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Abstract. The aim of this paper is to obtain some integral formulas involving products of two incomplete
beta functions in terms of general triple hypergeometric series and Kampé de Fériet function. Some new
particular integral formulas involving the incomplete beta function are also calculated as an application
of our main results with the help of Whipple, Dixon and extension of Dixon summation theorems.
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1. Introduction
The generalized hypergeometric function pFq with p numerator parameters and q denominator

parameters (p and q are positive integers or zero and z is complex variable) is defined by (see
[10,11])

pFq

[
a1,...,ap ;
b1,...,bq ;

z

]
=

∞∑
n=0

(a1)n ...(ap)n
(b1)n ...(bq)n

zn

n!
, (1)

where (λ)n denotes the Pochhammer’s symbol defined by

(λ)n=

{
1 , (n=0)

λ(λ+1)(λ+2)...(λ+n−1) , (n∈N)

=
Γ(λ+n)

Γ(λ)
, (λ ∈ C\Z−

0 ) (2)

and Γ(λ) is the gamma function defined by

Γ(λ)=

∫ ∞

0

tλ−1e−tdt, ℜ(λ)>0. (3)

The classical beta function B(a,b) is defined by (see [11])

B(a,b)=



∫ 1

0

ta−1(1−t)b−1dt , ℜ(a)>0, ℜ(b)>0,

Γ(a)Γ(b)

Γ(a+b)
, a,b ̸=0,−1,−2,... .

(4)

∗ah-a-atash@hotmail.com
c⃝ Siberian Federal University. All rights reserved
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The incomplete beta function is defined as follows [8]:

Bz(a,b)=

∫ z

0

ta−1(1−t)b−1dt, 06z61, a,b>0. (5)

Further, the substitution t=sin2(θ) gives

Bz(a,b)=2

∫ arcsin
√
z

0

sin2a−1(θ)cos2b−1(θ)dθ. (6)

The hypergeometric representation of incomplete beta function is given by [8]

Bz(a,b)=a
−1za2F1[a,1−b;a+1;z]. (7)

Also, we recalling the following formulas for the incomplete beta function [7]:

Bz(a,b)=B(a,b)−B1−z(b,a), (8)

Bz(1,1)=z, Bz(a,1)=
za

a
. (9)

The Kampé de Fáriet function of two variables F p:q;kl:m;n[x,y] is defined and represented as follows
[10,11]:

F
p : q ; k

l :m ; n

(ap) : (bq) ; (ck) ;

(αl) : (βm) ; (γn) ;
x , y



=

∞∑
r,s=0

p∏
j=1

(aj)r+s
q∏
j=1

(bj)r
k∏
j=1

(cj)s

l∏
j=1

(αj)r+s
m∏
j=1

(βj)r
n∏
j=1

(γj)s

xr

r!

ys

s!
. (10)

Furthermore, we recall that the general triple hypergeometric series F (3)[x,y,z] is defined by
[10,11]:

F (3)[x,y,z]=F (3)

(a) :: (b) ; (b′) ; (b′′) : (c) ; (c′) ; (c′′) ;
(e) :: (g) ; (g′) ; (g′′) : (h) ; (h′) ; (h′′) ;

x,y,z


=

∞∑
m,n,p=0

Λ(m,n,p)
xm

m!

yn

n!

zp

p!
, (11)

where, for convenience,

Λ(m,n,p)=

∏A
j=1(aj)m+n+p

∏B
j=1(bj)m+n

∏B′

j=1(b
′
j)n+p

∏B′′

j=1(b
′′
j )p+m∏E

j=1(ej)m+n+p

∏G
j=1(gj)m+n

∏G′

j=1(g
′
j)n+p

∏G′′

j=1(g
′′
j )p+m

×

×
∏C
j=1(cj)m

∏C′

j=1(c
′
j)n
∏C′′

j=1(c
′′
j )p∏H

j=1(hj)m
∏H′

j=1(h
′
j)n
∏H′′

j=1(h
′′
j )p

(12)

and (a) abbreviates the array of A parameters a1,a2,...,aA, with similar interpretations for
(b),(b′),(b′′) and so on.
Recently some works for the incomplete beta function with applications have been considered by
several authors, see [1,3,4]. In this paper, we obtain some integral formulas involving products of
two incomplete beta functions. Further, we apply these results with the help of Whipple, Dixon
and extension of Dixon summation theorems to compute some new particular integral formulas
involving incomplete beta function.
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2. Integral formulas for the incomplete beta function

In this section, we establish four integral formulas involving products of two incomplete beta
functions asserted by the following theorems:

Theorem 2.1. The following integral formula holds true:∫ x

0

zk−1(1−z)p−1Bz(a,b)Bz(c,d)dz=

=
xa+c+k

ac(a+c+k)
F (3)

 a+c+k ::− ;− ;− : a,1−b ; c,1−d ; 1−p ;

a+c+k+1 ::− ;− ;− : a+1 ; c+1 ; − ;
x,x,x

. (13)

Proof. Denoting the left hand side of (13) by L, replacing the two incomplete beta functions
by their hypergeometric representations given in (7), expanding the two 2F1 in a power series,
changing the order of summation and integration and using (5), we get

L=

∫ x

0

zk−1(1−z)p−1Bz(a,b)Bz(c,d)dz=

=
1

ac

∞∑
m,n=0

(a)m(1−b)m(c)n(1−d)n
(a+1)m(c+1)nm!n!

Bx(a+c+k+m+n,p). (14)

Again, replacing the incomplete beta function in the right hand side of (14) by its hypergeometric
representation given in (7) and expanding 2F1 in a power series we have

L=

∫ x

0

zk−1(1−z)p−1Bz(a,b)Bz(c,d)dz=

=
1

ac

∞∑
m,n=0

(a)m(1−b)m(c)n(1−d)nxmxn

(a+1)m(c+1)nm!n!
×

× xa+c+k

a+c+k+m+n

∞∑
s=0

(a+c+k+m+n)s(1−p)sxs

(a+c+k+1+m+n)ss!
. (15)

Finally, by using the following identities:

a

a+m
=

(a)m
(a+1)m

, (16)

(a)m+n=(a)m(a+m)n, (17)

we get the right hand side of (13).This completes the proof of Theorem 2.1.

Corollary 2.1. For c=d=1 in Theorem 2.1 yields the following result:∫ x

0

zk−1(1−z)p−1Bz(a,b)dz=

=
xa+k

a(a+k)
F
1 : 2 ; 1

1 : 1 ; 0

 a+k : a,1−b ; 1−p ;

a+k+1 : a+1 ; − ;
x , x

. (18)

– 7 –
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Theorem 2.2. The following integral formula holds true:∫ x

0

zk−1(1−z)p−1Bz(a,b)B1−z(c,d)dz=

=
B(c,d)xa+k

a(a+k)
F
1 : 2 ; 1

1 : 1 ; 0

 a+k : a,1−b ; 1−p ;

a+k+1 : a+1 ; − ;
x , x

−
− xa+d+k

ad(a+d+k)
F (3)

 a+d+k ::− ;− ;− : a,1−b ; d,1−c ; 1−p ;

a+d+k+1 ::− ;− ;− : a+1 ; d+1 ; − ;
x,x,x

. (19)

Proof. Denoting the left hand side of (19) by L and then applying the result (8), we have

L=

∫ x

0

zk−1(1−z)p−1Bz(a,b)B1−z(c,d)dz=

=

∫ x

0

zk−1(1−z)p−1Bz(a,b)(B(c,d)−Bz(d,c))dz=

=B(c,d)

∫ x

0

zk−1(1−z)p−1Bz(a,b)dz−
∫ x

0

zk−1(1−z)p−1Bz(a,b)Bz(d,c)dz

Now, using (13) and (18), we obtain the desired result.

