишакхапатнам, Андхра-Прадеш, Индия
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Аннотация. В этой статье мы исследуем оценку параметра темной энергии в пространственно од-
нородном и анизотропном пространстве-времени типа Бианки-V I0, включающем геометрию Лиры.
Чтобы получить определенное решение, мы решаем уравнения поля, используя линейно изменяю-
щийся параметр замедления, предложенный Акарсу и Дерели (2012). Мы анализируем два сцена-
рия, включающих взаимодействующие и невзаимодействующие жидкости (баротропную и темную
энергию), и выводим общие результаты для каждого случая. Также обсуждаются физические по-
следствия этих результатов.

Ключевые слова: темная энергия, двухжидкостный сценарий, баротропный, геометрия Лиры.
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Abstract. The problem of two-dimensional thermocapillary fluid flow in a channel with heated bottom
is considered. Condition of thermal contact is set on the upper free boundary. The velocity field is
linear with respect to the longitudinal coordinate, and the temperature and pressure fields are quadratic
functions of the same coordinate. The analysis of the compatibility of the Navier-Stokes equations
and the equation of heat transfer leads to a non-linear eigenvalue problem for finding the flow field in
the layer. The spectrum of this problem is studied analytically for small Marangoni numbers (second
approximation) and numerically for abitrary Marangoni numbers. The non-uniqueness of the solution
is established. It is typical for problems of this kind.

Keywords: thermocapillary convection, equations of viscous heat-conducting liquid, inverse problem,
spectrum of boundary value problem.
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Introduction

Capillary forces associated with the existence of surface tension at the interface between two
liquids (or liquid and gas) play a noticeable and in many cases decisive role in reduced gravity
conditions. The temperature dependence of the surface tension coefficient is one of the important
factors that determines dynamics of the interfacial surface in the presence of inhomogeneous
temperature field in the system.

The thermocapillary flow problem of a liquid in the weightless state with a parabolic depen-
dence of surface tension on temperature was studied in [1, 2]. The considered problem admits
self-similar solutions within the framework of the Navier-Stokes equations, and it is reduced to an
ordinary differential equation similar to the Faulkner-Skene equation in boundary layer theory.
It was established that problem can have from one to three solutions. It depends on the values
of the defining parameters.

The two-dimensional stationary motion problem of a liquid in a flat channel with free bound-
ary along which the surface tension linearly depends on temperature was considered in [3,4]. The
application of the tau method showed that problem has three different solutions. The problem
has one solution in the case of thermally insulated free boundary. Characteristic flow structures
were constructed for each of the solutions.

∗elena cher@icm.krasn.ru https://orcid.org/0000-0002-9059-2876
c⃝ Siberian Federal University. All rights reserved
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One of the characteristic features of the non-linear problem discussed in [1–4] (and in this
paper) is the non-uniqueness of the solution. The motion of a viscous liquid in a layer enclosed
between two parallel flat surfaces experiencing linear tension at a constant velocity was studied
in [5]. It was established that from one to three values of the pressure coefficient can correspond
to a fixed value of the Reynolds number. There is no solution at all in a certain range of Reynolds
numbers in the axisymmetric case.

In this paper, unlike [3, 4], the solution spectrum of the problem for arbitrary Marangoni
number is constructed numerically. The evolution of the spectrum is also traced for non-zero
values of the dimensionless heat flux and the Prandtl number. The non-uniqueness of the solution
is established. It is typical for problems of this kind

1. Statement of problem

The viscous incompressible fluid flow in a layer of constant thickness l on a flat solid
unevenly heated surface is considered. A thermal contact condition is set on the free surface
y = l and the surface tension σ depends linearly on temperature: σ(θ) = σ0 − æ(θ − θ0),
σ0, æ and θ0 are positive constants. The temperature in the fluid is distributed quadratically:
θ(x, y) = a(y)x2 + b(y), where |x| < ∞, 0 6 y 6 l. Such temperature distribution means that
at the beginning of the Cartesian coordinate system, the temperature has maximum value for
a(0) < 0 and minimum value for a(0) > 0. Let u1(x, y) = w(y)x, u2(x, y) = v(y) are components
of the velocity vector and p(x, y) is pressure. The stationary flow in the layer that corresponds
to the establishment of balance of tangential thermocapillary and viscous stresses on the free
surface of the fluid is described by the following system of equations and boundary conditions

vwy + w2 = f + νwyy, w + vy = 0,

2wa+ vay = χayy, vby = χbyy + 2χa, 0 < y < l,

(1)

y = 0 : w = v = 0, a = a0, b = b0, (2)

y = l : v = 0, ρνwy = −2æa, kθy + γ(θ − θgas) = q. (3)

In equations (1) parameters ν > 0, χ > 0 are the constant kinematic viscosity and thermal
conductivity of the fluid, respectively. The pressure is represented as

1

ρ
p = d− f

2
x2, d(y) = νvy −

1

2
v2 + d0, d0 = const,

where ρ > 0 is fluid density, and f is an arbitrary constant. Parameters a0, b0 in equalities
(2) are known constants. The first two conditions in (3) are consequences of kinematic and
dynamic conditions. In the last equation (3) (thermal contact condition) k > 0 is the coefficient
of thermal conductivity, q(x) is preset heat flow, γ > 0 is the coefficient of heat exchange for
fluid-gas interface. It follows from the condition for normal stresses that free surface remains
flat. This assumption can be fulfilled, for example, under the action of sufficiently high capillary
pressure (value σ0 ≫ 1) [6]. In accordance with the representation of temperature in the thermal
contact condition it is necessary to assume in the general case that

θgas = a1x
2 + b1, q = a2x

2 + b2
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with the specified constants ak, bk, k = 1, 2. Therefore, the thermal contact condition provides
two more relations for a(y), b(y)

y = l : kay + γa = a2 + a1γ, kby + γb = b2 + b1γ. (4)

Remark 1. The considered problem is non-linear and inverse since constant f is unknown.
Indeed, if v(y) is excluded from the mass conservation equation (the second equation (1)) then
problem for functions w(y), a(y) is obtained. The problem for function b(y) is separated for
known v(y) and a(y), it is considered here.

Let us introduce dimensionless variables and parameters:

ξ =
y

l
, W =

l2

ν
w, V =

l

ν
v, F =

l4

ν2
f, A =

a

a0
,

Pr =
ν

χ
, Ma =

a0æl
3

ρν2
, Bi =

γl

k
.

Here Pr is the Prandtl number, Ma is the Marangoni number and Bi is the Bio number.
To define new unknown functions V (ξ), A(ξ) and constant F which is the eigenvalue of

the problem the following two-point boundary value problem for non-linear system of ordinary
differential equations is obtained from (1)-(4):

V ′′′ + V ′2 − V V ′′ − F = 0, (5)

A′′ + Pr(2V ′A− V A′) = 0, (6)

ξ = 0 : V = 0, V ′ = 0, A = 1, (7)

ξ = 1 : V = 0, V ′′ = 2MaA, A′ + BiA = Q, (8)

where Q = l(a2 + a1γ)/k is the specified constant.

Remark 2. For Ma=0 problem (5)-(8) has a solution: a) for Q = Bi = 0 (or
Q = Bi) V (0) = 0, F (0) = 0, A(0) = 1; b) for Q ̸= 0 and Bi ̸= 0 V (0) = 0, F (0) = 0, A(0) = δξ+1,
δ = (Q− Bi)(1 + Bi)−1.For |Ma| < 1 solution is taken in the form

V = MaV (1), F = MaF (1), A = A(0) + MaA(1), (9)

where the order of magnitude of V (1), F (1), A(1) is equal to one. After substituting (9) in system
(5)-(8) and neglecting the quadratic Marangoni terms, linear problem for V (1), F (1) and A(1) is
obtained. After solving the resulting problem with an accuracy of O(Ma2) for functions V,A and
constant F , one can obtain

V = Ma(δ + 1)ξ2(ξ − 1), F = 3Ma(δ + 1),

A = −MaPr(δ + 1)

60

[
2δξ6 − 3(δ − 1)ξ5 − 5ξ4 +

5 + 3δ + Bi(2 + δ)

1 + Bi
ξ

]
+A(0).

(10)
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2. The second approximation with respect to the Marangoni
number

Decompositions of functions W,A and eigenvalue F into series with respect to Marangoni
number Ma up to the terms O(Ma3) have the form

V = MaV (1) + Ma2V (2), F = MaF (1) + Ma2F (2), A = A(0) + MaA(1) + Ma2A(2),

where functions V (1), A(1) and constant F (1) are already known (see (9), (10)). Let us write the
boundary value problem for the second approximation

V (2)′′′ +
(
V (1)′

)2
− V (1)V (1)′′ − F (2) = 0, (11)

A(2)′′ + Pr
(
2(V (1)′A(1) + V (2)′A(0))− V (1)A(1)′ − V (2)A(0)′

)
= 0, (12)

ξ = 0 : V (2) = 0, V (2)′ = 0, A(2) = 0, (13)

ξ = 1 : V (2) = 0, V (2)′′ = 2A(1), A(2)′ + BiA(2) = 0. (14)

Using relations (10) and taking into account conditions (13), one can find from (11), (12) that

V (2) = − (δ + 1)2

840
(3ξ2 − 7ξ6 + 7ξ5) +

F (2)ξ3

6
+
C1ξ

2

2
,

A(2) =
Pr(δ + 1)2

20

[
δ

45
x10 −

(
δ

54
+
δ − 1

24

)
x9 +

(
δ − 1

28
− 5

56

)
x8 +

5

63
x7 +

δ1
20
x5 − δ1

20
x4
]
+

+
Pr(δ + 1)2

24

[
13δ

840
x9−

(
11δ

280
− 3

140

)
x8+

1

70
(3δ− 4)x7+

1

15
x6− F (2)δx5− (3C1δ+ 2F2)x

4

]
−

−1

3
PrC1x

3 + C2x, δ1 =
5 + 3δ + Bi(2 + δ)

1 + Bi
.

(15)
There is linear system for unknown coefficients C1, C2 and eigenvalue F (2) that follows from

three boundary conditions (14). The solution of this system is

C1 = −Pr(δ + 1)

60
(δ − δ1 + 2)− 19

840
(δ + 1)2,

C2 =
Pr(Bi + 1)−1

151200

[
315δ(δ + 1)2 + PrBi(17δ3 + 42δ2δ1 − 146δ2 + 294δδ1 − 553δ + 252δ1)+

+Pr(570δ3− 525δ2δ1+ 1980δ2− 735δδ1+ 1935δ − 210δ1+ 525) + 15Bi(δ3− 36δ2− 27δ− 14)
]
,

F (2) =
5

56
(δ + 1)2 +

Pr
20

(δ + 1)(δ − δ1 + 2).

Then

F = 3Ma(δ + 1) + Ma2
[
5

56
(δ + 1)2 +

Pr
20

(δ + 1)(δ − δ1 + 2)

]
+O(Ma3).

As can be seen, pressure coefficient F here depends on the Prandtl number. It means that
thermal and hydrodynamic fields in the layer become interconnected.
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3. Numerical integration

An algorithm for numerical analysis of system (5)–(8) is proposed below for arbitrary
values of the Marangoni number (Ma). Boundary value problem (5)–(8) is reduced the to the
Cauchy problem. Let us subject the differential equations in (5), (6) to the action of a linear
transformation group [7]

ξ = D1ξ, V = D2V , A = A, (16)

where D1 ̸= 0, D2 ̸= 0 are parameters to be determined. The transformed equations have the
form

V
′′′
+D1D2V

′2 −D1D2V V
′′ −D−3

1 D−1
2 F = 0, A

′′
+D1D2P(2V

′
A− V A

′
) = 0, (17)

It can be seen that resulting equations is invariant with respect to the transformation parameters
if

D1D2 = 1. (18)

Then system (17) takes the form

V
′′′
+ V

′2 − V V
′′ − F = 0, A

′′
+ P(2V

′
A− V A

′
) = 0, (19)

where
F = D4

1F. (20)

The boundary conditions at the point ξ = 0 is not changed:

ξ = 0 : V = 0, V
′
= 0, A = 1. (21)

The missing conditions for ξ = 0 are obviously conditions for the second and first derivatives:
V

′′
, A

′
. To obtain these conditions it is required that after the transformation they do not

depend on D1: V ′′(0) = D−3
1 , A′(0) = D−1. Then, after converting (16), one can obtain

V
′′
(0) = 1, A

′
(0) = 1. (22)

These two conditions together with conditions (21) allows one to solve system of equations (19)
as Cauchy problem.

The first condition of (14) at the point ξ = 1 after the transformation of (16) takes the form

V (D−1
1 ) = 0. (23)

This allows one to determine conversion parameter D1 and hence D2 from (18).
The described actions allow one to develop the following scheme for constructing spectra

F = F (Ma,Pr) and F = F (Q,Pr) of boundary value problem (5)-(8). The value of F ∈ (−∞,∞)

is set, and Cauchy problem (19), (21), (22) is integrated until condition V = 0 is satisfied. Let
this happen for a certain value ξ = ξ0. In accordance with conditions (18), (23), the values of the
transformation parameters are obtained: D2 = D−1

1 = ξ0. The values of the Marangoni number
and parameter Q are found using the last two conditions (8), namely, taking into account (16),
Ma = ξ

3

0V
′′
(ξ0)/2A(ξ0), Q = ξ0A

′
(ξ0) + BiAξ0. Finally, the eigenvalue of original problem

(5)–(8) is obtained in the form F = D−4
1 F = ξ

4

0F .
Note that during the implementation of the described algorithm the possibility of non-

uniqueness of the root ξ0 of the equation V (ξ0) = 0 is taken into account. In addition, since
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parameters D1, D2 (16) can have any sign the integration of problem (19), (21), (22) should be
performed separately in intervals ξ0 ∈ (−∞, 0] and ξ0 ∈ [0,+∞).

Fig. 1a schematically shows the behaviour of function V (ξ) at ξ ∈ (−∞, 0] in relation to the
value of the modified pressure gradient F . It can be seen that in the interval F ∈ (F ∗,+∞)

(F ∗ ≈ 0.755) there are two non-zero roots ξ01 and ξ02 of equation V (ξ) = 0. In the interval
F ∈ (−∞, F ∗] the function V (ξ) has no zeros, when ξ ∈ (−∞, 0]. For ξ ∈ [0,+∞) equation
V (ξ) = 0 has single root ξ0 for any value of the modified pressure gradient F ∈ (−∞,+∞) (Fig.
1b).

Fig. 1. Behavior of function V (ξ)

Fig. 2 shows numerical spectrum of F = F (Ma, 0) (Bi = 0, Q = 0 and A = 1). The root
ξ01 (see above) generates spectrum for positive Marangoni numbers (branch 1). The root ξ0
together with the root ξ01 give branch 2 that corresponds to the negative Marangoni numbers.
The values of the root ξ0 generate branch 3 of the spectrum (Ma < 0), one of the ends of which
corresponds to asymptote (10), and the other tends when F → 0 − 0 to a vertical asymptote
common to branch 2 for lg |Ma| ≈ 2.758. Only branch 3 corresponds to negative values of F .

It is established that there are non-unique solutions with spectrum F = F (Ma, 0). In partic-
ular, there are at most two solutions in the considered range of the modified pressure gradient
F ∈ (0.756; 104) on branch 1 (Ma > 0). Branches 2 and 3 (Ma < 0) have from one to three
eigenvalues F corresponding to fixed value of the Marangoni number (branch 3 has one solu-
tion). The section of branch 2 with non-unique solution is shown in the insert in Fig. 2. One
should note that there are at least two solutions with zero eigenvalue: one solution corresponds
to asymptote (10), Ma = 0, and the second solution corresponds to Ma = −572.426 (the vertical
asymptote of branches 2 and 3).