If we use the same technique as in the proof of the integral (13) asserted in the Theorem 2.1,
we have the following theorem:

Theorem 2.3. The following integral formula holds true:∫ 1

0

zk−1(1−z)p−1Bz(a,b)B1−z(c,d)dz=

=
B(a+k,c+p)

ac
F
0 : 3 ; 3

1 : 1 ; 1

 − : a,1−b,a+k ; c,1−d,c+p ;

a+c+k+p : a+1 ; c+1 ;
1 , 1

. (20)

Corollary 2.2. For c=d=1 in Theorem 2.3 yields the following result:∫ 1

0

zk−1(1−z)p−1Bz(a,b)dz=

=
B(a+k,p)

a
3F2

 a,1−b,a+k ;

a+1,a+k+p ;
1

. (21)

Corollary 2.3. For a=b=1 in Theorem 2.3 yields the following result:∫ 1

0

zk−1(1−z)p−1B1−z(c,b)dz=

=
B(k,c+p)

c
3F2

 c,1−d,c+p ;

c+1,c+k+p ;
1

. (22)

– 8 –
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Theorem 2.4. The following integral formula holds true:∫ 1

0

zk−1(1−z)p−1Bz(a,b)Bz(c,d)dz=

=
B(c,d)B(a+k,p)

a
3F2

 a,1−b,a+k ;

a+1,a+k+p ;
1

−
−B(a+k,d+p)

ad
F
0 : 3 ; 3

1 : 1 ; 1

 − : a,1−b,a+k ; d,1−c,d+p ;

a+d+k+p : a+1 ; d+1 ;
1 , 1

. (23)

Proof. Denoting the left hand side of (23) by L and then applying the result (8), we have

L=

∫ 1

0

zk−1(1−z)p−1Bz(a,b)Bz(c,d)dz=

=

∫ 1

0

zk−1(1−z)p−1Bz(a,b)(B(c,d)−B1−z(d,c))dz=

=B(c,d)

∫ 1

0

zk−1(1−z)p−1Bz(a,b)dz−
∫ 1

0

zk−1(1−z)p−1Bz(a,b)B1−z(d,c)dz

Now, using (20) and (21), we obtain the desired result.

Corollary 2.4. For k=p=1 in Theorem 2.4 yields the following result:∫ 1

0

Bz(a,b)Bz(c,d)dz=

=B(c,d)B(a,b+1)−B(d,a+c+1)

a(a+1)
3F2

 a,1−b,a+c+1 ;

a+2,a+c+d+1 ;
1

. (24)

Remark 2.1. Note that ∫ 1

0

Bz(a,b)B1−z(c,d)dz=

=
B(c,a+d+1)

a(a+1)
3F2

 a,1−b,a+d+1 ;

a+2,a+c+d+1 ;
1

. (25)

Corollary 2.5. For k=2, p=1 in Theorem 2.4 yields the following result:∫ 1

0

zBz(a,b)Bz(c,d)dz=
1

2
B(c,d)(B(a,b)−B(a+2,b))−

−B(d,a+c+2)

a(a+2)
4F3

 a,1−b,a+2,a+c+2 ;

a+1,a+3,a+c+d+2 ;
1

. (26)

– 9 –
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Remark 2.2. Note that∫ 1

0

zBz(a,b)B1−z(c,d)dz=

=
B(c,a+d+2)

a(a+2)
4F3

 a,1−b,a+2,a+d+2 ;

a+1,a+3,a+c+d+2 ;
1

. (27)

3. Some particular integrals with examples
In this section, we compute some particular integrals involving the incomplete beta function

as an applications of our main results given in Section 2.
I. Taking p=1 in (18) and using the following result [9]:

3F2

 a,b,c ;

b+1,c+1 ;
x

= 1

c−b

c 2F1

 a,b ;

b+1 ;
x

−b 2F1

 a,c ;

c+1 ;
x

, (28)

thus, after considering the result (7) we obtain the following integral formula:∫ x

0

zk−1Bz(a,b)dz=
1

k
[xkBx(a,b)−Bx(a+k,b)]. (29)

Example 3.1. For x=
1

2
, a=b=

3

2
, k=2 in (29), we get

∫ 1
2

0

zBz

(
3

2
,
3

2

)
dz=

1

48
− π

512
. (30)

Example 3.2. For x=
1

4
, a=b=

3

2
, k=3 in (29), we get

∫ 1
4

0

z2Bz

(
3

2
,
3

2

)
dz=

27
√
3

5120
− 13π

4608
. (31)

Remark 3.1. For k=1 in (29), we get the well-known result [7]∫ x

0

Bz(a,b)dz=xBx(a,b)−Bx(a+1,b). (32)

Remark 3.2. For x=1 in (29), we get∫ 1

0

zk−1Bz(a,b)dz=
1

k
[B(a,b)−B(a+k,b)]. (33)

Further, using (8) in (33), we get∫ 1

0

zk−1B1−z(a,b)dz=
1

k
[B(a,b+k)]. (34)

II. Taking a=b=
1

2
in (29) and using the result (6), we get

∫ √
x

0

t2k−1arcsin t dt=
1

2k

[
xkarcsin

√
x−
∫ arcsin

√
x

0

sin2k t dt

]
. (35)
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Example 3.3. For x=
1

4
, k=2 in (35), we get

∫ 1
2

0

t3arcsin t dt=
7
√
3

256
− 5π

384
. (36)

Example 3.4. For x=
1

4
, k=3 in (35), we get

∫ 1
2

0

t5arcsin t dt=
3
√
3

192
− 19π

2304
. (37)

Remark 3.3. For x=1 in (35), we get the well-known result [5]∫ 1

0

t2k−1arcsin t dt=
π

4k

[
1− (2k−1)!!

2kk!

]
. (38)

III Taking a=b, c=d in (24) and using classical Whipple theorem for 3F2(1) [2], we get∫ 1

0

Bz(a,a)Bz(c,c)dz=B(c,c)B(a,a+1)−
(a+c+ 1

2 )B(a+c+1, 12 )

22(a+c)ac
. (39)

Example 3.5. For a=
3

2
, c=

1

2
in (39), we get

∫ 1

0

Bz

(
3

2
,
3

2

)
Bz

(
1

2
,
1

2

)
dz=

π2

16
− 2

9
. (40)

Example 3.6. For a=
5

2
, c=

1

2
in (39), we get

∫ 1

0

Bz

(
5

2
,
5

2

)
Bz

(
1

2
,
1

2

)
dz=

3π2

256
− 1

25
. (41)

Remark 3.4. Note that∫ 1

0

Bz(a,a)Bz−1(c,c)dz=
(a+c+ 1

2 )B(a+c+1, 12 )

22(a+c)ac
. (42)

Example 3.7. For a=
3

2
, c=

1

2
in (42), we get

∫ 1

0

Bz

(
3

2
,
3

2

)
B1−z

(
1

2
,
1

2

)
dz=

2

9
. (43)

Example 3.8. For a=
5

2
, c=

1

2
in (42), we get

∫ 1

0

Bz

(
5

2
,
5

2

)
B1−z

(
1

2
,
1

2

)
dz=

1

25
. (44)

IV Taking a=c, b=d in (24) and using classical Dixon theorem for 3F2(1) [2], we get∫ 1

0

[Bz(a,b)]
2dz=

B(a,b)

(a+b)

(
b B(a,b)−

B(a+ 1
2 ,b+

1
2 )

B(a+b+ 1
2 ,

1
2 )

)
. (45)
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Example 3.9. For a=
3

2
, b=

1

2
in (45), we get

∫ 1

0

[
Bz

(
3

2
,
1

2

)]2
dz=

π2

16
− 1

3
. (46)

Example 3.10. For a=
5

2
, b=

1

2
in (45), we get

∫ 1

0

[
Bz

(
5

2
,
1

2

)]2
dz=

3π2

128
− 2

15
. (47)

V Taking a=c, b=d in (26) and using the extension of Dixon theorem for 4F3(1) [6], we get∫ 1

0

z[Bz(a,b)]
2dz=

B(a,b)

2(a+b)(a+b+1)

(
(b2+2ab+b)B(a,b)−

(2a+1)B(a+ 1
2 ,b+

1
2 )

B(a+b+ 1
2 ,

1
2 )

)
. (48)

Example 3.11. For a=
3

2
, b=

1

2
in (48), we get

∫ 1

0

z

[
Bz

(
3

2
,
1

2

)]2
dz=

3π2

64
− 2

9
. (49)

Example 3.12. For a=
5

2
, b=

1

2
in (48), we get

∫ 1

0

z

[
Bz

(
5

2
,
1

2

)]2
dz=

39π2

2048
− 1

10
. (50)
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Некоторые интегральные формулы, включающие
произведения двух неполных бета-функций

Ахмед Али Аташ
Кафедра математики

Факультет образования – Шабва
Университет Шабва

Шабва, Йемен

Аннотация. Целью данной статьи является получение некоторых интегральных формул, включа-
ющих произведения двух неполных бета-функций в терминах общих тройных гипергеометрических
рядов и функции Кампае́ де Фе́риета. Некоторые новые частные интегральные формулы, включа-
ющие неполную бета-функцию, также вычисляются как приложение наших основных результатов
с помощью теорем Уиппла, Диксона и расширения теоремы Диксона о суммировании.

Ключевые слова: неполная бета-функция, интегральные формулы, функция Кампа де Фье, об-
щий тройной гипергеометрический ряд.
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Abstract. The inverse problem of determining two dimensional kernel in the integro-differential heat
equation is considered in this paper. The kernel depends on the time variable t and space variable
x. Assuming that kernel function is given, the direct initial-boundary value problem with Neumann
conditions on the boundary of a rectangular domain is studied for this equation. Using the Green’s
function, the direct problem is reduced to integral equation of the Volterra-type of the second kind.
Then, using the method of successive approximation, the existence of a unique solution of this equation
is proved. The direct problem solution on the plane y = 0 is used as an overdetermination condition
for inverse problem. This problem is replaced by an equivalent auxiliary problem which is more suitable
for further study. Then the last problem is reduced to the system of integral equations of the second
order with respect to unknown functions. Applying the fixed point theorem to this system in the class
of continuous in time functions with values in the Hölder spaces with exponential weight norms, the
main result of the paper is proved. It consists of the global existence and uniqueness theorem for inverse
problem solution.

Keywords: integro-differential heat equation, inverse problem, Banach theorem, existence, uniqueness.
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1. Introduction and preliminaries

The integro-differential equations with an integral term of convolution type are used in the
mathematical modeling of biological phenomena and engineering sciences when it is necessary
to take into consideration the history of the processes. In these integro-differential equations
the convolution kernel accounts for memory influences. The key point when considering memory
effects is that the kernel cannot be considered a known function because there is no way to mea-
sure it directly. Kernel can be reconstructed by additional measurements of physical field taken
on a suitable subset of the body. Thus, an inverse problem has to be solved. The constitutive
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relations for a linear non-homogeneous heat propagation and diffusion processes in medium with
memory contain a time- and space-dependent kernel functions in the integral of time convolution
type [1, 2]. The memory effect phenomenon is governed by hyperbolic and parabolic integro–
differential equations with time dependent memory kernel when the medium is homogeneous
and time-space dependent memory kernel when the medium is heterogeneous. The kernel deter-
mination problems in one-dimensional heat conduction equations are widely encountered where
memory kernel depends only on time variable. For example, in [3–13] (see also references therein)
these problems were studied on the basis of the fixed point argument, and the local/global in
time existence and uniqueness of inverse problems were derived. The numerical solutions for this
problems were considered and efficient computational algorithms were constructed [14–17].

In this paper, the inverse problems of determining kernels of an integral convolution-type
term in the integro-differential heat equation are studied with the use of the solution of the
initial-boundary value problem in a rectangular domain given on the boundary y = 0. Unlike
existing works, here the unknown kernel depends on both time and spatial coordinates. Consider
the problem of determining functions u(x, y, t) and k(x, t) from the following equations:

ut −∆u =

∫ t

0

k(x, t− τ)u(x, y, τ)dτ + f(x, y, t), (x, y, t) ∈ DT , (1)

u |t=0= φ(x, y), (x, y) ∈ D, (2)

ux |x=0= ux |x=1= 0, uy |y=0= uy |y=1= 0, (x, y) ∈ ∂D × [0, T ], (3)

u |y=0= h(x, t), (x, t) ∈ [0, 1]× [0, T ], (4)

where ∆ =
∂2

∂x2
+

∂2

∂y2
is the Laplace operator, DT = D × (0, T ], D = {(x, y) : x ∈ (0, 1), y ∈

(0, 1)}, T > 0 is an arbitrary fixed number. In the theory of inverse problems for differential equa-
tions, initial-boundary value problem (1)–(3) of determining function u(x, y, t) with Neumann
boundary conditions is called the direct problem. Function u(x, y, t) ∈ C2,1

x,t (DT ) ∩ C1,0
x,t

(
DT

)
is

regular solution of the direct problem if it satisfies equalities (1)–(3).
Regular solution of (1)–(4) presupposes the fulfilment of the following conditions

φx(0, y) = φx(1, y) = 0, φy(x, 0) = φy(x, 1) = 0, φ(x, 0) = h(x, 0).