Characteristics of the fluid flow that occurs in the layer as a result of heating of the lower
solid wall are shown in Fig. 3. The profiles of the horizontal velocity in the region x > 0

are depicted for a number of points in spectrum F = F (Ma, 0) (Bi = 0, Q = 0 and A = 1).
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Fig. 2. Spectrum F = F (Ma, 0) of problem (5)-(8) for Bi = 0, Q = 0

Functions W (ξ) = l2ν−1w, W = −Vξ are plotted along the abscissa axis. Curves 1-3 correspond
to F1 = 2783.857, F2 = 887.843 and F3 = 421.954, respectively (see Fig. 2, branch 2). In these
cases, the direction of fluid flow is changed twice, that is, a two-vortex flow occurs in the layer
(see Fig. 4a). Curve 4 corresponds to the solution for zero eigenvalue: F = 0, Ma = −572.426.
In this case, there is one return flow zone which makes up almost 2/3 of the layer (see Fig. 4b).
All points of the spectrum forming branches 1 and 3 correspond to a single-vortex flow (one zone
of return flow, see Fig. 4b). Moreover, for all points of branch 1 (Ma > 0, F > 0) the return flow
zone is located near the free boundary.

Fig. 3. The profile of the horizontal velocity for x > 0

Fig. 5 shows spectra F = F (Ma, 0) for Bi = 0, Q = 1 (a) and Q = 5(b) (the heat flux is set
at the free boundary). For Q = 1, branch 1 corresponds to a positive value of the Marangoni
number, and branches 2, 3 correspond to a negative value of the Marangoni number. It can be
seen that there is no more than one solution on all branches. For Q = 5, the positive values of
the Marangoni number correspond to branches 1, 2, and the negative values of the Marangoni
number correspond to branches 3, 4, 5. It can be seen that there are up to four solutions on
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Fig. 4. Streamlines in the layer for F = 421.954 (a) and F = 0 (b)

Fig. 5. Spectrum F = F (Ma, 0) of problem (5)-(8) for Bi = 0, Q = 1 (a) and Q = 5 (b)

branch 1 (Ma > 0).
Fig. 6, 7 show spectra F = F (Ma,Pr)(a) and F = F (Q,Pr)(b) for the Prandtl numbers

Pr = 5 and Pr = 50. The positive values of the Marangoni number and the dimensionless
parameter Q correspond to branches 2, 4 (Fig. 6a) and branch 3 (Fig. 6b). Branches 1 and 4
in Fig. 6a (and branch 1 in Fig. 6b) correspond to positive eigenvalues F . The result can be
interpreted as follows: the value of the dimensionless pressure gradient F1 can be obtained by
setting two different combinations of the Marangoni number Ma and the dimensionless heat flow
Q (Ma1, Q1 и Ma2, Q2). Variation in the Bio number (Bi) does not provide qualitative changes
in the spectrum of solutions of boundary value problem (5)-(8). Therefore, it is assumed to be
zero in all calculations.

In conclusion, one should emphasize the importance of the proposed method. In most ther-
mocapillary convection problems containing parameters, the total number of solutions for the
entire range of parameter values is of interest rather than particular solution for a specific set of
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Fig. 6. Spectra F = F (Ma, 5) (a) and F = F (Q, 5) (b) of problem (5)-(8) for Bi = 0

Fig. 7. Spectra F = F (Ma, 50) (a) and F = F (Q, 50) (b) of problem (5)-(8) for Bi = 0

parameter values.
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Спектр краевой задачи, описывающей двумерное плоское
стационарное термокапиллярное течение в канале

Елена Н. Лемешкова
Институт вычислительного моделирования СО РАН

Красноярск, Российская Федерация

Аннотация. Исследуется задача о двумерном термокапиллярном течении жидкости в канале c
подогреваемым нижним дном. На верхней свободной границе задано условие теплового контакта.
Поле скоростей линейно по продольной координате, поля температуры и давления — квадратичные
функции той же координаты. Анализ совместности уравнений Навье–Стокса и теплопроводности
приводит к нелинейной задаче на собственные значения для нахождения поля течения в слое.
Спектр этой задачи исследуется аналитически при малых числах Марангони (второе приближение)
и численно при любых числах Марангони. Установлена неединственность решения, характерная
для задач подобного рода.

Ключевые слова: термокапиллярная конвекция, уравнения вязкой теплопроводной жидкости,
обратная задача, спектр краевой задачи.
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Abstract. In recent years, there has been great interest shown in the literature in the study of chaotic
dynamical systems. In this paper, an adaptive control scheme has been introduced to achieve syn-
chronization between two different fractional-order hyperchaotic systems with unknown parameters. By
using rigorous techniques of fractional calculus, the controller has been designed based on Lyapunov
stability theory. The adaptive hybrid synchronization between fractional-order hyperchaotic Lorenz and
Chen systems has evolved to illustrate the constructed synchronization scheme. In order to create high
security for signal transmission, an application of synchronization in secure communication has been
performed. Computer simulations were carried out to validate the theoretical results derived from this
study.
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Introduction

In recent years, the topic of chaotic systems has received great attention from a number of
researchers in chaos theory. The main reason for this interest is due to the many applications
of chaotic systems in sciences and engineering. Biology, neural networks, cryptography, physics,
chemistry, and secure communication are most fields were the chaotic systems are frequently
applied in practice [1]. A hyperchaotic system is defined as chaotic system has more than one
positive Lyapunov exponent, in which the minimal dimension for a continuous-time hyperchaotic
system is four [2].

Recently, fractional calculus has become an important topic in mathematics and physics.
Due to the hereditary and nonlocal distributed behaviors in dynamic phenomena, modeling
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of dynamical systems in sciences and engineering using fractional differential equations is more
suitable than integer-order equations [3]. Since the works of Leibniz in 1695, the idea of fractional
derivative of continuous function has been explored [4]. In recent decades, several fractional
differential and integral operators have been defined. Since the works of Carroll and Pecora (1990)
[5], the field of synchronization of systems using chaos theory has become very popular in the
literature. Nowadays, control and synchronization of chaos phenomena in fractional-order chaotic
systems have significant interest, due to their important applications in cryptography and signal
transmission. In the chaos control problem, the desired goal is to construct an efficient control
law to stabilize the state trajectories of the chaotic system. On the other side, a pair of dynamical
chaotic systems called master and slave systems are said to be synchronized when the trajectories
of the slave system asymptotically track the trajectories of the master system in infinite time.
Many control schemes have been reported to control fractional-order chaotic systems, such as
adaptive control [6], active control [7], passive control [8], sliding mode control [9], and many
others. Furthermore, various types of synchronization of chaotic systems have been introduced,
such as complete synchronization [10], anti-synchronization [11], projective synchronization [12],
lag synchronization [13], etc. Recently, a new type of chaotic synchronization has developed
called function projective synchronization, where the master and response systems could be
synchronized up to a scaling function [14].

In the literature, several fractional-order chaotic systems have been employed in the construc-
tion of secure communication schemes using the techniques of chaos synchronization [15,16]. To
our knowledge, the general idea for transmitting a message signal via chaotic systems is that
an original information signal is injected in the transmitter system, which produces a chaotic
signal. The chaotic signal is then transmitted to the receiver via a public channel. Finally, after
the transmitter and receiver systems are synchronized, the encrypted information signal can be
successfully recovered at the receiver. In this work, our aim is to synchronize two nonidentical
fractional-order hyperchaotic systems by performing a suitable adaptive controller. Based on
the Lyapunov theory of fractional-order systems, the theoretical results in this paper have been
demonstrated. Computer simulations were performed to validate the feasibility and effectiveness
of the proposed method.

The remainder of this paper is organized as follows. In Section 2, basic notions of fractional
calculus are introduced. In Section 3, the general idea of the proposed synchronization method
based on fractional-order hyperchaotic systems is discussed. In Section 4, based on the stability
theory of fractional-order systems, an adaptive hybrid synchronization between two nonidentical
fractional-order hyperchaotic systems is achieved. In Section 5, a secure communication scheme
based on adaptive hybrid synchronization of fractional-order hyperchaotic systems is constructed.
Finally, we draw conclusions in Section 6.

1. Mathematical background

In this section, we provide some notions of fractional calculus that help us build this paper.

Definition 1. The Riemann-Liouville fractional integral of order q ∈ R+ of a continuous func-
tion u : R+ → R is defined as [17]

Jqt0u(t) =
1

Γ(q)

∫ t

t0

(t− s)q−1u(s)ds, (1)

where t > t0, Γ(.) is the Gamma function.
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Definition 2. The Caputo fractional derivative of order q ∈ R+ of a continuous function u :
[t0,+∞[→ R is defined as [18]

cDq
t0u(t) =

1

Γ(m− q)

∫ t

t0

u(m)(s)

(t− s)q+1−m ds (2)

where t > t0, m− 1 < q 6 m with m = ⌈q⌉.

We have the following fundamental properties of the differential operator cDq
t0 [19]

1. If p > q > 0 where 0 6 m− 1 6 p < m and 0 6 n− 1 6 q < n such that m and n are two
integers, then

cDp
t0

(
cD−q

t0 u(t)
)
= cDp−q

t0 u(t) (3)

2. If p, q > 0 where 0 6 m − 1 6 p < m and 0 6 n − 1 6 q < n such that m and n are two
integers, then

cDp
t0

(
cDq

t0u(t)
)
= cDp+q

t0 u(t)−
n∑
j=1

[
cDq−j

t0 u(t)
]
t=t0

(t− t0)
−p−j

Γ(1− p− j)
. (4)

3. For p, q > 0, we assume that there exists some n ∈ N such that p, p+ q ∈ [n− 1, n], then

DpDqu(t) = Dp+qu(t). (5)

4. Let n− 1 < q < n, n ∈ N. We assume that both cDq
t0u(t) and cDq

t0v(t) exist, the Caputo
fractional derivative is a linear operator

cDq
t0 (u(t) + v(t)) = cDq

t0u(t) +
cDq

t0v(t). (6)

Lemma 1 ( [20]). Let u(t) ∈ Rn be a continuous and derivable function. Then for any time
instant t > t0

1

2
cDq

t0

(
uT (t)u(t)

)
6 uT (t)× cDq

t0u(t), ∀ q ∈ (0, 1) (7)

The following theorem establishes the stability of equilibrium point of the following fractional-
order system by extending the Lyapunov direct method to a fractional-order systems.

cDq
t0x(t) = f(t, x(t)), (8)

where q ∈ (0, 1), x ∈ Rn and t represents the time.

Theorem 1.1 ( [21]). If there exists a positive definite Lyapunov function V (t, x(t)) such that

cDq
t0V (t, x(t)) 6 0, ∀ t > t0, (9)

then the trivial solution of system (8) is asymptotically stable.

2. Problem description

In order to construct the desired adaptive hybrid synchronization between the master and
slave systems with unknown parameters, we take the master hyperchaotic system in the form of

cDq
t0x = f(x) + F (x)α (10)
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and the slave hyperchaotic system in the form of

cDq
t0y = g(y) +G(y)β + u, (11)

where x, y ∈ Rn are the state vectors, u ∈ Rn is the adaptive controller, α ∈ Rm, β ∈ Rr are
unknown parameter vectors, f(x), g(y) ∈ Rn, F (x) ∈ Rn×m, G(y) ∈ Rn×r. Next, we divide the
master and slave systems into two parts, then system (10) can be expressed as

cDq
t0xi = fi(x) + Fi(x)αi,

cDq
t0xj = fj(x) + Fj(x)αj ,

(12)

and the slave system can be described as

cDq
t0yi = gi(y) +Gi(y)βi + u,

cDq
t0yj = gj(y) +Gj(y)βj + u.

(13)

Next, we define the synchronization error between the master and slave systems as

ei = yi − xi, (14)

and the anti-synchronization error between the master and slave systems as

ej = yj + xj . (15)

From the definition of complete synchronization, if lim
t→∞

∥ei∥ = lim
t→∞

∥yi(t, y0)− xi(t, x0)∥ = 0,
where x0 = (xi(0), xj(0)) and y0 = (yi(0), yj(0)) are the initial conditions of the master and
slave systems, respectively, the complete synchronization between the master and slave systems
is achieved. Also, if lim

t→∞
∥ej∥ = lim

t→∞
∥yj(t, y0) + xj(t, x0)∥ = 0, we get the anti-synchronization

between the master and slave systems where ∥.∥ is the Euclidean norm. Our objective is to
construct an effective adaptive controller to achieve the synchronization between systems (12)
and (13).

Theorem 2.2. If the controller u(t, x, y) is selected as

u(t, x, y) =

{
fi(t, x) + Fi(t, x)α̂i −Gi(t, y)β̂i − gi(t, y)− ei,

−fj(t, x)− Fj(t, x)α̂j −Gj(t, y)β̂j − gj(t, y)− ej ,
(16)

and adaptive law of parameters is chosen as

cDq
t0 α̂i = −[Fi(t, x)]

T ei,
cDq

t0 β̂i = [Gi(t, y)]
T ei

cDq
t0 α̂j = −[Fj(t, x)]

T ej ,
cDq

t0 β̂j = [Gj(t, y)]
T ej ,

(17)

then the sychronization and anti-synchronization between the master system (12) and slave sys-
tem (13) are achieved, in which the estimations of the unknown parameters αi, βi, αj, and βj
are α̂i, β̂i, α̂j, and β̂j, respectively.

Proof. From equations (12), (13) and (16), the fractional-order error system can be expressed as

cDq
t0e = Fi(x) (αi − α̂i)−Gi(y)

(
βi − β̂i

)
+ Fj(x) (αj − α̂j) +Gj(y)

(
βj − β̂j

)
− e (18)

where e = (ei, ej)
T . Now, we define the quadratic Lyapunov function by

V
(
ei, ej , α̃i, α̃j , β̃i, β̃j

)
=

1

2

(
eTi ei + eTj ej + α̃Ti α̃i + α̃Tj α̃j + β̃Ti β̃i + β̃Tj β̃j

)
, (19)
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where α̃i = αi − α̂i, α̃j = αj − α̂j , β̃i = βi − β̂i, β̃j = βj − β̂j . Obviously, V is a positive definite
function on Rn. Taking the fractional derivative of the Lyapunov function V and using Lemma
1, we obtain

cDq
t0V 6 e

T
i
cDq

t0ei + eTj
cDq

t0ej + α̃Ti
cDq

t0 α̃i + α̃Tj
cDq

t0 α̃j + β̃Ti
cDq

t0 β̃i + β̃Tj
cDq

t0 β̃j =

= [−Gi(y)β̃i + Fi(x)α̃i − ei]
T ei − α̃i

T [Fi(x)]
T ei + β̃i

T
[Gi(y)]

T ei+

+ [Gj(y)β̃j + Fj(x)α̃j − ej ]
T ej − α̃j

T [Fj(x)]
T ej − β̃j

T
[Gj(y)]

T ej =

= −
(
∥ei∥2 + ∥ej∥2

)
6 0

(20)

Hence, cDq
t0V is a negative definite function on Rn. According to theorem 1.1, the error sys-

tem is globally asymptotically stable, i.e, lim
t→∞

∥e∥ = lim
t→∞

∥y(t, y0) ± x(t, x0)∥ = 0. Therefore,
the fractional-order slave system (13) can synchronize and anti-synchronize the fractional-order
master system (12). This completes the proof.

3. Adaptive hybrid synchronization between two different
fractional-order hyperchaotic systems

3.1. ABM algorithm

In this paper, the numerical solution of a fractional-order system will be derived using the
Adams–Bashforth–Moulton method (ABM), which is as follows [22].
Consider a fractional-order nonlinear equation{

cDq
t0x(t) = f(t, x(t)), 0 6 t 6 T

xk(0) = x
(k)
0 , k = 0, 1, . . . ,m− 1

(21)

where x(t) = [x1(t), x2(t), . . . , xn(t)]
T is the state variables, x(k)(t+0 ) = bk, k = 0, 1, . . . ,m− 1 is

the initial condition, q ∈ (0, 1) is the fractional order. The fractional differential equation (21) is
equivalent to the Volterra integral equation

x(t) =

n−1∑
k=0

x
(k)
0

tk

k!
+

1

Γ(q)

∫ t

0

(t− s)q−1f(s, x(t))ds. (22)

Let h = T/N , tj = jh (j = 0, 1, . . . , n), then the correction formula is defined as

xh(tn+1) =

m−1∑
k=0

x
(k)
0

tkn+1

k!
+

hq

Γ(q + 2)
f(tn+1, x

p
h(tn+1)) +

hq

Γ(q + 2)

n∑
j=0

αj,n+1f(tj , xh(tj)). (23)

where

αj,n+1 =

{
nq+1 − (n− q)(n+ 1)q for j = 0,

(n− j − 2)q+1 + (n− j)q+1 − 2(n− j + 1)q+1 for 0 6 j 6 n.
(24)

Adopting the Adams-Bashforth rule, the prediction formula is given by

xph(tn+1) =

n−1∑
k=0

x
(k)
0

tkn+1

k!
+

1

Γ(q)

n∑
j=0

bj,n+1f(tj , xh(tj)), (25)
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where
bj,n+1 =

hq

q
((n− j + 1)q − (n− j)q) , 0 6 j 6 n. (26)

It should be noted that the error of this numerical method can be calculated as

e = max
i=0,1,...,N

|x(tj)− xh(tj)| = o (hp) , (27)

where p = min(2, 1 + q).