Let us introduce the class H l (D) of Hölder continuous functions on D with l ∈ (0, 1). The
space Hm+l (D) (m is a nonnegative integer) and norms | · |l, | · |m+l are defined in [18, pp. 16–
27].The class of j times continuous differentiable with respect to t variable on the segment
[0, T ] with values in H l (D) functions is denoted by Cj

(
H l (D) , [0, T ]

)
. For a fixed t, the

norm of function g(x, y, t) in the H l (D) is denoted by |g|l (t). The norm of function g(x, y, t) in
Cj
(
H l (D) , [0, T ]

)
is defined by the equality

∥g∥l :=
j∑
i=0

max
t∈[0, T ]

∣∣∣∣∂ig∂ti
∣∣∣∣l (t).

2. Study of direct problem

The solution of problem (1)–(3) is equivalent to the following Volterra type integral equation

– 15 –
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u(x, y, t) =

∫ 1

0

∫ 1

0

G(x, y, ξ, η, t)φ(ξ, η)dξdη +

∫ t

0

∫ 1

0

∫ 1

0

G(x, y, ξ, η, t− τ)f(ξ, η, τ)dξdηdτ+

+

∫ t

0

∫ 1

0

∫ 1

0

G(x, y, ξ, η, t− τ)

∫ τ

0

k(ξ, τ − α)u(ξ, η, α)dαdξdηdτ, (5)

where G(x, y, ξ, η, t) is the Green function and it is defined as

G(x, y, ξ, η, t) = 1 + 4

∞∑
m,n=1

e−λmnt cosπnx cosπmy cosπnη cosπmξ, λmn = π
√
m2 + n2.

Lemma 2.1. Suppose that φ(x, y) ∈ H l(D), f(x, y, t) ∈ C
(
H l(D), [0, T ]

)
and k(x, t) ∈

C
(
H l([0, 1]), [0, T ]

)
. Then there is a unique solution of integral equation (5) such that u(x, y, t) ∈

C1
(
H l+2(D), [0, T ]

)
.

Proof. To prove this Lemma, the method of successive approximations is used. At the first step,
the following sequences of functions is constructed

u0(x, y, t) =

∫ 1

0

∫ 1

0

G(x, y, ξ, η, t)φ(ξ, η)dξdη +

∫ t

0

∫ 1

0

∫ 1

0

G(x, y, ξ, η, t− τ)f(ξ, η, τ)dξdηdτ,

ui(x, y, t) =

∫ t

0

∫ 1

0

∫ 1

0

G(x, y, ξ, η, t− τ)

∫ τ

0

k(ξ, τ − α)ui−1(ξ, η, α)dαdξdηdτ, i = 1, 2, . . . .

(6)

For brevity, introduce the following notations

φ00 := |φ|l, f0 := ∥f∥l, k0 := ∥k∥l.

Let us estimate modules of functions ui(x, y, t). Using the Green’s function property
1∫
0

1∫
0

G(x, y, ξ, η, t)dξdη = 1,one can obtain from (6) for (x, y, t) ∈ DT that

∣∣∣u0(x, y, t)∣∣∣l 6 ∣∣∣∣ ∫ 1

0

∫ 1

0

G(x, y, ξ, η, t)φ(ξ, η)dξdη

∣∣∣∣l+
+

∣∣∣∣ ∫ t

0

∫ 1

0

∫ 1

0

G(x, y, ξ, η, t− τ)f(ξ, η, τ)dξdηdτ

∣∣∣∣l 6 φ00 + f0t,

∣∣∣ui(x, y, t)∣∣∣l 6 ∣∣∣∣ ∫ t

0

∫ 1

0

∫ 1

0

G(x, y, ξ, η, t− τ)

∫ τ

0

k(ξ, τ − α)ui−1(ξ, η, α)dαdξdηdτ

∣∣∣∣l 6
6 ki0

(
φ00

t2i

2i!
+ f0

t2i+1

(2i+ 1)!

)
, i = 1, 2, . . . .

Let us define functional series
∞∑
i=0

ui(x, y, t). Using values obtained above, this series can be

estimated as follows
∞∑
i=0

∣∣∣ui(x, y, t)∣∣∣ 6 ∞∑
i=0

ki0

(
φ00

T 2i

2i!
+ f0

T 2i+1

(2i+ 1)!

)
, (x, y, t) ∈ DT .
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Since the last number series converges, series
∞∑
i=0

ui(x, y, t) converges uniformly and absolutely.

Obviously, under conditions of the Lemma the inclusion u0(x, y, t) ∈ C2,1
x,t (DT ) is satisfied.

Consequently, all ui(x, y, t) have this property, i.e., ui(x, y, t) ∈ C2,1
x,t (DT ) , i = 1, 2, . . . . Then,

according to the general theory of linear integral equations of Volterra type,
∞∑
i=0

ui(x, y, t) is a

regular solution of direct problem (1)–(3).
Let us show that equation (5) has a unique solution. For this, let us assume the opposite,

that is, integral equation (5) has two different solutions u1(x, y, t) and u2(x, y, t) with the same
data:

ui(x, y, t) =

∫ 1

0

∫ 1

0

G(x, y, ξ, η, t)φ(ξ, η)dξdη +

∫ t

0

∫ 1

0

∫ 1

0

G(x, y, ξ, η, t− τ)f(ξ, η, τ)dξdηdτ+

+

∫ t

0

∫ 1

0

∫ 1

0

G(x, y, ξ, η, t− τ)

∫ τ

0

k(ξ, τ − α)ui(ξ, η, α)dαdξdηdτ, i = 1, 2.

The difference of these functions is defined by Z(x, y, t) = u1(x, y, t)− u2(x, y, t):

Z(x, y, t) =

∫ t

0

∫ 1

0

∫ 1

0

G(x, y, ξ, η, t− τ)

∫ τ

0

k(ξ, τ − α)Z(ξ, η, α)dαdξdηdτ. (7)

Let us denote the modular supremum of function Z(x, y, t) on (x, y) ∈ D for each t ∈ [0, T ] as

Z̃(t) = sup
(x,y)∈D

∣∣∣Z(x, y, t)∣∣∣, t ∈ [0, T ].

It follows from integral equation (7) that

Z̃(t) 6 k0T

∫ t

0

Z̃(τ)dτ.

According to the Gronuolla–Bellman inequality, the last integral inequality has only Z̃(t) ≡ 0

solution. It means that Z(x, y, t) = 0 or u1(x, y, t) = u2(x, y, t) in domain DT . The lemma is
proved. 2

3. Auxiliary problem

Suppose that functions in problem (1)–(4) are sufficiently smooth. The degree of smoothness
for each function will be determined later.

The following assertion is true.

Lemma 3.1. Problem (1)–(4) is equivalent to the following auxiliary problem for functions
ω(x, y, t), k(x, t):

ωt −∆ω = k(x, t)φyy(x, y) + ftyy(x, y, t) +

∫ t

0

k(x, t− τ)ω(x, y, τ)dτ, (x, y, t) ∈ DT , (8)

ω |t=0= ∆φyy(x, y) + fyy(x, y, 0), (x, y) ∈ D, (9)

ωx |x=0= ωx |x=1= 0, ωy |y=0= ωy |y=1= 0, ∂D × [0, T ], (10)

ω |y=0= htt(x, t)− hxxt(x, t)− k(x, t)φ(x, 0)− ft(x, 0, t)−

−
∫ t

0

k(x, t− τ)ht(x, 0, τ)dτ, (x, t) ∈ [0, 1]× [0, T ],
(11)

where ω(x, y, t) := utyy(x, y, t).
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Proof. Upon differentiating equations (1)–(4) with respect to t and setting ϑ(x, y, t) := ut(x, y, t),
one can obtain the following equivalent problem for functions ϑ, k

ϑt −∆ϑ = k(x, t)φ(x, y) + ft(x, y, t) +

∫ t

0

k(x, t− τ)ϑ(x, y, τ)dτ, (x, y, t) ∈ DT , (12)

ϑ |t=0= ∆φ(x, y) + f(x, y, 0), (x, y) ∈ D, (13)

ϑx |x=0= ϑx |x=1= 0, ϑy |y=0= ϑy |y=1= 0, (x, y) ∈ ∂D × [0, T ], (14)

ϑ |y=0= ht(x, t), (x, t) ∈ [0, 1]× [0, T ]. (15)

Here, it is assumed that

∆φx(0, y) + fx(0, y, 0) = ∆φx(1, y) + fx(1, y, 0),

∆φy(x, 0) + fy(x, 0, 0) = ∆φy(x, 1, 0) + fy(x, 1, 0), ∆φ(x, 0) = ht(x, 0).

Hence it follows that if (u, k) is a solution of problem (1)–(4) then (12)–(15) has a solution
(ϑ, k) with the same k. Let us prove the converse. Let (ϑ, k) satisfy relations (12)–(15) then

u(x, y, t) =

∫ t

0

ϑ(x, y, τ)dτ + φ(x, y).

Let us show that relation (1) holds. It follows from (12)—(15) that

ut −∆u−
∫ t

0

k(x, τ)u(x, y, t− τ)dτ − f(x, y, t) =

= ϑ(x, y, t)−
∫ t

0

∆ϑ(x, y, τ)dτ−∆φ(x, y)−
∫ t

0

k(x, τ)

∫ t−τ

0

ϑ(x, y, α)dαdτ−
∫ t

0

k(x, τ)φ(x, y)dτ−

−f(x, y, t) =
∫ t

0

ϑτ (x, y, τ)dτ +∆φ(x, y) + f(x, y, 0)−
∫ t

0

∆ϑ(x, y, τ)dτ −∆φ(x, y)−

−
∫ t

0

k(x, τ)

∫ τ

0

ϑ(x, y, τ − α)dαdτ −
∫ t

0

k(x, τ)φ(x, y)dτ −
∫ t

0

fτ (x, y, τ)dτ − f(x, y, 0) =

=

∫ t

0

[
ϑτ −∆ϑ−

∫ τ

0

k(x, α)ϑ(x, y, τ − α)dα− k(x, τ)φ(x, y)− fτ (x, y, τ)
]
dτ = 0.

This completes the proof of equivalence of problems (1)–(4) and (12)–(15).
Now consider the second auxiliary problem. It can be obtained from problem (12)–(15) for

function p(x, y, t) := ϑy(x, y, t):

pt −∆p = k(x, t)φy(x, y) + fty(x, y, t) +

∫ t

0

k(x, t− τ)p(x, y, τ)dτ, (x, y, t) ∈ DT , (16)

p |t=0= ∆φy(x, y) + fy(x, y, 0), (x, y) ∈ D, (17)

px |x=0= px |x=1= 0, py |y=0= py |y=1= 0, ∂D × [0, T ], (18)

py |y=0=htt(x, t)− hxxt(x, t)− k(x, t)φ(x, 0)− ft(x, 0, t)−

−
∫ t

0

k(x, t− τ)ht(x, 0, τ)dτ, (x, t) ∈ [0, 1]× [0, T ].
(19)
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It is assumed that

∆φxy(0, y) + fxy(0, y, 0) = ∆φxy(1, y) + fxy(1, y, 0),

∆φyy(x, 0) + fyy(x, 0, 0) = ∆φyy(x, 1) + fyy(x, 1, 0),

∆φyy(x, 0) + fyy(x, 0, 0) = htt(x, 0)− hxxt(x, 0)− k(x, 0)φ(x, 0)− ft(x, 0, 0).

This follows from (12—(15), and it can be proved by complete analogy with the previous case.
Therefore, if problem (12)–(15) has solution (ϑ, k), then problem (16)–(19) has solution (p, k)

with the same k. Moreover, p(x, y, t) = ϑy(x, y, t). Conversely, let (p, k) satisfy relations (16)–
(19).

Hence it follows that

ϑ(x, y, t) =

∫ y

0

p(x, z, t)dz + ht(x, t),

ϑt −∆ϑ− k(x, t)φ(x, y)− ft(x, y, t)−
∫ t

0

k(x, t− τ)ϑ(x, y, τ)dτ =

=

∫ y

0

pt(x, z, t)dz + htt(x, t)−
∫ y

0

∆p(x, z, t)dz − py(x, 0, t)− hxxt(x, t)−

−
∫ y

0

k(x, t)φz(x, z)dz − k(x, t)φ(x, 0)−
∫ y

0

ftz(x, z, t)dz − ft(x, 0, t)−

−
∫ y

0

∫ t

0

k(x, t− τ)ϑz(x, z, τ)dτdz −
∫ t

0

k(x, t− τ)ht(x, 0, τ)dτ =

=

∫ y

0

[
pt −∆p− k(x, t)φz(x, z)− ftz(x, z, t)−

∫ t

0

k(x, t− τ)ϑz(x, z, τ)dτ
]
dz−

− py(x, 0, t) + htt(x, t)− hxxt(x, t)− ft(x, 0, t)− k(x, t)φ(x, 0)−
∫ t

0

k(x, t− τ)ht(x, 0, τ)dτ = 0

Then the equivalence of problems (12)–(15) and (16)—(19) is proved. In similar way, one can
show that problem (16)–(19) is equivalent to problem (10)–(13) for function ω := py(x, y, t). This
implies the equivalence of problems (1)–(4) and (8)–(11). The lemma is proved. 2

4. Study of inverse problem (8)–(11)

The solution of problem (8)–(10) is equivalent to the following Volterra type integral equation

ω(x, y, t) =

∫ 1

0

∫ 1

0

G(x, y, ξ, η, t)
(
∆φyy(ξ, η) + fyy(ξ, η)

)
dξdη+

+

∫ t

0

∫ 1

0

∫ 1

0

G(x, y, ξ, η, t− τ)ftyy(ξ, η, τ)dξdηdτ+

+

∫ t

0

∫ 1

0

∫ 1

0

G(x, y, ξ, η, t− τ)k(ξ, t− τ)φyy(ξ, η)dξdηdτ+

+

∫ t

0

∫ 1

0

∫ 1

0

G(x, y, ξ, η, t− τ)

∫ τ

0

k(ξ, τ − α)ω(ξ, η, α)dαdξdηdτ.