3.2. Application

In order to simulate the proposed synchronization method, we consider two different
fractional-order hyperchaotic systems where the Lorenz 4-D hyperchaotic systems is taken as
the master system, whereas the Chen 4-D hyperchaotic system is taken as the slave system.
Furthermore, the ABM algorithm has been employed to solve numerically the fractional-order
hyperchaotic systems.
The fractional-order Lorenz hyperchaotic system is described as [23]

cDq
t0x1 = a1(y1 − x1) + w1,

cDq
t0y1 = c1x1 + y1 − x1z1,

cDq
t0z1 = x1y1 − b1z1,

cDq
t0w1 = −y1z1 + r1w1,

(28)

where (x1, y1, z1, w1)
T is the state vector of the system, a1, b1, c1, and r1 are constant parameters.

When the system parameters are selected as a1 = 10, b1 = 8/3, c1 = 28, r1 = −1, and the
fractional order as q = 0.98 with the initial conditions (x1(0), y1(0), z1(0), w1(0)) = (1, 1, 1, 1),
the system (28) exhibits hyperchaotic attractor as shown in Fig. 1. The fractional-order Chen

Fig. 1. Hyperchaotic attractor of the Lorenz fractional-order system: (a) in (x1, y1)-plane; (b)
in (x1, y1, z1)-space

hyperchaotic system with controller is expressed as [24]
cDq

t0x2 = a2(y2 − x2) + w2 + u1,
cDq

t0y2 = c2x2 + ky2 − x2z2 + u2,
cDq

t0z2 = x2y2 − b2z2 + u3,
cDq

t0w2 = y2z2 + r2w2 + u4,

(29)
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where (x2, y2, z2, w2)
T is the state vector of the system, a2, b2, c2, k, and r2 are constant pa-

rameters, u = (u1, u2, u3, u4)
T is the controller. When the system parameters are selected as

a2 = 35, b2 = 3, k = 12, c2 = 7, r2 = 0.5, and the fractional order as q = 0.98 with the
initial conditions (x2(0), y2(0), z2(0), w2(0)) = (5, 8,−1,−3), the system (29) without controller
(ui = 0, i = 1, 2, 3, 4) exhibits hyperchaotic attractor as shown in Fig. 2. We define the state

Fig. 2. Hyperchaotic attractor of the Chen fractional-order system: (a) in (x2, y2)-plane; (b) in
(x2, y2, w2)-space

errors between the systems (28) and (29) as e1 = x2−x1, e2 = y2+y1, e3 = z2−z1, e4 = w2+w1.
Thus, the error dynamics of the fractional-order systems can be determined as

cDq
t0e1 = a2(y2 − x2) + w2 − a1(y1 − x1)− w1 + u1,

cDq
t0e2 = c2x2 + c1x1 + ky2 + y1 − x2z2 − x1z1 + u2,

cDq
t0e3 = x2y2 − x1y1 − b2z2 + b1z1 + u3,

cDq
t0e4 = y2z2 − y1z1 + r2w2 + r1w1 + u4.

(30)

Our goal is to achieve adaptive hybrid synchronization between the master system (28) and the
slave system (29) by constructing a suitable controller u and parameter update law in which
limt→∞ ∥e(t)∥ = 0 with e(t) = [e1(t), e2(t), e3(t), e4(t)]

T . Next, we select the adaptive control
law as 

u1 = −â2(y2 − x2)− w2 + â1(y1 − x1) + w1 − e1,

u2 = −ĉ2x2 − ĉ1x1 − k̂y2 − y1 + x2z2 + x1z1 − e2,

u3 = −x2y2 + x1y1 + b̂2z2 − b̂1z1 − e3,

u4 = −y2z2 + y1z1 − r̂2w2 − r̂1w1 − e4,

(31)

and we take the parameter adaptive law as

˙̂a1 = −(y1 − x1)e1,
˙̂
b1 = z1e3, ˙̂c1 = −x1e2, ˙̂r1 = −w1e4,

˙̂
k = y2e2

˙̂a2 = (y2 − x2)e1,
˙̂
b2 = −z2e3, ˙̂c2 = x2e2, ˙̂r2 = w2e4,

(32)

where â1, b̂1, ĉ1, r̂1, k̂, â2, b̂2, ĉ2, and r̂2 are the estimations of the unknown parameters a1, b1,
c1, r1, k, a2, b2, c2, and r2, respectively. Combining (30) and (31), we obtain

cDq
t0e1 = ã2(y2 − x2)− ã1(y1 − x1)− e1,

cDq
t0e2 = c̃2x2 + c̃1x1 + k̃y2 − e2,

cDq
t0e3 = −b̃2z2 + b̃1z1 − e3,

cDq
t0e4 = r̃2w2 + r̃1w1 − e4,

(33)
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where ã1 = a1− â1, b̃1 = b1− b̂1, c̃1 = c1− ĉ1, r̃1 = r1− r̂1, k̃ = k− k̂, ã2 = a2− â2, b̃2 = b2− b̂2,
c̃2 = c2 − ĉ2, r̃2 = r2 − r̂2.

Theorem 3.3. The fractional-order hyperchaotic systems (28) and (29) are globally asymp-
totically synchronized and anti-synchronized using the adaptive control law (31) and parameter
update law (32) for all initial conditions.

Proof. We define the quadratic Lyapunov function as

V =
1

2

(
eT e+ ã21 + b̃21 + c̃21 + r̃21 + k̃2 + ã22 + b̃22 + c̃22 + r̃22

)
. (34)

Taking the fractional derivative of (34) and using Lemma 1, we obtain
cDq

t0V 6 e
T cDq

t0e+ ã1
cDq

t0 ã1 + b̃1
cDq

t0 b̃1 + c̃1
cDq

t0 c̃1 + r̃1
cDq

t0 r̃1 + k̃ cDq
t0 k̃+

+ ã2
cDq

t0 ã2 + b̃2
cDq

t0 b̃2 + c̃2
cDq

t0 c̃2 + r̃2
cDq

t0 r̃2.
(35)

From (32) and (33), the inequality in (35) can be simplified as
cDq

t0V 6 e1[ã2(y2 − x2)− ã1(y1 − x1)− e1] + e2[c̃2x2 + c̃1x1 + k̃y2 − e2]+

+ e3[−b̃2z2 + b̃1z1 − e3] + e4[r̃2w2 + r̃1w1 − e4] + ã1[(y1 − x1)e1] + b̃1[−z1e3] + c̃1[−x1e2]+
+ r̃1[−w1e4] + k̃[−y2e2] + ã2[−(y2 − x2)e1] + b̃2[z2e3] + c̃2[−x2e2] + r̃2[−w2e4] =

= −∥e∥2 6 0,

(36)

then cDq
t0V is a negative definite function. Based on the stability result of Theorem 1.1, the error

system is globally asymptotically stable. Hence, the adaptive hybrid synchronization between
the systems (28) and (29) is achieved. This completes the proof.

3.3. Numerical simulations

For the numerical simulations, the ABM algorithm has been used to solve numerically
the fractional-order hyperchaotic systems. The parameter values and initial conditions of the
fractional-order systems (28) and (29) are selected as in the hyperchaotic case, and the frac-
tional order as q = 0.98. Also, the initial values of the parameter estimates are arbitrarily
taken as â1(0) = 12, b̂1(0) = 2.6, ĉ1(0) = 30, r̂1(0) = −1.2, k̂(0) = 10, â2(0) = 34, b̂2(0) = 4,
ĉ2(0) = 6, and r̂2(0) = 0.4. Fig. 3 displays the state trajectories of the drive system (28)
and the slave system (29), whereas Fig. 4 shows the adaptive hybrid synchronization errors be-
tween the systems (28) and (29). As can be observed, the adaptive hybrid synchronization error
e(t) = [e1(t), e2(t), e3(t), e4(t)]

T converges asymptotically towards zero in infinite time, then the
synchronization objective is gained.

4. Application to secure communication

Secure communication is one significant area in which chaotic synchronization may be applied
in recent years. Three strategies of chaotic communication have been used: chaos masking [25],
chaos modulation [26], and chaos shift keying [27]. In the current paper, we adopt the chaotic
masking strategy.

We apply the proposed adaptive hybrid synchronization to secure communication. Fig. 5
displays the block diagram for our communication scheme. An information sinusoidal signal
m(t) = 4 sin(3πt) is added to the variable x1 at the transmitter end, termed the transmitted
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Fig. 3. State trajectories of the synchronized hyperchaotic fractional-order systems (28) and (29)
with q = 0.98

0 2 4 6 8 10 12

t

-5

0

5

10

e
1
(t

),
 e

2
(t

),
 e

3
(t

),
 e

4
(t

)

e
1
(t)

e
2
(t)

e
3
(t)

e
4
(t)

Fig. 4. Time evolutions of the adaptive hybrid synchronization errors e1(t), e2(t), e3(t), and
e4(t)

signal, and encrypted as s(t) = x1 +m(t). At the receiver end, the received information signal
is recovered as m̂(t) = s(t) − x2 by employing the desired adaptive hybrid synchronization.
Figure 6(a) shows the decrypted signal s(t), whereas Fig. 6(b) shows the original information
and recovered signals. From Fig. 6(b), it is easy to see that the recovered message signal m̂(t)

coincides with good precision with the original information signal m(t) after a short transient.
Thus, the original information signal m(t) is recovered accurately.

In addition, the original information signal can be selected as an impulse signal. Then,
we add the original information signal m(t) to the variable w1 at the transmitter end, termed
the transmitted signal, and encrypted as s(t) = w1 + m(t). At the receiver end, the received
information signal is recovered as m̂(t) = s(t) + w2 by performing the desired adaptive hybrid
synchronization. The decrypted signal s(t) is depicted in Fig. 7(a), whereas Fig. 7(b) shows the
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Fig. 5. The block diagram of secure communication based on hyperchaotic synchronization
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Fig. 6. Results of secure communication based on adaptive hybrid synchronization. Case of
sinusoidal information signal: (a) The encrypted signal s(t); (b) The original and recovered
information signals m(t) and m̂(t)

original and decrypted signals. One can observe that the recovered message signal m̂(t) coincides
well with the original information signal m(t) in sufficient time. This shows the accuracy and
effectiveness of the constructed secure communication scheme.
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5. Conclusion
In this paper, we present a robust method of synchronization of fractional-order systems.

Using the techniques of fractional calculus and Lyapunov stability theory, an effecient adaptive
controller has been designed. Our synchronization process has been illustrated via two non-
identical hyperchaotic fractional-order systems, where the 4-D Lorenz and Chen systems have
employed. In addition, the application of chaotic synchronization in secure communication has
been presented, where the information message signal can be encrypted and successfully recov-
ered at the receiver. Computer simulations in MATLAB were provided to validate the theoretical
results.

It is believed that the proposed robust synchronization scheme will contribute to the de-
velopment of the theoretical study of fractional-order hyperchaotic systems. Furthermore, the
proposed robust synchronization scheme holds potential applications in various scientific and
engineering fields such as medical image encryption, signal processing, and data analysis.
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Улучшение безопасной связи с использованием надежной
схемы синхронизации гиперхаотических систем дробного
порядка

Набил Ханече
Лаборатория прикладной математики и моделирования

Университет братьев Ментури
Константина 25000, Алжир

Тайеб Хамаизи
Лаборатория математического моделирования и имитации

Кафедра математики
Университет братьев Ментури

Константина 25000, Алжир

Аннотация. В последние годы в литературе проявляется большой интерес к изучению хаоти-
ческих динамических систем. В данной статье представлена схема адаптивного управления для
достижения синхронизации между двумя различными гиперхаотическими системами дробного по-
рядка с неизвестными параметрами. Используя строгие методы дробного исчисления, был разра-
ботан контроллер на основе теории устойчивости Ляпунова. Адаптивная гибридная синхрониза-
ция между гиперхаотическими системами Лоренца и Чена дробного порядка была разработана
для иллюстрации построенной схемы синхронизации. Для создания высокой безопасности пере-
дачи сигналов было выполнено применение синхронизации в защищенной связи. Было проведено
компьютерное моделирование для проверки теоретических результатов, полученных в этом иссле-
довании.

Ключевые слова: дробный порядок, гиперхаотическая система, синхронизация, безопасная
связь.
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Abstract. We consider the energy operator of four-electron systems in the impurity Hubbard model
and investigate the structure of essential spectra and discrete spectrum of the system in the first singlet
state of the system. The investigations show that there are such situation: 1) the essential spectrum of
the system in the first singlet states consists of the union of ten segments, and the discrete spectrum
of the system consists of six eigenvalues; 2) the essential spectrum of the system in the first singlet
states consists of the union of sixteen segments, and the discrete spectrum of the system consists of
ten eigenvalues; 3) the essential spectrum of the system in the first singlet states consists of the union
of nineteen segments, and the discrete spectrum of the system consists of sixteen eigenvalues; 4) the
essential spectrum of the system in the first singlet states consists of the union of four segments, and the
discrete spectrum of the system consists of two eigenvalues.
Keywords: four-electron system, impurity Hubbard model, singlet state, quintet state, triplet state,
essential spectra, discrete spectra.
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Introduction

The spectrum and wave functions of the system of four electrons in a crystal described by the
Hubbard Hamiltonian were studied in [1, 2]. In the four-electron systems are exists a six states:
quintet state, three type triplet state, and two type singlet states. In the work [1] investigated the
spectrum and wave functions of four-electron systems in a Hubbard model in triplet states. In
the work [2] considered the spectrum and wave functions of four-electron systems in a Hubbard
model in a quintet and singlet states.

In the work [2] proved that the essential spectrum of the system in a quintet state purely
continuous and consists of the segment [4A− 8Bν, 4A+8Bν], and the four-electron bound state
or four-electron antibound state is absent.

Naturally, the question arises, if we consider four-electron system in the Impurity Hubbard
model, then how can the spectrum of the system change? And actually this, led us to consider the
following task. In addition, the intense development of the physics of the film state and also the
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use of films in different areas of physics and technology underlie the great interest in studying
local impurity states magnets. Therefore, it is important to study the spectral properties of
electron systems in the impurity Hubbard model. The structure of essential spectra and discrete
spectrum of two-electron systems in the impurity Hubbard model in the singlet state were studied
in the work S. Tashpulatov [3, 4].

1. Four-electron systems in the impurity Hubbard model.
First singlet state

Here, we consider the energy operator of four-electron systems in the Impurity Hubbard
model and investigate the structure of the essential spectrum and discrete spectra of the system
for first singlet state. The Hamiltonian of the chosen model has the form

H = A
∑
m,γ

a+m,γam,γ +B
∑
m,τ,γ

a+m,γam+τ,γ + U
∑
m

a+m,↑am,↑a
+
m,↓am,↓+

+(A0 −A)
∑
γ

a+0,γa0,γ + (B0 −B)
∑
τ,γ

(a+0,γaτ,γ + a+τ,γa0,γ) + (U0 − U)a+0,↑a0,↑a
+
0,↓a0,↓.

(1)

Here, A (A0) is the electron energy at a regular (impurity) lattice site; B (B0) is the transfer in-
tegral between electrons (between electron and impurity) in a neighboring sites (for convenience,
we assume that B > 0 and B0 > 0), τ = ±ej for j = 1, 2, . . . , ν, where ej are unit mutually
orthogonal vectors, i.e. the summation is over the nearest neighbors, U (U0) is the parameter
of the on-site Coulomb interaction of two electrons, correspondingly in the regular (impurity)

lattice site; γ is the spin index,γ =↑ or γ =↓, ↑ or ↓ denote the spin values
1

2
or −1

2
, and a+m,γ

and am,γ are the respective electron creation and annihilation operators at a site m ∈ Zν .
The four-electron first singlet state corresponds four electron bound states (or antibound

states) to the basis functions: 1s0p,q,r,t = a+p,↑a
+
q,↑a

+
r,↓a

+
t,↓φ0. The subspace 1H̃0

s, corresponding to
the four-electron first singlet state is the set of all vector’s of the form:
1ψ0

s =
∑

p,q,r,t∈Zν

f(p, q, r, t)1s0p,q,r,t, f ∈ las2 , where las2 is the subspace of antisymmetric functions

in l2((Zν)4).
In the four-electron systems exists quintet state, two type singlet states, and three type triplet

states.
Hamiltonian (1) commutes with all components of the total spin operator S = (S+, S−, Sz),

and the structure of eigenfunctions and eigenvalues of the system therefore depends on S.
The Hamiltonian H acts in the antisymmetric Fock space H̃as. Let φ0 be the vacuum vector

in the space H̃as. The four-electron first singlet state corresponds to the free motion of four
electrons over the lattice, and their interactions.

We denote by 1H0
s the restriction of the operator H to the subspace 1H̃0

s. We call the operator
1H0

s the four-electron first singlet state operator.

Theorem 1. The subspace 1H̃0
s is invariant under the operator H, and the operator 1H0

s is a
bounded self-adjoint operator. It generates a bounded self-adjoint operator 1H

0

s, acting in the
space las2 as

1H
0

s
1ψ0

s = 4Af(p, q, r, t) +B
∑
τ

[
f(p+ τ, q, r, t) + f(p, q + τ, r, t) + f(p, q, r + τ, t)+

+ f(p, q, r, t+ τ)
]
+ U(δp,r + δp,t + δq,r + δq,t)f(p, q, r, t) + (A0 −A)(δp,0 + δq,0 + δr,0 + δt,0)×

× f(p, q, r, t) + (B0 −B)
∑
τ

[
δp,0f(τ, q, r, t) + δq,0f(p, τ, r, t) + δr,0f(p, q, τ, t) + δt,0f(p, q, r, τ)+

+ δp,τf(0, q, r, t) + δq,τf(p, 0, r, t) + δr,τf(p, q, 0, t) + δt,τf(p, q, r, 0)
]
+
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+ (U0 − U)[δp,rδp,0 + δq,rδq,0 + δp,tδp,0 + δq,tδq,0]f(p, q, r, t), (2)

where δk,j is the Kronecker symbol. The operator 1H0
s , acts on a vector 1ψ0

s ∈1 H̃0
s as

1H0
s

1ψ0
s =

∑
p,q,r,t

(1H
0

sf)(p, q, r, t)
1s0p,q,r,t. (3)

Proof. We act with the Hamiltonian H on vectors ψ ∈ 1H̃0
s using the standard anti-

commutation relations between electron creation and annihilation operators at lattice sites,
{am,γ , a+n,β} = δm,nδγ,β , {am,γ , an,β} = {a+m,γ , a+n,β} = θ, and also take into account that
am,γφ0 = θ, where θ is the zero element of 1H̃0

s. This yields the statement of the theorem.
2

Lemma 1. The spectra of the operators 1H0
s and 1H

0

s coincide.

Proof. The proof follows by using the Weyl criterion (see [5], chapter VII, pp. 262–263).
We let F denote the Fourier transform: F : l2((Z

ν)4) → L2((T
ν)4) ≡ 1H̃0

s, where T ν is the
ν-dimensional torus endowed with the normalized Lebesgue measure dλ, λ(T ν) = 1.

We set 1H̃0
s = F 1H

0

sF−1. In the quasimomentum representation, the operator 1H
0

s acts in
the Hilbert space Las2 ((T ν)4), where Las2 is the subspace of antisymmetric functions in L2((T

ν)4).
2

Theorem 2. The Fourier transform of operator 1H
0

s is an bounded self-adjoint operator 1H̃0
s =

F 1H
0

s F−1, acting in the space 1H̃0
s by the formula

(1H̃0
s f̃)(λ, µ, γ, θ) =

{
4A+ 2B

ν∑
i=1

[cosλi + cosµi + cos γi + cos θi]

}
×

× f̃(λ, µ, γ, θ) + U

∫
T ν

f̃(s, µ, λ+ γ − s, η)ds+ U

∫
T ν

f̃(t, µ, γ, λ+ θ − t)dt+

+ U

∫
T ν

f̃(λ, ξ, µ+ γ − ξ, θ)dξ + U

∫
T ν

f̃(λ, η, γ, µ+ θ − η)dη + ε1

[ ∫
T ν

f(s, µ, γ, θ)ds+

+

∫
T ν

f(λ, t, γ, θ)dt+

∫
T ν

f(λ, µ, ξ, θ)dξ +

∫
T ν

f(λ, µ, γ, η)dη

]
+ 2ε2

∫
T ν

ν∑
i=1

[cosλi + cos si]×

× f̃(s, µ, γ, θ)ds+ 2ε2

∫
T ν

ν∑
i=1

[cosµi + cos ti]f̃(λ, t, γ, θ)dt+ 2ε2

∫
T ν

ν∑
i=1

[cos γi + cos ξi]×

× f̃(λ, µ, ξ, θ)dξ + 2ε2

∫
T ν

ν∑
i=1

[cos θi + cos ηi]f̃(λ, µ, γ, η)dη + ε3

[ ∫
T ν

∫
T ν

f(s, µ, ξ, θ)dsdξ+

+

∫
T ν

∫
T ν

f(λ, t, ξ, θ)dtdξ +

∫
T ν

∫
T ν

f(s, µ, γ, η)dsdη +

∫
T ν

∫
T ν

f(λ, t, ξ, θ)dtdξ

]
, (4)

where ε1 = A0 −A, ε2 = B0 −B and ε3 = U0 − U.

The prove Theorem 2, the Fourier transform of (2) should be considered directly.
Using tensor products of Hilbert spaces and tensor products of operators in Hilbert spaces [6],

we can verify that the operator 1H̃s
0 can be represented in the form

1H̃s
0 =

{
H̃1

⊗
I + I

⊗
H̃1 − 2U

∫
T ν

f̃(s, λ+ γ − s)ds

}⊗
I
⊗

I+

+ I
⊗

I
⊗{

H̃1

⊗
I + I

⊗
H̃1 + 2U

∫
T ν

f̃(t, λ+ θ − t)dt+ 2ε2

∫
T ν

∫
T ν

f̃(t, ξ)dtdξ.

}
(5)
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where(
H̃1f̃

)
(λ) =

{
A+ 2B

ν∑
i=1

[cosλi]

}
f̃(λ) + ε1

∫
T ν

f̃(s)ds+ 2ε2

ν∑
i=1

∫
T ν

[cosλi + cos si]f(s)ds

is the energy operator of one-electron systems in the impurity Hubbard model.
It can be seen from formula (5) that the spectral properties of four-electron systems in the

impurity Hubbard model in the first singlet state are closely related to those of its one-electron
subsystems in the impurity Hubbard model. Therefore, we first study the spectrum and localized
impurity states of one-electron systems.

The use films in various areas of physics and technology arouses great interest in studying
a localized impurity state (LIS) of magnet. Therefore, it is important to study the spectral
properties of electron systems in the impurity Hubbard model.

2. One-electron systems in the impurity Hubbard Model.
The Hamiltonian of one-electron systems in the impurity Hubbard model has the form:

H = A
∑
m,γ

a+m,γam,γ +B
∑
m,τ,γ

a+m,γam+τ,γ+

+(A0−A)
∑
γ

a+0,γa0,γ + (B0 −B)
∑
τ,γ

(a+0,γaτ,γ + a+τ,γa0,γ),
(6)

here A (A0) is the electron energy at a regular (impurity) lattice site; B > 0 (B0 > 0) is
the transfer integral between electrons (between electron and impurity) in a neighboring sites,
τ = ±ej , j = 1, 2, . . . , ν, where ej are unit mutually orthogonal vectors, which means that
summation is taken over the nearest neighbors; γ is the spin index, γ =↑ or γ =↓, ↑ and ↓
denote the spin values

1

2
and −1

2
, and a+m,γ and am,γ are the respective electron creation and

annihilation operators at a site m ∈ Zν .
We let H1 denote the Hilbert space spanned by the vectors in the form χ =

∑
p
a+p,↑φ0. It is

called the space of one-electron states of the operator H. The space H1 is invariant with respect
to action of the operator H. Denote by H1 = H|H1

the restriction of H to the subspace H1.
As in the proof of Theorem 1, using the standard anticommutation relations between electron

creation and annihilation operators at lattice sites, we get the following

Theorem 3. The subspace H1 is invariant with respect to the action of the operator H, and the
restriction H1 is a linear bounded self-adjoint operator, acting in H1 as

H1χ =
∑
p

(H1f)(p)a
+
p,↑φ0, χ ∈ H1, (7)

where H1 is a linear bounded self-adjoint operator acting in the space l2 as

(H1f)(p) = Af(p) +B
∑
τ

f(p+ τ) + ε1δp,0f(p) + ε2
∑
τ

(δp,τf(0) + δp,0f(τ)), (8)

where ε1 = A0 −A, ε2 = B0 −B and ε3 = U0 − U.

Lemma 2. The spectra of the operators H1 and H1 coincide.

The proof of Lemma 2 is the same as the proof of the Lemma 1.
As in Section 1 denote by F : l2(Z

ν) → L2(T
ν) ≡ H̃1 the Fourier transform. Setting

H̃1 = FH1F−1 we get that the operator H1 acts in the Hilbert space L2(T
ν).

Using the equality (11) and properties of the Fourier transform we have the following
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Theorem 4. The operator H̃1 acting in the space H̃1 as(
H̃1f

)
(µ) =

[
A+ 2B

ν∑
i=1

cosµi

]
f(µ) + ε1

∫
T ν

f(s)ds+

+2ε2

∫
T ν

ν∑
i=1

[cosµi + cos si]f(s)ds, µ = (µ1, . . . , µn), s = (s1, . . . , sn) ∈ T ν .

(9)

In these formula ε1 = A0 −A, ε2 = B0 −B and ε3 = U0 − U.

It is clear that the continuous spectrum of operator H̃1 is independent of the numbers ε1
and ε2, and is equal to segment [mν ,Mν ] = [A − 2Bν,A + 2Bν], where mν = min

x∈T ν
h(x),

Mν = max
x∈T ν

h(x)
(
here h(x) = A+ 2B

ν∑
i=1

cosxi
)
.

Denote via

∆ν(z) =

(
1 +

∫
T ν

ε1 + 2ε2
∑ν
i=1 cos si

A+ 2B
∑ν
i=1 cos si − z

ds1 . . . dsν

)(
1 + ν

∫
T ν

cos sids1 . . . dsν
A+ 2B

∑ν
i=1 cos si − z

)
−

−2ε2ν

∫
T ν

cos si[ε1 + 2ε2
∑ν
i=1 cos si]

A+ 2B
∑ν
i=1 cos si − z

ds1 . . . dsν

∫
T ν

ds1 . . . dsν
A+ 2B

∑ν
i=1 cos si − z

.

Lemma 3. If a real number z /∈ [mν ,Mν ] then z is an eigenvalue of the operator H̃1 if and only
if ∆ν(z) = 0.

Proof. The equation for eigenvalues is an integral equation with a degenerate kernel. Therefore,
it is equivalent to a system of linear homogeneous algebraic equations. It is known that a system
of linear homogeneous algebraic equations has a nontrivial solutions if and only if the determinant
of the system is equal to zero. Taking into account that the function h(s1, s2, . . . , sν) is symmetric
with respect to si and sj and performing the corresponding transformations, we find that the
determinant of the system has the form ∆ν(z) = 0. 2

In the work’s [3,4] well described of the exchange of the spectrum of operator H̃1 in the cases
ν = 1 and ν = 3. Here we use the results of these theorems.

In the three-dimensional case, the integral∫
T 3

ds1ds2ds3
3 + cos s1 + cos s2 + cos s2

=

∫
T 3

ds1ds2ds3
3− cos s1 − cos s2 − cos s2

have the finite value, equal to
W

3
. Expressing these integral via Watson integral [7]

W =
1

π3

∫ π

−π

∫ π

−π

∫ π

−π

3dxdydz

3− cosx− cos y − cos z
≃ 1.516, and taking into account, what the

measure is normalized, we have, that J(z) =
∫
T 3

ds1ds2ds3
A+ 2B

∑ν
i=1 cos si − z

=
W

6B
.

From obtaining results is obviously, that the spectrum of operator H̃1 is consists from con-
tinuous spectrum and no more than two eigenvalues.

The spectrum of the operator A
⊗
I + I

⊗
B, where A and B are densely defined bounded

linear operators, was studied in [8,9]. Explicit formulas were given there that express the essential
spectrum σess(A

⊗
I+I

⊗
B) and discrete spectrum σdisc(A

⊗
I+I

⊗
B) of operator A

⊗
I+

I
⊗
B in terms of the spectrum σ(A) and the discrete spectrum σdisc(A) of A and in terms of

the spectrum σ(B) and the discrete spectrum σdisc(B) of B :

σdisc(A
⊗

I + I
⊗

B) = {σ(A)\σess(A) + σ(B)\σess(B)}\{(σess(A)+

+ σ(B)) ∪ (σ(A) + σess(B))},
(10)
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and
σess(A

⊗
I + I

⊗
B) = (σess(A) + σ(B)) ∪ (σ(A) + σess(B)). (11)

It is clear that σ(A
⊗
I + I

⊗
B) = {λ+ µ : λ ∈ σ(A), µ ∈ σ(B)}.

It can be seen from representation (5) that we must first investigate the spectra of operators
H̃2 = H̃1

⊗
I + I

⊗
H̃1 − 2U

∫
T ν

f̃(s, λ + µ − s)ds and H̃3 = H̃1

⊗
I + I

⊗
H̃1 + 2U

∫
T ν

f̃(s, λ +

µ− s)ds+ 2ε3
∫
T ν

∫
T ν

f̃(s, t)dsdt.

3. Structure of the essential spectrum and discrete
spectrum of operator 1H̃0

s

Consequently, the operator represented of the form

1H̃0
s = H̃2

⊗
I
⊗

I + I
⊗

I
⊗

H̃3. (12)

From the beginning, we consider the operator H̃(U)=H̃1

⊗
I+I

⊗
H̃1−2U

∫
T ν

f(s, λ+µ− s)ds.

Since, the family of the operators H̃(U) are the family of bounded operators, that the H̃(U)
are the family of bounded operator valued analytical functions. Therefore, in these family, one
can the apply the Kato–Rellix theorem.

Theorem 5 (Kato–Rellix theorem [6]). Let T (β) is the analytical family in the terms of Kato.
Let E0 is a nondegenerate eigenvalue of T (β0). Then as β, near to β0, the exist exactly one point
E(β) ∈ σ(T (β)) the near E0 and this point is isolated and nondegenerated. E(β) is an analytical
function of β as β, the near to β0, and exist the analytical eigenvector Ω(β) as β the near to β0.
If the as real β − β0 the operator T (β) is a self-adjoint operator, then Ω(β) can selected thus,
that it will be normalized of real β − β0.

Since, the operator H̃1

⊗
I + I

⊗
H̃1 has a nondegenerate eigenvalue, such as, the near

of eigenvalue 2z1 of the operator H̃1

⊗
I + I

⊗
H̃1, the operator H̃(U) as U, near U0 = 0,

has a exactly one eigenvalue E(U) ∈ σ(H̃(U)) the near 2z1 and this point is isolated and
nondegenerated. The E(U) is a analytical function of U as U, the near to U0 = 0.

As the large values the existence no more one additional eigenvalue of the operator H̃(U) is
following from the same, what the perturbation (K1f̃)(λ, µ) = −2U

∫
T ν

f(s, λ + µ − s)ds is the

one-dimensional operator, for a fixed value of the total quasimomentum of two electrons. This
additional eigenvalue of operator H̃2 we will denote by z3.