(20)
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Let φ(x, 0) ̸= 0, for all x ∈ [0, 1]. Using equation (20) and additional conditions (11), one can
obtain the following integral equation with respect to function k(x, t)

k(x, t) =
1

φ(x, 0)

[
htt(x, t)− hxxt(x, t)− ft(x, 0, t)

]
− 1

φ(x, 0)

∫ t

0

k(x, t− τ)ht(x, 0, τ)dτ−

− 1

φ(x, 0)

∫ 1

0

∫ 1

0

G(x, 0, ξ, η, t)
(
∆φyy(ξ, η)− fyy(ξ, η)

)
dξdη−

− 1

φ(x, 0)

∫ t

0

∫ 1

0

∫ 1

0

G(x, 0, ξ, η, t− τ)ftyy(ξ, η, τ)dξdηdτ−

− 1

φ(x, 0)

∫ t

0

∫ 1

0

∫ 1

0

G(x, 0, ξ, η, t− τ)k(ξ, t− τ)φyy(ξ, η)dξdηdτ−

− 1

φ(x, 0)

∫ t

0

∫ 1

0

∫ 1

0

G(x, 0, ξ, η, t− τ)

∫ τ

0

k(ξ, τ − α)ω(ξ, η, α)dαdξdηdτ.

(21)

The main result of this work is the following assertion.

Theorem 4.1. Assume that φ(x, y) ∈ H l+4 (D) , |φ(x, 0)| > φ0 = const > 0, f(x, y, t) ∈
C1
(
H l+2 (D) ; [0, T ]

)
, h(x, t) ∈ C2

(
H l+2([0, 1]); [0, T ]

)
. In addition, all the above matching con-

ditions with respect to the specified functions are fulfilled. Then for any fixed T > 0, there
exists a unique solution of integral equations (20), (21) and ω(x, y, t) ∈ C

(
H l+2(D); [0, T ]

)
,

k(x, t) ∈ C
(
H l([0, 1]); [0, T ]

)
.

Proof. The system of equation (20), (21) is closed system of integral equations with respect to
functions ω(x, y, t) and k(x, t). Let us write this system in the form of a non-linear operator
equation

ψ = Aψ, (22)

where ψ = (ψ1, ψ2, ) = (ω(x, y, t), k(x, t))∗, ∗ is the symbol of transposition. The operator in
(22) has the form Aψ =

[
(Aψ)1, (Aψ)2

]
;

(Aψ)1 =ψ01(x, y, t) +

∫ t

0

∫ 1

0

∫ 1

0

G(x, y, ξ, η, t− τ)ψ2(ξ, t− τ)φyy(ξ, η)dξdηdτ+

+

∫ t

0

∫ 1

0

∫ 1

0

G(x, y, ξ, η, t− τ)

∫ τ

0

ψ2(ξ, τ − α)ψ1(ξ, η, α)dαdξdηdτ.

(23)

(Aψ)2 =ψ02(x, t)−
1

φ(x, 0)

∫ t

0

ψ2(x, t− τ)ht(x, 0, τ)dτ−

− 1

φ(x, 0)

∫ t

0

∫ 1

0

∫ 1

0

G(x, 0, ξ, η, t− τ)ψ2(ξ, t− τ)φyy(ξ, η)dξdηdτ−

− 1

φ(x, 0)

∫ t

0

∫ 1

0

∫ 1

0

G(x, 0, ξ, η, t− τ)

∫ τ

0

ψ2(ξ, τ − α)ψ1(ξ, η, α)dαdξdηdτ.

(24)

The following designations are used in equations (23), (24)

ψ01(x, y, t) =

∫ 1

0

∫ 1

0

G(x, y, ξ, η, t)
(
∆φyy(ξ, η) + fyy(ξ, η)

)
dξdη+

+

∫ t

0

∫ 1

0

∫ 1

0

G(x, y, ξ, η, t− τ)ftyy(ξ, η, τ)dξdηdτ,
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ψ02(x, t) =
1

φ(x, 0)

[
htt(x, t)− hxxt(x, t)− ft(x, 0, t)

]
−

− 1

φ(x, 0)

∫ 1

0

∫ 1

0

G(x, 0, ξ, η, t)
(
∆φyy(ξ, η)− fyy(ξ, η)

)
dξdη−

− 1

φ(x, 0)

∫ t

0

∫ 1

0

∫ 1

0

G(x, 0, ξ, η, t− τ)ftyy(ξ, η, τ)dξdηdτ.

Let Cσ
(
H l (D) , [0, T ]

)
be the Banach space of continuous with respect to t variable on the

segment [0, T ] with values in H l (D) functions with the family of weighted norms ∥ · ∥lσ, σ > 0

∥ψ∥lσ = max
t∈[0,T ]

e−σt|ψi|l, i = 1, 2. (25)

Obviously, Cσ with σ = 0 is the usual space of continuous in t on [0, T ] with values in H l (D)

functions with the ordinary norm (see Introduction). In what follows it is denoted by ∥ · ∥l.
Because

e−σt∥ψ∥l 6 ∥ψ∥lσ 6 ∥ψ∥l (26)

norms ∥ · ∥lσ and ∥ · ∥l are equivalent for any t ∈ [0, T ]. Parameter σ will be defined later.
Consider space Cσ with σ > 0. Let us introduce the ball Sσ(ψ, ∥ψ0∥l) := {ψ : ∥ψ − ψ0∥lσ 6

∥ψ0∥l} of radius |ψ0∥l centred at the point ψ0, where vector function ψ0 has components ψ0i,
i = 1, 2 and ∥ψ0∥l = max

i=1,2
|ψ0i|l. Obviously, the estimate ∥ψ∥lσ 6 ∥ψ∥lσ+∥ψ0∥l 6 2∥ψ0∥l holds for

a function ψ ∈ Sσ(ψ0, ∥ψ0∥l). Let ψ ∈ Sσ(ψ0, ∥ψ0∥l). Let us prove that operator A is contracting
operator on set ψ ∈ Sσ(ψ0, ∥ψ0∥l) for an appropriately chosen σ > 0. First let us show that if
σ > 0 is chosen appropriately then operator A maps ball Sσ(ψ0, ∥ψ0∥l) into the same ball, i.e.,
Aψ ∈ Sσ(ψ0, ∥ψ0∥l).