A new we consider the family of operators H̃(ε3) = H̃(U) + 2U
∫
T ν

f̃(s, λ + µ − s)ds +

2ε3
∫
T ν

∫
T ν

f̃(s, t)dsdt.

As, the operator H̃(U) has a nondegenerate eigenvalue, consequently, the near of eigenvalue
E(U) the operator H̃(U), operator H̃(ε3) as ε3, the near of ε3 = 0, has a exactly one eigenvalue
E(ε3) ∈ σ(H̃(ε3)) the near E(U) and this point is the isolated and nondegenerated. The E(ε3)
is a analytical function of ε3, as ε3, the near to ε3 = 0.

Later on via z4, and z5 we denote the additional eigenvalues of operator H̃3.
Now, using the obtained results (Theorem 8 and 9 in the work [3]) and representation (5)

and (12), we describe the structure of the essential spectrum and discrete spectrum of the oper-
ator 1H̃0

s .
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Theorem 6. Let ν = 1. Then
A) If ε2 = −B and ε1 < −2B (respectively, ε2 = −B and ε1 > 2B), then the essential

spectrum of the operator 1H̃0
s consists of the union of ten segments: σess(1H̃0

s ) = [4A−8B, 4A+
8B] ∪ [3A − 6B + z, 3A + 6B + z] ∪ [2A − 4B + 2z, 2A + 4B + 2z] ∪ [A − 2B + 3z,A + 2B +
3z] ∪ [2A− 4B + z3, 2A+ 4B + z3] ∪ [A− 2B + z + z3, A+ 2B + z + z3] ∪ [2A− 4B + z4, 2A+
4B + z4] ∪ [A− 2B + z + z4, A + 2B + z + z4] ∪ [2A− 4B + z5, 2A+ 4B + z5] ∪ [A− 2B + z +

z5, A + 2B + z + z5] and the discrete spectrum of the operator 1H̃0
s consists of six eigenvalues:

σdisc(
1H̃0

s ) = {4z, 2z + z3, 2z + z4, 2z + z5, z3 + z4, z3 + z5}, where z = A+ ε1 and z3 and z4 and
z5 are the additional eigenvalues of the operator H̃2 and H̃3, respectively.

B) If ε2 = −2B or ε2 = 0 and ε1 < 0 (respectively, ε2 = −2B or ε2 = 0 and ε1 > 0), then
the essential spectrum of the operator 1H̃0

s consists of the union of ten segments: σess(1H̃0
s ) =

[4A − 8B, 4A + 8B] ∪ [3A − 6B + z, 3A + 6B + z] ∪ [2A − 4B + 2z, 2A+ 4B + 2z] ∪ [A− 2B +
3z,A + 2B + 3z] ∪ [2A − 4B + z3, 2A + 4B + z3] ∪ [A − 2B + z + z3, A + 2B + z + z3] ∪ [2A −
4B + z4, 2A + 4B + z4] ∪ [A − 2B + z + z4, A + 2B + z + z4] ∪ [2A − 4B + z5, 2A + 4B + z5] ∪
[2A − 4B + z + z5, 2A + 4B + z + z5] and discrete spectrum of the operator 1H̃0

s consists of six
eigenvalues: σdisc(1H̃0

s ) = {4z, 2z+z3, 2z+z4, 2z+z5, z3+z4, z3+z5}, where z = A−
√

4B2 + ε21
(respectively, z = A+

√
4B2 + ε21).

C) If ε1 = 0 and ε2 > 0 or ε1 = 0 and ε2 < −2B, then the essential spectrum of the operator
1H̃0

s consists of the union of sixteen segments: σess(1H̃0
s ) = [4A − 8B, 4A + 8B] ∪ [3A − 6B +

z1, 3A+ 6B + z1]∪ [3A− 6B + z2, 3A+ 6B + z2]∪ [2A− 4B + 2z1, 2A+ 4B + 2z1]∪ [2A− 4B +
2z2, 2A+ 4B + 2z2]∪ [A− 2B + 3z1, A+ 2B + 3z1]∪ [A− 2B + 3z2, A+ 2B + 3z2]∪ [2A− 4B +
z4, 2A+ 4B + z4] ∪ [2A− 4B + z5, 2A+ 4B + z5] ∪ [A− 2B + z1 + z4, A+ 2B + z1 + z4] ∪ [A−
2B + z1 + z5, A+ 2B + z1 + z5] ∪ [A− 2B + z2 + z4, A+ 2B + z2 + z4] ∪ [A− 2B + z2 + z5, A+
2B + z2 + z5]∪ [2A− 4B + z3, 2A+ 4B + z3]∪ [A− 2B + z1 + z3, A+ 2B + z1 + z3]∪ [A− 2B +

z2 + z3, A+2B+ z2 + z3], and discrete spectrum of the operator 1H̃0
s consists of ten eigenvalues:

σdisc(
1H̃0

s ) = {4z1, 2z1 + z4, 2z1 + z5, 4z2, 2z2 + z4, 2z2 + z5, 2z1 + z3, 2z2 + z3, z3 + z4, z3 + z5},
where z1 = A− 2BE√

E2 − 1
and z2 = A+

2BE√
E2 − 1

and E =
(B + ε2)

2

ε22 + 2Bε2
.

D) If ε1 =
2(ε22 + 2Bε2)

B
(respectively, ε1 = −2(ε22 + 2Bε2)

B
), then the essential spectrum of

the operator 1H̃0
s consists of the union of ten segments: σess(1H̃0

s ) = [4A− 8B, 4A+8B]∪ [3A−
6B+z, 3A+6B+z]∪[2A−4B+2z, 2A+4B+2z]∪[2A−4B+z4, 2A+4B+z4]∪[2A−4B+z5, 2A+
4B+z5]∪ [A−2B+3z,A+2B+3z]∪ [2A−4B+z3, 2A+4B+z3]∪ [A−2B+z+z3, A+2B+z+
z3]∪ [2A−4B+z4, 2A+4B+z4]∪ [A−2B+z+z4, A+2B+z+z4], and discrete spectrum of the
operator 1H̃0

s consists of six eigenvalues: σdisc(1H̃0
s ) = {4z, 2z+z3, 2z+z4, 2z+z5, z3+z4, z3+z5},

where z =A+
2B(E2 + 1)

E2 − 1
(respectively, z =A− 2B(E2 + 1)

E2 − 1
) and E =

(B + ε2)
2

ε22 + 2Bε2
.

E) If ε2 > 0 and ε1 >
2(ε22 + 2Bε2)

B
(respectively, ε2 < −2B and ε1 >

2(ε22 + 2Bε2)

B
), then

the essential spectrum of the operator 1H̃0
s consists of the union of ten segments: σess(1H̃0

s ) =
[4A− 8B, 4A+ 8B] ∪ [3A− 6B + z, 3A+ 6B + z] ∪ [2A− 4B + 2z, 2A+ 4B + 2z] ∪ [2A− 4B +
z4, 2A+ 4B + z4]∪ [2A− 4B + z5, 2A+ 4B + z5]∪ [A− 2B + 3z,A+ 2B + 3z]∪ [2A− 4B + z +
z4, 2A+4B+z+z4]∪ [2A−4B+z+z5, 2A+4B+z+z5]∪ [2A−4B+z3, 2A+4B+z3]∪ [A−2B+

z + z3, A + 2B + z + z3], and discrete spectrum of the operator 1H̃0
s consists of six eigenvalues:

σdisc(
1H̃0

s ) = {4z, 2z+ z4, 2z+ z5, 2z+ z3, z3+ z4, z3+ z5}, where z =A+
2B(α+ E

√
E2 − 1 + α2)

E2 − 1

and E =
(B + ε2)

2

ε22 + 2Bε2
and the real number α > 1.

F) If ε2 > 0 and ε1 < −2(ε22 + 2Bε2)

B
(respectively, ε2 < −2B and ε1 < − 2(ε22+2Bε2)

B
), then
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the essential spectrum of the operator 1H̃0
s consists of the union of ten segments: σess(1H̃0

s ) =
[4A− 8B, 4A+ 8B] ∪ [3A− 6B + z, 3A+ 6B + z] ∪ [2A− 4B + 2z, 2A+ 4B + 2z] ∪ [2A− 4B +
z4, 2A+ 4B + z4]∪ [2A− 4B + z5, 2A+ 4B + z5]∪ [A− 2B + 3z,A+ 2B + 3z]∪ [2A− 4B + z +
z4, 2A+4B+z+z4]∪ [2A−4B+z+z5, 2A+4B+z+z5]∪ [2A−4B+z3, 2A+4B+z3]∪ [A−2B+

z + z3, A + 2B + z + z3], and discrete spectrum of the operator 1H̃0
s consists of six eigenvalues:

σdisc(
1H̃0

s ) = {4z, 2z+z4, 2z+z5, 2z+z3, z3+z4, z3+z5}, where z = A−2B(α+ E
√
E2 − 1 + α2)

E2 − 1

and E =
(B + ε2)

2

ε22 + 2Bε2
and the real number α > 1.

K) If ε2 > 0 and 0 < ε1 <
2(ε22 + 2Bε2)

B
(respectively, ε2 < −2B and 0 < ε1 <

2(ε22 + 2Bε2)

B
,

then the essential spectrum of the operator 1H̃0
s consists of the union of nineteen segments:

σess(
1H̃0

s ) = [4A− 8B, 4A+8B]∪ [3A− 6B+ z1, 3A+6B+ z1]∪ [3A− 6B+ z2, 3A+6B+ z2]∪
[2A−4B+2z1, 2A+4B+2z1]∪ [2A−4B+2z2, 2A+4B+2z2]∪ [2A−4B+z1+z2, 2A+4B+z1+
z2]∪ [A−2B+3z1, A+2B+3z1]∪ [A−2B+3z2, A+2B+3z2]∪ [A−2B+2z1+z2, A+2B+2z1+
z2]∪ [A−2B+z1+2z2, A+2B+z1+2z2]∪ [2A−4B+z3, 2A+4B+z3]∪ [2A−4B+z4, 2A+4B+
z4]∪ [A−2B+z1+z3, A+2B+z1+z3]∪ [A−2B+z1+z4, A+2B+z1+z4]∪ [A−2B+z2+z3, A+
2B+z2+z3]∪ [A−2B+z2+z4, A+2B+z2+z4]∪ [2A−4B+z5, 2A+4B+z5]∪ [A−2B+z1+
z5, A+2B+ z1+ z5]∪ [A− 2B+ z2+ z5, A+2B+ z2+ z5], and discrete spectrum of the operator
1H̃0

s consists of sixteen eigenvalues: σdisc(1H̃0
s ) = {4z1, 3z1 + z2, 2z1 + 2z2, z1 + 3z2, 4z2, 2z1 +

z3, z1+z2+z3, 2z2+z3, 2z1+z4, 2z2+z4, z1+z2+z4, 2z1+z5, z1+z2+z5, 2z2+z5, z3+z4, z3+z5},

where z1 = A+
2B(α+ E

√
E2 − 1 + α2)

E2 − 1
and z2 = A+

2B(α− E
√
E2 − 1 + α2)

E2 − 1
and E =

(B + ε2)
2

ε22 + 2Bε2
and the real number 0 < α < 1.

M) If ε2>0 and −2(ε22 + 2Bε2)

B
<ε1 < 0 (respectively, ε2<−2B and −2(ε22 + 2Bε2)

B
< ε1 < 0),

then the essential spectrum of the operator 1H̃0
s consists of the union of nineteen segments:

σess(
1H̃0

s ) = [4A− 8B, 4A+8B]∪ [3A− 6B+ z1, 3A+6B+ z1]∪ [3A− 6B+ z2, 3A+6B+ z2]∪
[2A−4B+2z1, 2A+4B+2z1]∪ [2A−4B+2z2, 2A+4B+2z2]∪ [2A−4B+z1+z2, 2A+4B+z1+
z2]∪ [A−2B+3z1, A+2B+3z1]∪ [A−2B+3z2, A+2B+3z2]∪ [A−2B+2z1+z2, A+2B+2z1+
z2]∪ [A−2B+z1+2z2, A+2B+z1+2z2]∪ [2A−4B+z3, 2A+4B+z3]∪ [2A−4B+z4, 2A+4B+
z4]∪ [A−2B+z1+z3, A+2B+z1+z3]∪ [A−2B+z1+z4, A+2B+z1+z4]∪ [A−2B+z2+z3, A+
2B+z2+z3]∪ [A−2B+z2+z4, A+2B+z2+z4]∪ [2A−4B+z5, 2A+4B+z5]∪ [A−2B+z1+
z5, A+2B+ z1+ z5]∪ [A− 2B+ z2+ z5, A+2B+ z2+ z5], and discrete spectrum of the operator
1H̃0

s consists of sixteen eigenvalues: σdisc(1H̃0
s ) = {4z1, 3z1 + z2, 2z1 + 2z2, z1 + 3z2, 4z2, 2z1 +

z3, z1+z2+z3, 2z2+z3, 2z1+z4, 2z2+z4, z1+z2+z4, 2z1+z5, z1+z2+z5, 2z2+z5, z3+z4, z3+z5},

where z1 = A+
2B(α+ E

√
E2 − 1 + α2)

E2 − 1
and z2 = A+

2B(α− E
√
E2 − 1 + α2)

E2 − 1
and E =

(B + ε2)
2

ε22 + 2Bε2
and the real number 0 < α < 1.

N) If −2B < ε2 < 0, then the essential spectrum of the operator 1H̃0
s consists of the union

of four segments: σess(1H̃0
s ) = [4A− 8B, 4A+ 8B]∪ [2A− 4B + z3, 2A+ 4B + z3]∪ [2A− 4B +

z4, 2A + 4B + z4] ∪ [2A − 4B + z5, 2A + 4B + z5], and discrete spectrum of the operator 1H̃0
s

consists of two eigenvalues: σdisc(1H̃0
s ) = {z3 + z4, z3 + z5}.

Proof. A). From the representation (5), (12) and the formulas (10) and (11), and the Theorem 8
in the work [3], follow the in one-dimensional case, the continuous spectrum of the operator H̃1

consists σcont(H̃1) = [A− 2B,A+2B], and the discrete spectrum of the operator H̃1 consists of
unique eigenvalue z = A+ε1. Therefore, the essential spectrum of the operators H̃1

⊗
I+I

⊗
H̃1

consists from segments [2A− 4B, 2A+ 4B], and [A− 2B + z,A+ 2B + z]. Discrete spectrum of
operator H̃1

⊗
I + I

⊗
H̃1 is consists of eigenvalue 2z. The operator H̃2 = H̃1

⊗
I + I

⊗
H̃1 −

2U
∫
T ν

f̃(s,Λ− s)ds, where Λ = λ+µ, has additional eigenvalue z3, and operator H̃3 = H̃1

⊗
I+
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I
⊗
H̃1+2U

∫
T ν

f̃(s,Λ−s)ds+2ε2
∫
T ν

∫
T ν

f̃(s, t)dsdt has additional eigenvalues z4 and z5. It follows

that the essential spectrum of operator 1H̃0
s consists of the union of ten segments and discrete

spectrum of operator 1H̃0
s consists of six eigenvalues. These give the proof statement A) of the

Theorem 6.
B) In this case the operator H̃1 has a one eigenvalue z1, lying the outside of the continuous

spectrum of operator H̃1. Therefore, the essential spectrum of the operators H̃1

⊗
I + I

⊗
H̃1

consists of the union of two segments and discrete spectrum of the operator H̃1

⊗
I + I

⊗
H̃1

consists of single point. These give the statement B) of the Theorem 6. These give the proof
statement B) of the Theorem 6. 2

The next theorems is described the structure of essential spectrum of the operator 1H̃0
s in

the three-dimensional case.

Theorem 7. Let ν = 3. Then
A) 1. If ε2 = −B and ε1 < −6B (respectively, ε2 = −B and ε1 > 6B), then the essential

spectrum of the operator 1H̃0
s consists of the union of ten segments: σess(1H̃0

s ) = [4A−24B, 4A+
24B]∪ [3A− 18B+ z, 3A+18B+ z]∪ [2A− 12B+2z, 2A+12B+2z]∪ [A− 6B+3z,A+6B+
3z]∪ [2A− 12B+ z3, 2A+12B+ z3]∪ [A− 6B+ z+ z3, A+6B+ z+ z3]∪ [2A− 12B+ z4, 2A+
12B + z4] ∪ [2A − 12B + z5, 2A + 12B + z5] ∪ [A − 6B + z + z4, A + 6B + z + z4] ∪ [A − 6B +

z + z5, A + 6B + z + z5], and discrete spectrum of the operator 1H̃0
s consists of six eigenvalues:

σdisc(
1H̃0

s ) = {4z, 2z + z3, 2z + z4, 2z + z5, z3 + z4, z3 + z5}, where z = A+ ε1, z3 and z4 and z5
are the eigenvalues of the operators H̃2 and H̃3.

2. If ε2 = −B and −6B 6 ε1 < −2B (respectively, ε2 = −B and 2B < ε1 6 6B), then
the essential spectrum of the operator 1H̃0

s consists of the union of four segments: σess(1H̃0
s ) =

[4A− 24B, 4A+24B]∪ [2A− 12B+ z3, 2A+12B+ z3]∪ [2A− 12B+ z4, 2A+12B+ z4]∪ [2A−
12B+ z5, 2A+12B+ z5], and discrete spectrum of the operator 1H̃0

s consists of two eigenvalues:
σdisc(

1H̃0
s ) = {z3 + z4, z3 + z5}.

B) If ε2 = −2B or ε2 = 0, and ε1 < 0, ε1 6 −6B

W
(respectively, ε2 = −2B or ε2 = 0, and

ε1 > 0, ε1 >6B

W
), then the essential spectrum of the operator 1H̃0

s consists of the union of ten

segments: σess(1H̃0
s ) = [4A − 24B, 4A + 24B] ∪ [3A − 18B + z1, 3A + 18B + z1] ∪ [2A − 12B +

2z1, 2A + 12B + 2z1] ∪ [A − 6B + 3z1, A + 6B + 3z1] ∪ [2A − 12B + z3, 2A + 12B + z3] ∪ [A −
6B + z1 + z3, A+ 6B + z1 + z3] ∪ [2A− 12B + z4, 2A+ 12B + z4] ∪ [2A− 12B + z5, 2A+ 12B +
z5] ∪ [A− 6B + z1 + z4, A+ 6B + z1 + z4] ∪ [A− 6B + z1 + z5, A+ 6B + z1 + z5] (respectively,
σess(

1H̃0
s ) = [4A−24B, 4A+24B]∪ [3A−18B+z2, 3A+18B+z2]∪ [2A−12B+2z2, 2A+12B+

2z2]∪ [A−6B+3z2, A+6B+3z2]∪ [2A−12B+z3, 2A+12B+z3]∪ [A−6B+z2+z3, A+6B+z2+
z3]∪ [2A−12B+z4, 2A+12B+z4]∪ [2A−12B+z5, 2A+12B+z5]∪ [A−6B+z2+z4, A+6B+

z2+z4]∪ [A−6B+z2+z5, A+6B+z2+z5]), and discrete spectrum of the operator 1H̃0
s consists

of six eigenvalues: σdisc(1H̃0
s ) = {4z1, 2z1 + z3, 2z1 + z4, 2z1 + z5, z3 + z4, z3 + z5} (respectively,

σdisc(
1H̃0

s ) = {4z2, 2z2 + z3, 2z2 + z4, 2z2 + z5, z3 + z4, z3 + z5}), where z1 (respectively, z2) are
the eigenvalue of operator H̃1.

If −6B

W
6 ε1 < 0 (respectively, 0 < ε1 66B

W
), then the essential spectrum of the operator 1H̃0

s

consists of the union of four segments: σess(1H̃0
s ) = [4A−24B, 4A+24B]∪ [2A−12B+z3, 2A+

12B+z3]∪ [2A−12B+z4, 2A+12B+z4]∪ [2A−12B+z5, 2A+12B+z5], and discrete spectrum
of the operator 1H̃0

s consists of two eigenvalue: σdisc(1H̃0
s ) = {z3 + z4, z3 + z5}.

C) If ε1 = 0 and ε2 > 0, E < W (respectively, ε1 = 0 and ε2 < −2B,E < W ), then
the essential spectrum of the operator 1H̃0

s consists of the union of ten segments: σess(1H̃0
s ) =

[4A−24B, 4A+24B]∪[3A−18B+z, 3A+18B+z]∪[2A−12B+2z, 2A+12B+2z]∪[A−6B+3z,A+
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6B+3z]∪[2A−12B+z3, 2A+12B+z3]∪[A−6B+z+z3, A+6B+z+z3]∪[2A−12B+z4, 2A+12B+
z4]∪[2A−12B+z5, 2A+12B+z5]∪[A−6B+z+z4, A+6B+z+z4]∪[A−6B+z+z5, A+6B+z+z5]

(respectively, σess(1H̃0
s ) = [4A− 24B, 4A+ 24B] ∪ [3A− 18B + z̃, 3A+ 18B + z̃] ∪ [2A− 12B +

2z̃, 2A+12B+2z̃]∪ [A− 6B+3z̃, A+6B+3z̃]∪ [2A− 12B+ z3, 2A+12B+ z3]∪ [A− 6B+ z̃+
z3, A+ 6B + z̃ + z3] ∪ [2A− 12B + z4, 2A+ 12B + z4] ∪ [2A− 12B + z5, 2A+ 12B + z5] ∪ [A−
6B + z̃+ z4, A+6B + z̃+ z4]∪ [A− 6B + z̃+ z5, A+6B + z̃+ z5]), and discrete spectrum of the
operator 1H̃0

s consists of six eigenvalues: σdisc(1H̃0
s ) = {4z, 2z+z3, 2z+z4, 2z+z5, z3+z4, z3+z5}

(respectively, σdisc(1H̃0
s ) = {4z̃, 2z̃+z3, 2z̃+z4, 2z̃+z5, z3+z4, z3+z5}), where z (respectively, z̃),

is the eigenvalue of operator H̃1, and E =
(B + ε2)

2

ε22 + 2Bε2
. If ε1 = 0 and ε2 > 0, E > W (respectively,

ε1 = 0 and ε2 < −2B,E > W ), then the essential spectrum of the operator 1H̃0
s consists of a

union of four segments: σess(1H̃0
s ) = [4A− 24B, 4A+ 24B] ∪ [2A− 12B + z3, 2A+ 12B + z3] ∪

[2A − 12B + z4, 2A + 12B + z4] ∪ [2A − 12B + z5, 2A + 12B + z5] and discrete spectrum of the
operator 2H̃1

t consists of two eigenvalues: σdisc(1H̃0
s ) = {z3 + z4, z3 + z5}.

D) If ε1 =
2(ε22 + 2Bε2)

B
and E <

4

3
W (respectively, ε1 = −2(ε22 + 2Bε2)

B
and E <

4

3
W ), then

the essential spectrum of the operator 1H̃0
s consists of the union of ten segments: σess(1H̃0

s ) =
[4A−24B, 4A+24B]∪[3A−18B+z, 3A+18B+z]∪[2A−12B+2z, 2A+12B+2z]∪[A−6B+3z,A+
6B+3z]∪[2A−12B+z3, 2A+12B+z3]∪[A−6B+z+z3, A+6B+z+z3]∪[2A−12B+z4, 2A+12B+
z4]∪[A−6B+z+z4, A+6B+z+z4]∪[2A−12B+z5, 2A+12B+z5]∪[A−6B+z+z5, A+6B+z+z5]

(respectively, σess(1H̃0
s ) = [4A− 24B, 4A+ 24B] ∪ [3A− 18B + z̃, 3A+ 18B + z̃] ∪ [2A− 12B +

2z̃, 2A+12B+2z̃]∪ [A− 6B+3z̃, A+6B+3z̃]∪ [2A− 12B+ z3, 2A+12B+ z3]∪ [A− 6B+ z̃+
z3, A+6B+ z̃+ z3]∪ [2A− 12B+ z4, 2A+12B+ z4]∪ [A− 6B+ z̃+ z4, A+6B+ z̃+ z4]∪ [2A−
12B+ z5, 2A+12B+ z5]∪ [2A− 12B+ z̃+ z5, 2A+12B+ z̃+ z5]), and discrete spectrum of the
operator 1H̃0

s consists of six eigenvalues: σdisc(1H̃0
s ) = {4z, 2z+z3, 2z+z4, 2z+z5, z3+z4, z3+z5}

(respectively, σdisc(1H̃0
s ) = {4z̃, 2z̃ + z3, 2z̃ + z4, 2z̃ + z5, z3 + z4, z3 + z5}), where z (respectively,

z̃) is the eigenvalue of operator H̃1.

E) If ε2 > 0 and ε1 >
2(ε22 + 2Bε2)

B
and E <

(
1+

α

3

)
W (respectively, ε2 < −2B and

ε1 >
2(ε22 + 2Bε2)

B
and E <

(
1+

α

3

)
W ), then the essential spectrum of the operator 1H̃0

s consists

of the union of ten segments: σess(1H̃0
s ) = [4A−24B, 4A+24B]∪ [3A−18B+z1, 3A+18B+z1]∪

[2A−12B+2z1, 2A+12B+2z1]∪[A−6B+3z1, A+6B+3z1]∪[2A−12B+z3, 2A+12B+z3]∪[A−
6B+z1+z3, A+6B+z1+z3]∪[2A−12B+z4, 2A+12B+z4]∪[A−6B+z1+z4, A+6B+z1+z4]∪[2A−
12B+z5, 2A+12B+z5]∪[A−6B+z1+z5, A+6B+z1+z5], and discrete spectrum of the operator
1H̃0

s consists of six eigenvalues: σdisc(1H̃0
s ) = {4z1, 2z1 + z3, 2z1 + z4, 2z1 + z5, z3 + z4, z3 + z5},

where z1 is the eigenvalue of operator H̃1.

F) If ε2 > 0 and ε1 < −2(ε22 + 2Bε2)

B
and E <

(
1+

α

3

)
W (respectively, ε2 < −2B and

ε1 < −2(ε22 + 2Bε2)

B
and E <

(
1+

α

3

)
W ), then the essential spectrum of the operator 1H̃0

s consists

of the union of ten segments: σess(1H̃0
s ) = [4A−24B, 4A+24B]∪ [3A−18B+z1, 3A+18B+z1]∪

[2A−12B+2z1, 2A+12B+2z1]∪[A−6B+3z1, A+6B+3z1]∪[2A−12B+z3, 2A+12B+z3]∪[A−
6B+z1+z3, A+6B+z1+z3]∪[2A−12B+z4, 2A+12B+z4]∪[A−6B+z1+z4, A+6B+z1+z4]∪[2A−
12B+z5, 2A+12B+z5]∪[A−6B+z1+z5, A+6B+z1+z5], and discrete spectrum of the operator
1H̃0

s consists of six eigenvalues: σdisc(1H̃0
s ) = {4z1, 2z1 + z3, 2z1 + z4, 2z1 + z5, z3 + z4, z3 + z5},

where z1 is the eigenvalue of operator H̃1.

K) If ε2 > 0 and 0 < ε1 <
2(ε22 + 2Bε2)

B
and

(
1 − α

3

)
W < E <

(
1 +

α

3

)
W (respectively,

ε2 < −2B and 0 <ε1 <
2(ε22 + 2Bε2)

B
and

(
1 − α

3

)
W < E <

(
1 +

α

3

)
W ), then the essential
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spectrum of the operator 1H̃0
s consists of the union of nineteen segments: σess(

1H̃0
s ) = [4A −

24B, 4A+24B]∪ [3A− 18B+ z1, 3A+18B+ z1]∪ [3A− 18B+ z2, 3A+18B+ z2]∪ [2A− 12B+
2z1, 2A+12B+2z1]∪ [2A−12B+z1+z2, 2A+12B+z1+z2]∪ [2A−12B+2z2, 2A+12B+2z2]∪
[2A−12B+z4, 2A+12B+z4]∪ [2A−12B+z5, 2A+12B+z5]∪ [A−6B+3z1, A+6B+3z1]∪ [A−
6B+2z1+z2, A+6B+2z1+z2]∪[A−6B+z1+2z2, A+6B+z1+2z2]∪[A−6B+z1+z4, A+6B+
z1+z4]∪ [A−6B+z1+z5, A+6B+z1+z5]∪ [A−6B+3z2, A+6B+3z2]∪ [A−6B+z2+z4, A+
6B+z2+z4]∪ [A−6B+z2+z5, A+6B+z2+z5]∪ [2A−12B+z3, 2A+12B+z3]∪ [A−6B+z1+
z3, A+6B+ z1+ z3]∪ [A− 6B+ z2+ z3, A+6B+ z2+ z3], and discrete spectrum of the operator
1H̃0

s consists of sixteen eigenvalues σdisc(1H̃0
s ) = {4z1, 2z1 + z3, 2z1 + z4, 2z1 + z5, z3 + z4, z3 +

z5, 3z1+z2, 2z1+2z2, z1+3z2, z1+z2+z4, z1+z2+z5, 4z2, 2z2+z4, 2z2+z5, z1+z2+z3, 2z2+z3},
where z1 and z2 is the eigenvalue of operator H̃1.

M) If ε2 > 0 and −2(ε22 + 2Bε2)

B
< ε1 < 0 and

(
1 − α

3

)
W < E <

(
1 +

α

3

)
W (respectively,

ε2 < −2B and −2(ε22 + 2Bε2)

B
< ε1 < 0 and

(
1 − α

3

)
W < E <

(
1 +

α

3

)
W ), then the essential

spectrum of the operator 1H̃0
s consists of the union of nineteen segments: σess(

1H̃0
s ) = [4A −

24B, 4A+24B]∪ [3A− 18B+ z1, 3A+18B+ z1]∪ [3A− 18B+ z2, 3A+18B+ z2]∪ [2A− 12B+
2z1, 2A+12B+2z1]∪ [2A−12B+z1+z2, 2A+12B+z1+z2]∪ [2A−12B+2z2, 2A+12B+2z2]∪
[2A−12B+z4, 2A+12B+z4]∪ [2A−12B+z5, 2A+12B+z5]∪ [A−6B+3z1, A+6B+3z1]∪ [A−
6B+2z1+z2, A+6B+2z1+z2]∪[A−6B+z1+2z2, A+6B+z1+2z2]∪[A−6B+z1+z4, A+6B+
z1+z4]∪ [A−6B+z1+z5, A+6B+z1+z5]∪ [A−6B+3z2, A+6B+3z2]∪ [A−6B+z2+z4, A+
6B+z2+z4]∪ [A−6B+z2+z5, A+6B+z2+z5]∪ [2A−12B+z3, 2A+12B+z3]∪ [A−6B+z1+
z3, A+6B+ z1+ z3]∪ [A− 6B+ z2+ z3, A+6B+ z2+ z3], and discrete spectrum of the operator
1H̃0

s consists of sixteen eigenvalues σdisc(1H̃0
s ) = {4z1, 2z1 + z3, 2z1 + z4, 2z1 + z5, z3 + z4, z3 +

z5, 3z1+z2, 2z1+2z2, z1+3z2, z1+z2+z4, z1+z2+z5, 4z2, 2z2+z4, 2z2+z5, z1+z2+z3, 2z2+z3},
where z1 and z2 is the eigenvalue of operator H̃1.

N) If −2B < ε2 < 0, then the essential spectrum of the operator 1H̃0
s consists of the union

of four segments: σess(1H̃0
s ) = [4A− 24B, 4A+ 24B] ∪ [2A− 12B + z4, 2A+ 12B + z4] ∪ [2A−

12B+ z5, 2A+12B+ z5]∪ [2A− 12B+ z3, 2A+12B+ z3], and discrete spectrum of the operator
1H̃0

s consists of two eigenvalues σdisc(1H̃0
s ) = {z3 + z4, z3 + z5}.