Indeed, using relations (20), (21) for the norm of differences and denoting φ1 := |φ|l+4,

h0 := |h|l+2 for (x, t) ∈ [0, 1]× [0, T ], one can obtain

∥(Aψ)1 − ψ01∥lσ = max
t∈[0,t]

∣∣∣((Aψ)1 − ψ01)
∣∣∣le−σt 6 max

t∈[0,t]

∣∣∣ ∫ t

0

∫ 1

0

∫ 1

0

G(x, y, ξ, η, t− τ)×

×e−σtψ2(ξ, t− τ)e−σ(t−τ)φyy(ξ, η)dξdηdτ+

+

∫ t

0

∫ 1

0

∫ 1

0

G(x, y, ξ, η, t− τ)

∫ τ

0

e−σ(τ−α)ψ2(ξ, τ − α)e−σ(α)ψ1(ξ, η, α)e
−σ(t−τ)dαdξdηdτ

∣∣∣l 6
6 ∥ψ2∥lσφ1

1

σ
+ 2∥ψ2∥lσ∥ψ1∥lσ

T

σ
6 2∥ψ0∥l(φ1 + 4∥ψ0∥lT )

1

σ
,

∥(Aψ)2 − ψ02∥lσ = max
t∈[0,T ]

∣∣∣((Aψ)2 − ψ02)
∣∣∣le−σt 6 φ−1

0

[
∥ψ2∥lσh0

1

σ
+ ∥ψ2∥lσφ1

1

σ
+

+2∥ψ2∥lσ∥ψ1∥lσ
T

σ

]
6 2∥ψ0∥lφ−1

0

[
h0 + φ1 + 4∥ψ0∥lT

] 1
σ
.

Let σ > σ0, where

σ0 = 2max{φ1 + 4∥ψ0∥lT, h0 + φ1 + 4∥ψ0∥lT}.

Then operator A maps Sσ(ψ0, ∥ψ0∥l) into itself, i.e., Aψ ∈ Sσ(ψ0, ∥ψ0∥l).
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Let us show the fulfilment of the second property of construction map for operator A.
First, one should note that inequalities for ψ(1) =

(
ψ
(1)
1 , ψ

(1)
2

)
∈ Sσ

(
ψ0, ∥lψ0∥l

)
, ψ(2) =

=
(
ψ
(2)
1 , ψ

(2)
2

)
∈ Sσ

(
ψ0, ∥ψ0∥l

)
.

∣∣∣ψ(1)
2 ψ

(1)
1 − ψ

(2)
2 ψ

(2)
1

∣∣∣l = ∣∣∣(ψ(1)
2 − ψ

(2)
2

)
ψ
(1)
1 + ψ

(2)
2

(
ψ
(1)
1 − ψ

(2)
1

)∣∣∣l 6
6 2
∣∣∣ψ(1) − ψ(2)

∣∣∣lmax

(∣∣∣ψ(1)
1

∣∣∣l, ∣∣∣ψ(2)
2

∣∣∣l) 6 4∥ψ0∥l
∣∣∣ψ(1) − ψ(2)

∣∣∣l.
holds. Then one can obtain∥∥∥((Aψ)(1) − (Aψ)(2))1

∥∥∥l
σ
= max
t∈[0,T ]

∣∣∣((Aψ)(1) − (Aψ)(2))1

∣∣∣le−σt 6
6 max
t∈[0,T ]

∣∣∣ ∫ t

0

∫ 1

0

∫ 1

0

G(x, y, ξ, η, t− τ)e−σt
(
ψ
(1)
2 (ξ, t− τ)− ψ

(2)
2 (ξ, t− τ)

)
×

× e−σ(t−τ)φyy(ξ, η)dξdηdτ +

∫ t

0

∫ 1

0

∫ 1

0

G(x, y, ξ, η, t− τ)

∫ τ

0

(
e−σ(τ−α)ψ

(1)
2 (ξ, τ − α)×

× e−σ(α)ψ
(1)
1 (ξ, η, α)− ψ

(2)
2 (ξ, τ − α)ψ

(2)
1 (ξ, η, α)e−σ(t−τ)

)
dαdξdηdτ

∣∣∣l 6
6 |ψ(1) − ψ(2)|lφ1

1

σ
+ 8∥ψ0∥l|ψ(1) − ψ(2)|lT

σ
6 |ψ(1) − ψ(2)|l

(
φ1 + 8∥ψ0∥lT

) 1
σ
.

∥∥∥((Aψ)(1) − (Aψ)(2))2

∥∥∥l
σ
= max
t∈[0,T ]

∣∣∣((Aψ)(1) − (Aψ)(2))2

∣∣∣le−σt 6
6 φ−1

0

[
h0|ψ(1) − ψ(2)|l 1

σ
+ |ψ(1) − ψ(2)|lφ1

1

σ
+ 8∥ψ0∥l|ψ(1) − ψ(2)|lT

σ

]
6

6 |ψ(1) − ψ(2)|lφ−1
0

[
h0 + φ1 + 8∥ψ0∥lT

] 1
σ
.

Let σ > σ∗, where

σ∗ = max
{
φ1 + 8∥ψ0∥lT, φ−1

0

[
h0 + φ1 + 8∥ψ0∥lT

]}
.

Then operator A is contracting operator on Sσ(ψ0, ∥ψ0∥l). It follows from the Banach fixed-point
theorem that (22) is solvable and has a unique solution in Sσ(ψ0, ∥ψ0∥l) for any fixed T > 0.

Since ω =: ψ1 then
uyyt(x, y, t) = ψ1(x, y, t). (27)

Function u(x, y, t) is determined from equation (27) as follows

u(x, y, t) = h(x, t) + φ(x, y)− φ(x, 0) +

∫ y

0

∫ t

0

(y − η)ω(x, η, τ)dτdη.

Thus, the solution of inverse problem (1)–(4) is found. 2
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Глобальная разрешимость задачи определения ядра
в двумерном уравнении теплопроводности с памятью

Дурдимурод К.Дурдиев
Бухарское отделение Института математики АН РУз

Государственный университет Бухары
Бухара, Узбекистан

Жавлон З. Нуриддинов
Государственный университет Бухары

Бухара, Узбекистан

Аннотация. В статье исследуется обратная задача определения двумерного ядра интегрального
члена, зависящего от временной переменной t и первой компоненты пространственной перемен-
ной (x, y) в интегро-дифференциальном уравнении теплопроводности. Для этого уравнения при
заданном ядра изучается прямая начально-краевая задача с условиями Неймана на границе пря-
моугольной области. С помощью функции Грина эта задача сводится к интегральному уравнению
вольтерровского типа второго рода, а затем методом последовательных приближений доказывается
существование единственного решения. В обратной задаче в качестве условия переопределения ис-
пользуется решение прямой задачи на плоскости y = 0. Обратная задача заменяется эквивалентной
вспомогательной задачей, более удобной для дальнейшего исследования. Далее эта задача сводится
к системе интегральных уравнений второго рода относительно неизвестных функций. Применяя
к этой системе теорему о неподвижной точке в классе непрерывных по времени со значениями
в пространствах Гёльдера функций с экспоненциальной весовой нормой, доказывается основной
результат статьи, состоящий в глобальной теореме существования и единственности решения об-
ратной задачи.