Proof. A). From the representation (5), (12) and the formulas (10),(11) and Theorem 9 in
the work [3], follow the in three-dimensional case, the continuous spectrum of the operator H̃1

consists σcont(H̃1) = [A− 6B,A+6B], and the discrete spectrum of the operator H̃1 consists of
unique eigenvalue z = A+ε1. Therefore, the essential spectrum of the operator H̃1

⊗
I+I

⊗
H̃1

consists from segments [2A− 12B, 2A+ 12B] and [A− 6B + z,A+ 6B + z]. Discrete spectrum
of operator H̃1

⊗
I + I

⊗
H̃1 consists of eigenvalue 2z. The operator H̃2 = H̃1

⊗
I + I

⊗
H̃1 −

2U
∫
T ν

f̃(s,Λ− s)ds, where Λ = λ+µ, has additional eigenvalue z3, and operator H̃3 = H̃1

⊗
I+

I
⊗
H̃1+2U

∫
T ν

f̃(s,Λ−s)ds+2ε2
∫
T ν

∫
T ν

f̃(s, t)dsdt has additional eigenvalues z4 and z5. It follows

that the essential spectrum of operator 1H̃0
s consists of the union of ten segments and discrete

spectrum of operator 1H̃0
s consists of six eigenvalues. These give the proof statement B) of the

Theorem 7.
K) From the representation (5), (12) and the formulas (10) and (11), and Theorem 9 in the

work [3], follow the in three-dimensional case, the continuous spectrum of the operator H̃1 consists
σcont(H̃1) = [A−6B,A+6B], and the discrete spectrum of the operator H̃1 consists of exactly two
eigenvalues z1 and z2. Therefore, the essential spectrum of the operator H̃1

⊗
I+I

⊗
H̃1 consists

from segments [2A−12B, 2A+12B] and [A−6B+z1, A+6B+z1] and [A−6B+z2, A+6B+z2].

Discrete spectrum of operator H̃1

⊗
I + I

⊗
H̃1 consists of eigenvalues 2z1, z1 + z2, and 2z2.
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The operator H̃2 = H̃1

⊗
I + I

⊗
H̃1 − 2U

∫
T ν

f̃(s,Λ − s)ds, where Λ = λ + µ, has additional

eigenvalue z3, and operator H̃3 = H̃1

⊗
I + I

⊗
H̃1 +2U

∫
T ν f̃(s,Λ− s)ds+2ε2

∫
T ν

∫
T ν

f̃(s, t)dsdt

has additional eigenvalues z4 and z5. It follows that the essential spectrum of operator 1H̃0
s

consists of the union of nineteen segments and discrete spectrum of operator 1H̃0
s consists of

sixteen eigenvalues. These give the proof statement K) of the Theorem 7.
The other statements of the Theorem 7 the analogously is proved. 2

Conclusion
In this paper, we consider four-electron systems in the impurity Hubbard model and investi-

gated the structure of essential spectrum and discrete spectra of the system in the first singlet
state of the system. We proved in the first singlet state the essential spectrum of the system
consists of the union of nineteen or sixteen or ten of four segments, and the discrete spectrum
of the system consists of sixteen or ten or six or two eigenvalues. The obtaining results can be
applied in the field of magnetic semiconductors and other fields of science and technology.

They can also be the basis for further research in the field of spectral theory of multiparticle
systems.
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Четырехэлектронный первый синглет в примесной модели
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Аннотация. Рассматривается оператор энергии четырехэлектронных систем в примесной модели
Хаббарда и исследуются структура существенного спектра и дискретный спектр системы для пер-
вого синглетного состояния системы. Исследование показывает, что в случае первого синглетного
состояния имеют место нижеследующие ситуации: 1) в первом синглетном состоянии существен-
ный спектр системы есть объединение десяти отрезков, а дискретный спектр системы состоит из
шести собственных значений; 2) в первом синглетном состоянии существенный спектр системы есть
объединение шестнадцати отрезков, а дискретный спектр системы состоит из десяти собственных
значений; 3) в первом синглетном состоянии существенный спектр системы есть объединение девят-
надцати отрезков, а дискретный спектр системы состоит из шестнадцати собственных значений; 4)
в первом синглетном состоянии существенный спектр системы есть объединение четырех отрезков,
а дискретный спектр системы состоит из двух собственных значений.

Ключевые слова: четырехэлектронная система, примесная модель Хаббарда, синглетное состо-
яние, квинтетное состояние, триплетное состояние, существенный спектр, дискретный спектр.
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Abstract. In 2018, Masjed–Jamei & Koepf [12] established some summation theorems for the gen-
eralized hypergeometric functions. In 2021, Awad et al. [3] investigated extensions of these classical
summation theorems for the series 3F2 and 4F3, with applications in Eulerian-type and Laplace-type
Integrals. In this study, new Eulerian, Laplace, and Edwards-type integrals are established using ex-
tensions of the classical summation theorems provided by Awad et al. [3]. As special instances of our
primary findings, the findings from previous studies by Awad et al. [3], Koepf et al. [9] and Kim et al. [7]
are also demonstrated.
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1. Introduction and preliminaries
The generalised hypergeometric function pFq where p, q ∈ N0, as defined by [1, 6], is an

eminently evident generalisation of the Gauss’s hypergeometric function 2F1 and is given by

pFq

[
a1, . . . , ap
b1, . . . , bq

; z

]
=

∞∑
m=0

(a1)m . . . (ap)m
(b1)m . . . (bq)m

zm

m!
(1)

where bi ̸= 0,−1,−2, · · · , (λ)m is the well known Pochhammer symbol (or the raised factorial
or the shifted factorial since (1)m = m!) defined for any complex a ∈ C by

(λ)m =
Γ(λ+m)

Γ(λ)
,
(
λ ∈ C\Z−

0

)
=

{
λ(λ+ 1) . . . (λ+ n− 1), (n ∈ N)
1, (n = 0)

(2)

∗ambika.1921@nitte.edu.in https://orcid.org/0009-0004-5849-424X
†shanthakk99@gmail.com https://orcid.org/0000-0002-2153-0524
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where Γ is the well known Gamma function.
It can be easily verified by the ratio test [1, 2] that the series is convergent for all p 6 q.

Additionally, it converges in |z| < 1 for p = q + 1, converges everywhere for p < q + 1 and
converges nowhere (z ̸= 0) for p > q + 1.
Further, if p = q + 1, it converges absolutely for |z| = 1 provided

δ = Re

 q∑
j=1

bj −
p∑
j=1

aj

 > 0

holds and is conditionally convergent for |z| = 1 and z ̸= 1 if −1 < δ 6 0 and diverges for |z| = 1
and z ̸= 1 if δ 6 −1. For more details we refer [4, 15].
When p = 2 and q = 1, the above series (1) take the form

2F1

[
a, b
c

; z

]
=

∞∑
n=0

(a)n(b)n
(c)n

zn

n!

which converges for |z| 6 1 and popularly known as Gauss’s hypergeometric function.
When p = 1, q = 1, the series (1) takes the form:

1F1

[
a
c
; z

]
=

∞∑
n=0

(a)n
(c)n

zn

n!

which converges everywhere and is also referred to as Kummer’s function or the Confluent hy-
pergeometric function in the literature. There are numerous physical problems where the hyper-
geometric functions of Kummers and Gauss are used [13,14,17].
In the theory of hypergeometric series, the following classical summation theorems play a key
role.
Gauss summation theorem [8]

2F1

[
a, b
c

; 1

]
=

Γ (c) Γ (c− a− b)

Γ (c− a) Γ (c− b)
(3)

provided Re(c− a− b) > 0.
Gauss second summation theorem [8]

2F1

[
a, b

1
2 (a+ b+ 1)

;
1

2

]
=

Γ
(
1
2

)
Γ
(
1
2a+

1
2b+

1
2

)
Γ
(
1
2a+

1
2

)
Γ
(
1
2b+

1
2

) . (4)

Kummer summation theorem [8]

2F1

[
a, b

1 + a− b
;−1

]
=

Γ
(
1 + 1

2a
)
Γ (1 + a− b)

Γ (1 + a) Γ
(
1 + 1

2a− b
) . (5)

Bailey summation theorem [8]

2F1

[
a, 1− a

b
;
1

2

]
=

Γ
(
1
2b
)
Γ
(
1
2b+

1
2

)
Γ
(
1
2b+

1
2a
)
Γ
(
1
2b−

1
2a+

1
2

) . (6)

In 2010, Kim et al. [10] extended the classical summation theorems described above in the
following form:
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Extended Gauss summation theorem :

3F2

[
a, b, d+ 1
c+ 1, d

; 1

]
=

=
Γ (c+ 1)Γ (c− a− b)

Γ (c− a+ 1)Γ (c− b+ 1)

[
(c− a− b) +

ab

d

] (7)

provided Re(c− a− b) > 0.
For d = c, it reduces to Gauss summation Theorem (3).
Extended Gauss second summation theorem :

3F2

[
a, b, d+ 1

1
2 (a+ b+ 3), d

;
1

2

]
=

Γ
(
1
2

)
Γ
(
1
2a+

1
2b+

3
2

)
Γ
(
1
2a−

1
2b−

1
2

)
Γ
(
1
2a−

1
2b+

3
2

) ×

×

{ (
1
2 (a+ b− 1)− ab

d

)
Γ
(
1
2a+

1
2

)
Γ
(
1
2b+

1
2

) + (
1
d (a+ b+ 1)− 2

)
Γ
(
1
2a
)
Γ
(
1
2b
) }

.

(8)

For d =
1

2
(a+ b+ 1), it reduces to Gauss second summation Theorem (4).

Extended Kummer summation theorem :

3F2

[
a, b, d+ 1
2 + a− b, d

;−1

]
=

Γ
(
1
2

)
Γ (2 + a− b)

2a(1− b)
×

×

{ (
1
d (1 + a− b)− 1

)
Γ
(
1
2a
)
Γ
(
1
2a− b+ 3

2

) +

(
1− a

d

)
Γ
(
1
2a+

1
2

)
Γ
(
1 + 1

2a− b
)} . (9)

For d = 1 + a− b, it reduces to Kummer summation Theorem (5).
Extended Bailey summation theorem :

3F2

[
a, 1− a, d+ 1

b+ 1, d
;
1

2

]
=

=
Γ
(
1
2

)
Γ (b+ 1)

2b
×

×

{ (
2
d

)
Γ
(
1
2b+

1
2a
)
Γ
(
1
2b−

1
2a+

1
2

) +

(
1− b

d

)
Γ
(
1
2b+

1
2a+

1
2

)
Γ
(
1
2b−

1
2a+ 1

)} .
(10)

For d = b, it reduces to Bailey summation Theorem (6).

2. Results required
In order to establish some new results in this paper, we shall need the following known result

recorded in [11]

pFq

[
a1, . . . , ap−1, 1
b1, . . . , bq−1, m

; z

]
=

=
Γ(b1) . . .Γ(bq−1)

Γ(a1) . . .Γ(ap−1)

Γ(1 + a1 −m) . . .Γ(1 + ap−1 −m)

Γ(1 + b1 −m) . . .Γ(1 + bq−1 −m)

(m− 1)!

zm−1
×

×
{

p−1Fq−1

[
1 + a1 −m, . . . , 1 + ap−1 −m,
1 + b1 −m, . . . , 1 + bq−1 −m,

; z

]
−

−
(m−2)

p−1Fq−1

[
1 + a1 −m, . . . , 1 + ap−1 −m,
1 + b1 −m, . . . , 1 + bq−1 −m,

; z

]}
(11)
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where
(m)

pFq is the finite sum of the hypergeometric series defined by

(m)

pFq

[
a1, . . . , ap,
b1, . . . , bq,

; z

]
=

m∑
n=0

(a1)n . . . (ap)n
(b1)n . . . (bq)n

zn

n!
, (12)

where for instance,

(−1)

pFq [z] = 0,
(0)

pFq[z] = 1,
(1)

pFq[z] = 1 +
a1 . . . ap
b1 . . . bq

z.

In 2018, Masjed–Jamei and Koepf [12] generalized the classical summation theorems (3) to (10)
and in 2021, extensions of these results are established by Awad et al. [3] in the following form :

Extension of Gauss’s Summation Theorem:

4F3

[
a, b, d+ 1, 1
c+ 1, d, m

; 1

]
=

Γ(m)Γ(c+ 1)Γ(d)Γ(1 + a−m)Γ(1 + b−m)Γ(d−m+ 2)

Γ(a)Γ(b)Γ(d+ 1)Γ(c−m+ 2)Γ(d−m+ 1)
×

×
{
Γ(c−m+ 2)Γ(c− a− b− 1 +m)

Γ(c− a+ 1)Γ(c− b+ 1)
×

×
[
(c− a− b− 1 +m) +

(a−m+ 1)(b−m+ 1)

(d−m+ 1)

]
−

−
(m−2)

3F2

[
a−m+ 1, b−m+ 1, d−m+ 2

c−m+ 2, d−m+ 1
; 1

]}
=

= Ω1,

(13)

provided m ∈ N and Re(c− a− b+m− 1) > 0

Extension of Gauss’s Second Summation Theorem :

4F3

[
a, b, d+ 1, 1

1
2 (a+ b+ 3), d, m

;
1

2

]
=

=
2m−1Γ(m)Γ(d)Γ(1 + a−m)Γ(1 + b−m)Γ(d−m+ 2)Γ

(
1
2 (a+ b+ 3)

)
Γ(a)Γ(b)Γ(d+ 1)Γ

(
1
2 (a+ b+ 5)−m

)
Γ(d−m+ 1)

×

×

{
k −

(m−2)

3F2

[
a−m+ 1, b−m+ 1, d−m+ 2

1
2 (a+ b+ 5)−m, d−m+ 1

;
1

2

]}
=

= Ω2,

(14)

where m ∈ N and

k =
Γ
(
1
2

)
Γ
(
1
2 (a+ b+ 5)−m

)
Γ
(
1
2 (a− b− 1)

)
Γ
(
1
2 (a− b+ 3)

)

[
1
2 (a+ b− 2m+ 1)− (a−m+1)(b−m+1)

(d−m+1)

]
Γ
(
1
2a+ 1− 1

2m
)
Γ
(
1
2b+ 1− 1

2m
) +

+

[
(a+b−2m+3)
(d−m+1) − 2

]
Γ
(
1
2a+

1
2 − 1

2m
)
Γ
(
1
2b+

1
2 − 1

2m
)
 .
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Extension of Kummer’s Summation Theorem :

4F3

[
a, b, d+ 1, 1

1 + a− b+m, d, m
;−1

]
=

=
(−1)m−1Γ(m)Γ(d)Γ(1 + a−m)Γ(1+b−m)Γ(d−m+ 2)Γ (1 + a− b+m)

Γ(a)Γ(b)Γ(d+ 1)Γ (2+a− b) Γ(d−m+ 1)
×

×

{
k −

(m−2)

3F2

[
a−m+ 1, b−m+ 1, d−m+ 2

2 + a− b, d−m+ 1
;−1

]}
=

= Ω3,

(15)

where m ∈ N and

k =
Γ
(
1
2

)
Γ (2 + a− b)

2a−m+1(m− b)


(
a−b−d+m
1+d−m

)
Γ
(
1
2a+

1
2 − 1

2m
)
Γ
(
1
2a− b+ 1

2m+ 1
) +

+

(
d−a

1+d−m

)
Γ
(
1
2a+ 1− 1

2m
)
Γ
(
1
2a− b+ 1

2m+ 1
2

)
 .

Extension of Bailey’s Summation Theorem :

4F3

[
a, 2m− a− 1, d+ 1, 1

b+ 1, d, m
;
1

2

]
=

=
2m−1Γ(m)Γ(b+ 1)Γ(d)Γ(m− a)Γ(1 + a−m)Γ(d−m+ 2)

Γ(a)Γ(d+ 1)Γ (2m− a− 1) Γ(2 + b−m)Γ(1 + d−m)
×

×

{
k −

(m−2)

3F2

[
a−m+ 1, m− a, 2 + d−m

2 + b−m, 1 + d−m
;
1

2

]}
=

= Ω4,

(16)

where m ∈ N and

k =
Γ
(
1
2

)
Γ (2 + b−m)

2b−m+1


(

2
1+d−m

)
Γ
(
1
2b+

1
2a−m+ 1

)
Γ
(
1
2b−

1
2a+

1
2

) +

+

(
1− 1+b−m

1+d−m

)
Γ
(
1
2b+

1
2a−m+ 3

2

)
Γ
(
1
2b−

1
2a+ 1

)
 .

As an application of the results (13) to (16), Awad et. al. [3] evaluated new class of Eulerian-type
integrals and Laplace-type integrals involving generalized hypergeometric functions.

Edward’s double integral : The following double integral is attributed to Edwards [5], and
we intend to produce eight double integrals involving generalised hypergeometric functions by
utilising this result.∫ 1

0

∫ 1

0

yα(1− x)α−1(1− y)β−1(1− xy)1−α−βdxdy =
Γ(α)Γ(β)

Γ(α+ β)
(17)

provided Re(α) > 0, Re(β) > 0.
The goal of this study is to evaluate four new integrals of Eulerian-type in Section 3, four integrals
of Laplace-type in Section 4, and eight integrals of Edwards-type in Section 5 that use generalised
hypergeometric functions, utilising the extended summation Theorems (13)–(16) recorded in [3].
The same will be given in the next section.
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3. Eulerian-type single integrals
In this section, we shall establish the following four integrals asserted in the following theo-

rems.

Theorem 3.1. For m ∈ N, Re(e) > 0, Re(f − e) > −1 and Re(c − a − b + m) > −1, the
following result holds true.∫ 1

0

xe−1(1− x)f−e5F4

[
a, b, f + 1, d+ 1, 1

c+ 1, d, e, m
;x

]
dx =

=
Γ(e)Γ(f − e+ 1)

Γ(f + 1)
Ω1,

(18)

where Ω1 is same as given in (13).

Theorem 3.2. For m ∈ N, Re(e) > 0 and Re(f − e+ 3) > 0 the following result holds true.∫ 1

0

xe−1(1− x)
1
2 (f−e+1)

5F4

[
a, b, 1

2 (f + e+ 3), d+ 1, 1
1
2 (a+ b+ 3), d, e, m

;
x

2

]
dx =

=
Γ(e)Γ( 12 (f − e+ 3))

Γ( 12 (f + e+ 3))
Ω2,

(19)

where Ω2 is the same as given in (14).

Theorem 3.3. For m ∈ N, Re(e) > 0 and Re(a−2e+m) > −1 the following result holds true.∫ 1

0

xe−1(1− x)a−2e+m
5F4

[
a, b, a− e+m+ 1, d+ 1, 1

1 + a− b+m, d, e, m
;−x

]
dx =

=
Γ(e)Γ(a− 2e+m+ 1)

Γ(a− e+m+ 1)
Ω3,

(20)

where Ω3 is the same as given in (15).

Theorem 3.4. For m ∈ N, Re(e) > 0 and Re(f − e) > −1 the following result holds true.∫ 1

0

xe−1(1− x)f−e5F4

[
a, 2m− a− 1, f + 1, d+ 1, 1

b+ 1, e, d, m
;
x

2

]
dx =

=
Γ(e)Γ(f − e+ 1)

Γ(f + 1)
Ω4,

(21)

where Ω4 is the same as given in (16).

Proof. The derivations of the four Eulerian-type integrals asserted in the above mentioned
theorems are quite straight forward. Therefore in order to evaluate the integral (18) we proceed
as follows. Denoting the left-hand side of (18) by I, we have

I =

∫ 1

0

xe−1(1− x)f−e5F4

[
a, b, f + 1, d+ 1, 1

c+ 1, d, e, m
;x

]
dx.

Now, by expressing 5F4 as a series and altering the sequence of integration and summation,
which is easily seen to be justified due to the uniform convergence of the series involved in the
process, we have

I =

∞∑
n=0

(a)n (b)n (f + 1)n (d+ 1)n (1)n
(c+ 1)n (d)n(e)n (m)n n!

∫ 1

0

xn+e−1(1− x)f−edx.
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Evaluating the beta integral and using the result (2) we get, after some simplification

I =
Γ(e)Γ(f − e+ 1)

Γ(f + 1)

∞∑
n=0

(a)n (b)n (d+ 1)n (1)n
(c+ 1)n (d)n (m)n n!

.

Summing up the series, we have

I =
Γ(e)Γ(f − e+ 1)

Γ(f + 1)
4F3

[
a, b, d+ 1, 1
c+ 1, d, m

; 1

]
,

Finally, using the summation theorem (13), we easily arrive at the right-hand side of (18).
This completes the proof of (18). 2

In a similar way, the summation theorems (14), (15) and (16) respectively can be employed
to evaluate the integrals (19) to (21) asserted in Theorems 3.2 to 3.4. We however, prefer to
omit the details.

3.1. Special cases
In this section, we shall mention several known results.

(i) In (18), if we take e = b and f = c, we get a known result due to Awad et al. [3].

(ii) In (19), if we take f = a and e = b, we get a known result due to Awad et al. [3].

(iii) In (20), if we take e = b, we get a known result due to Awad et al. [3].

(iv) In (21), if we take e = a and f = b, we get a known result due to Awad et al. [3].

Similarly, other results can be obtained.
We conclude this section by remarking that the integrals (18) to (21) asserted in Theorems 3.1
to 3.4 are of a fairly general nature because of the presence of m ∈ N. So by assigning values to
m, we can obtain a large number of integrals, which may be potentially useful.

4. Laplace-type single integrals
In this section, we shall establish new class of four Laplace-type integrals involving generalized

hypergeometric functions asserted in the following theorems.

Theorem 4.1. For m ∈ N, Re(s) > 0, Re(e) > 0, the following result holds true.∫ ∞

0

e−stte−1
4F4

[
a, b, d+ 1, 1
e, c+ 1, d, m

; st

]
dt = Γ(e)s−eΩ1, (22)

where Ω1 is the same as given in (13).

Theorem 4.2. For m ∈ N,Re(s) > 0,Re(c) > 0,the following result holds true.∫ ∞

0

e−sttc−1
4F4

[
a, b, d+ 1, 1

1
2 (a+ b+ 3), c, d, m

;
st

2

]
dt = Γ(c)s−cΩ2, (23)

where Ω2 is the same as given in (14).

Theorem 4.3. For m ∈ N,Re(s) > 0 and Re(e) > 0,the following result holds true.∫ ∞

0

e−stte−1
4F4

[
a, b, d+ 1, 1

1 + a− b+m, e, d, m
;−st

]
dt = Γ(e)s−eΩ3, (24)

where Ω3 is the same as given in (15).
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Theorem 4.4. For m ∈ N,Re(s) > 0 and Re(c) > 0,the following result holds true.∫ ∞

0

e−sttc−1
4F4

[
a, 2m− a− 1, d+ 1, 1

b+ 1, c, d, m
;
st

2

]
dt = Γ(c)s−cΩ4, (25)

where Ω4 is the same as given in (16).

Proof. The derivations of the four Laplace-type integrals asserted in the above mentioned the-
orems are quite straight forward. Therefore, in order to evaluate the integral (22) asserted in
Theorem 4.1, we proceed as follows. Denoting the left-hand side of (22) by I, we have,

I =

∫ ∞

0

e−stte−1
4F4

[
a, b, d+ 1, 1
e, c+ 1, d, m

; st

]
dt,

Now express 4F4 as a series, change the order of integration and summation which is justified
due to the uniform convergence of the series, we have

I =

∞∑
n=0

(a)n (b)n(d+ 1)n(1)ns
n

(e)n(c+ 1)n(d)n(m)nn!

∫ ∞

0

e−sttn+e−1dt,

Evaluating the Gamma integral and using the result (2) we have,

I = Γ(e)s−e
∞∑
n=0

(a)n (b)n(d+ 1)n(1)n
(c+ 1)n(d)n(m)nn!

Summing up the series, we have,

I = Γ(e)s−e4F3

[
a, b, d+ 1, 1
c+ 1, d, m

; 1

]
,

Finally using summation theorem (13), we easily arrive at the right-hand side of (22). 2

This completes the proof of (22).
In exactly the same manner, the integrals (23) to (25) asserted in Theorems 4.2 to 4.4 can be
evaluated with the help of the summation Theorems (14), (15) and (16) respectively.

4.1. Special cases
In this section, we shall mention some known results.

(i) In (22), if we take e = b, we get a known result due to Awad et al. [3].

(ii) In (22), if we take e = b and d = c, we get a known result due to Koepf et al. [9].

(iii) In (23), if we take c = a, we get a known result due to Awad et al. [3].

(iv) In (23), if we take c = a and d =
1

2
(a+ b+1), we get a known result due to Koepf et al. [9].

(v) In (24), if we take e = b, we get a known result due to Awad et al. [3].

(vi) In (24), if we take e = b and d = a− b+m, we get a known result due to Koepf et al. [9].

(vii) In (25), if we take c = a, we get a known result due to Awad et al. [3].

(viii) In (25), if we take c = a and d = b, we get a known result due to Koepf et al. [9].

We conclude this section by remarking that the integrals (22) to (25) asserted in Theorems 4.1
to 4.4 are of very general nature because of the presence of m ∈ N. So by giving values to m ∈ N,
we can obtain a large number of integrals, which may be potentially useful.
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5. Edwards-type double integrals

In this section, we shall establish eight new class of Edwards-type double integrals involving
generalized hypergeometric functions asserted in the following theorems. Derivations of these
theorems are exactly similar to the derivations of (18) to (21) with the help of Edwards’s Inte-
gral (17). Hence we prefer to omit the proof.

Theorem 5.1. For m ∈ N, Re(α) > 0,Re(β) > 0, Re(c − a − b +m) > 1, the following result
holds true.∫ 1

0

∫ 1

0

yα(1− x)α−1(1− y)β−1(1− xy)1−α−β 5F4

[
a, b, d+ 1, α+ β, 1

c+ 1, d, α, m
;
y(1− x)

1− xy

]
dxdy =

=
Γ(α)Γ(β)

Γ(α+ β)
Ω1,

(26)

where Ω1 is the same as given in (13).

Theorem 5.2. For m ∈ N, Re(α) > 0,Re(β) > 0, the following result holds true.∫ 1

0

∫ 1

0

yα(1− x)α−1(1− y)β−1(1− xy)1−α−β ×

× 5F4

[
a, b, d+ 1, α+ β, 1
1
2 (a+ b+ 3), d, α, m

;
y(1− x)

2(1− xy)

]
dxdy =

=
Γ(α)Γ(β)

Γ(α+ β)
Ω2,

(27)

where Ω2 is the same as given in (14).

Theorem 5.3. For m ∈ N, Re(α) > 0,Re(β) > 0, the following result holds true.∫ 1

0

∫ 1

0

yα(1− x)α−1(1− y)β−1(1− xy)1−α−β ×

× 5F4

[
a, b, d+ 1, α+ β, 1

1 + a− b+m, d, α, m
;
−y(1− x)

1− xy

]
dxdy =

=
Γ(α)Γ(β)

Γ(α+ β)
Ω3,

(28)

where Ω3 is the same as given in (15).

Theorem 5.4. For m ∈ N, Re(α) > 0, Re(β) > 0, the following result holds true.∫ 1

0

∫ 1

0

yα(1− x)α−1(1− y)β−1(1− xy)1−α−β ×

× 5F4

[
a, 2m− a− 1, d+ 1, α+ β, 1

b+ 1, d, α, m
;
y(1− x)

2(1− xy)

]
dxdy =

=
Γ(α)Γ(β)

Γ(α+ β)
Ω4,

(29)

where Ω4 is the same as given in (16).
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Theorem 5.5. For m ∈ N, Re(α) > 0, Re(β) > 0, the following result holds true.∫ 1

0

∫ 1

0

yα(1− x)α−1(1− y)β−1(1− xy)1−α−β5F4

[
a, b, d+ 1, α+ β, 1

c+ 1, d, β, m
;
(1− y)

1− xy

]
dxdy =

=
Γ(α)Γ(β)

Γ(α+ β)
Ω1,

(30)

where Ω1 is the same as given in (13).

Theorem 5.6. For m ∈ N, Re(α) > 0, Re(β) > 0, the following result holds true.∫ 1

0

∫ 1

0

yα(1− x)α−1(1− y)β−1(1− xy)1−α−β × 5F4

[
a, b, d+ 1, α+ β, 1
1
2 (a+ b+ 3), d, β, m

;
(1− y)

2(1− xy)

]
dxdy =

=
Γ(α)Γ(β)

Γ(α+ β)
Ω2, (31)

where Ω2 is the same as given in (14).

Theorem 5.7. For m ∈ N, Re(α) > 0, Re(β) > 0, the following result holds true.∫ 1

0

∫ 1

0

yα(1− x)α−1(1− y)β−1(1− xy)1−α−β × 5F4

[
a, b, d+ 1, α+ β, 1

1 + a− b+m, d, β, m
;
−(1− y)

(1− xy)

]
dxdy =

=
Γ(α)Γ(β)

Γ(α+ β)
Ω3, (32)

where Ω3 is the same as given in (15).

Theorem 5.8. For m ∈ N, Re(α) > 0, Re(β) > 0, the following result holds true.∫ 1

0

∫ 1

0

yα(1− x)α−1(1− y)β−1(1− xy)1−α−β ×

× 5F4

[
a, 2m− a− 1, d+ 1, α+ β, 1

b+ 1, d, β, m
;

(1− y)

2(1− xy)

]
dxdy =

=
Γ(α)Γ(β)

Γ(α+ β)
Ω4,

(33)

where Ω4 is the same as given in (16).

5.1. Special cases

In this section, we shall mention several known results.

(i) In (26), by taking α = b, β = c− b and replacing c by d, we get a known result due to Kim
et al. [7].

(ii) In (27), by taking α = b, β =
1

2
(a− b+1) and replacing d by

1

2
(a+ b+1), we get a known

result due to Kim et al. [7].

(iii) In (28), by taking α = b, β = a − 2b +m and replacing d by a − b +m, we get a known
result due to Kim et al. [7].

(iv) In (29), by taking α = a, β = b− a and replacing d by b, we get a known result due to Kim
et al. [7].
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(v) In (30), by taking α = c− b, β = b and replacing d by c, we get a known result due to Kim
et al. [7].

(vi) In (31), by taking α = 1
2 (a− b+1), β = b and replacing d by

1

2
(a+ b+1), we get a known

result due to Kim et al. [7].

(vii) In (32), by taking α = a − 2b +m, β = b and replacing d by a − b +m, we get a known
result due to Kim et al. [7].

(viii) In (33), by taking α = b− a, β = a and replacing d by b, we get a known result due to Kim
et al. [7].

Concluding remark

In this paper, an effort has been made to provide a list of new Eulerian-type integrals involving
generalised hypergeometric functions pFq for p = 5 and q = 4, a list of new Laplace-type integrals
involving generalised hypergeometric functions, pFp for p = 4, in their most general forms and
a list of Edwards-type integrals involving generalized hypergeometric functions pFq for p = 5
and q = 4. These are obtained with the help of the summation theorems obtained very recently
by Awad, et al. [3]. Several known results have also been obtained as special cases of our
main findings. The results established in this paper are simple to accomplish, interesting, easily
established and may be potentially useful.

As a final note to conclude this section, we would like to point out that, further applications
of the Masjed–Jamei and Koepf extended summation theorems are currently being investigated
and will be discussed in a part of the subsequent paper in this direction.
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О некоторых новых интегралах типа Эйлера, Лапласа и
Эдвардса, содержащих обобщенные гипергеометрические
функции

Амбика Нараяна
AJ Институт инженерии и технологий

Висвесварайский технологический университет (ВТУ), Белагави
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Аннотация. В 2018 году Masjed–Jamei & Koepf [12] установили некоторые теоремы суммиро-
вания для обобщенных гипергеометрических функций. В 2021 году Awad et al. [3] исследовали
расширения этих классических теорем суммирования для рядов 3F2 и 4F3 с приложениями в ин-
тегралах типа Эйлера и Лапласа. В этом исследовании устанавливаются новые интегралы типа
Эйлера, Лапласа и Эдвардса с использованием расширений классических теорем суммирования,
предоставленных Awad et al. [3]. В качестве особых примеров наших основных результатов также
продемонстрированы результаты предыдущих исследований Авада и др. [3], Кёпфа и др. [9] и Кима
и др. [7].

Ключевые слова: обобщенная гипергеометрическая функция, классические теоремы суммиро-
вания, интеграл типа Эйлера, интеграл типа Лапласа, интеграл типа Эдвардса.
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