Ключевые слова: интегро-дифференциальное уравнение, обратная задача, Теорема Банаха, су-
ществование, единственность.
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Abstract. In the paper, we consider the spectral problem for a third-order operator with an integral
perturbation of one of the boundary value conditions that are regular and at the same time strongly
regular; a feature of the problem is that the conjugate operator will be a loaded third-order differential
operator with regular (strongly regular) boundary value conditions. Moreover, a characteristic determi-
nant of the spectral problem is constructed, on the basis of which conclusions about eigenvalues of the
perturbed operator are assumed.
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Introduction and problem statement
In the functional space W 3

2 (0, 1), we consider a differential operator L1, given by the following
expression:

l (u) = −u′′′ (x) = λu (x) , 0 < x < 1 (1)

with the "perturbed" boundary value conditions:

U1 (u) ≡ u (0) =

∫ 1

0

P (x)u (x) dx, U2 (u) ≡ u′ (0) = 0, U3 (u) ≡ u (1) = 0, (2)

where λ is a spectral parameter, U1 (u) , U2 (u) , U3 (u) are linear homogeneous independent
forms, regular by G. D. Birkhoff [1, 2], P (x) ∈ L2 (0, 1). In the monography by М. А.Naimark
([3], p. 67) it was noted, that all differential operators of odd order with strongly regular bound-
ary value conditions are with regular boundary value conditions. A third-order linear differential
operator with nonlocal boundary value conditions under integral perturbation was studied in [4],
and eigenvalue problems with periodic boundary value conditions were studied in [5–7], which are
regular boundary value conditions. The questions of regularity and strong regularity of boundary
value conditions for the Sturm–Liouville operator are related to the questions of basis property
of the system of root vectors. In this case, when the boundary value conditions are strongly
regular, the results of V. P.Mikhailov [8] and G.M. Keselman [9] imply the Riesz basis property
of the systems of eigen- and associated functions of the Sturm–Liouville operator in L2 (0, 1). For
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c⃝ Siberian Federal University. All rights reserved

– 25 –



Nurlan S. Imanbaev Characteristic Determinant of a Perturbed Regular . . .

regular boundary value conditions, A. A. Shkalikov [10] proved unconditional basis property with
brackets, and A.M. Minkin [11] proved the opposite statement, namely, that the unconditional
basis property of a system of root vectors implies regularity of the operator. In [12–17], the
issues of stability and instability of the basis property of systems of eigen- and associated func-
tions of the multiple differentiation operator with regular, but not strongly regular, boundary
value conditions were studied, that is, under integral perturbation of one of the boundary value
conditions.

Calculation of eigenvalues and eigenfunctions of third-order equations of composite type is
described in [18]. The spectrum of the boundary value problem with shift for the wave equation
was studied in [19].

We will construct the characteristic determinant of the "perturbed" spectral problem (1)–(2)
for the operator L1. Based on the obtained formula, conclusions about the eigenvalues of the
operator L1 are established.

Conjugate problem

We define the operator L∗
1. By using Lagrange formula (L1, u, ν)−(u, L∗

1, ν) =
1∫
0

l (u) v (x)dx−
1∫
0

u (x) l∗ (v)dx, for all functions u ∈ D (L1) and v ∈ D (L∗
1), and the boundary value conditions

(2), we find:

−
∫ 1

0

u′′′ (x) v (x)dx = v (0)u′′ (0)− v (1)u′′ (1) + u′ (1) v′ (1)−

−u′ (0) v′ (0)− u (1) v′′ (1) +

∫ 1

0

u (x) dx
[
P (x) · v′′ (0) + v′′′ (x)

]
.

Due to linear independence of the forms U1 (u) , U2 (u) , U3 (u) and V1 (v) , V2 (v) , V3 (v), we
get, that the operator L∗

1 is given by the loaded differential expression:

L∗
1v ≡ l∗ (v) = v′′′ (x) + P (x) v′′ (0) = λv (x) , 0 < x < 1, P (x) ∈ L2 (0, 1) (1∗)

and the boundary value conditions:

V1 (v) ≡ v (0) = 0, V2 (v) = v (1) = 0, V3 (v) = v′ (1) = 0, (2∗)

which is one of the features of the considered spectral problem (1)–(2).

Construction of the characteristic determinant of the spectral
problem (1)-(2)

The general solution of the equation (1) has the form:

u (x) = C1e
2ρx +

(
C2 · cos

√
3ρx+ C3 · sin

√
3ρx+

)
e−ρx, (3)

where C1, C2, C3 are arbitrary constants.

ρ =
3
√
−λ
2

. (4)

Putting (3) into the boundary value condition (2), we will have the linear system with respect
to coefficients C1, C2, C3:
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

C1

(
1−

1∫
0

P (x)e2ρxdx

)
+ C2

(
1−

1∫
0

P (x)e−ρx cos
√
3ρxdx

)
−

−C3

1∫
0

P (x)e−ρx sin
√
3ρxdx = 0,

2C1 − C2 + C3

√
3 = 0,

C1 · e3ρ + C2 cos
√
3ρ+ C3 sin

√
3ρ = 0.

Determinant of this system will be the characteristic determinant of the spectral problem
(1)–(2):

∆1 (ρ) =

∣∣∣∣∣∣∣∣∣
1−

1∫
0

P (x)e2ρxdx 1−
1∫
0

P (x)e−ρx cos
√
3ρxdx −

1∫
0

P (x)e−ρx sin
√
3ρxdx

2 −1
√
3

e3ρ cos
√
3ρ sin

√
3ρ

∣∣∣∣∣∣∣∣∣ =

=
(
− sin

√
3ρ−

√
3 cos

√
3ρ
)(

1−
∫ 1

0

P (x)e2ρxdx

)
−

−
(
2 sin

√
3ρ−

√
3e3ρ

)(
1−

∫ 1

0

P (x)e−ρx cos
√
3ρxdx

)
=

=
(
− sin

√
3ρ−

√
3 cos

√
3ρ
)(

1−
∫ 1

0

P (x)e2ρxdx

)
−
(
2 sin

√
3ρ−

√
3e3ρ

)
×

×
(
1−

∫ 1

0

P (x)e−ρx cos
√
3ρxdx

)
−
(
2 cos

√
3ρ+ e3ρ

)∫ 1

0

P (x)e−ρx sin
√
3ρxdx. (5)

When P (x) = 0 we get characteristic determinant of the "unperturbed" spectral problem for
the operator L0, given by the differential expression (1), with boundary value conditions:

u (0) = 0, u′ (0) = 0, u (1) = 0. (6)

We denote it by ∆0 (ρ) = −3 sin
√
3ρ−

√
3 cos

√
3ρ+

√
3e3ρ.

Following the results of [5, 6], we equate the determinant ∆0 (ρ) to zero, and obtain the
condition for existence of nontrivial solutions u (x):

√
3 sin

√
3ρ+ cos

√
3ρ = e3ρ. (7)

Equation (7) can have a solution if ρ 6 0.
Equation (7) we reduce to the form

2 cos
π

6
sin

√
3ρ+ 2 sin

π

6
cos

√
3ρ = e3ρ,

i.e.

sin
(π
6
+
√
3ρ
)
=

1

2
e3ρ, ρ < 0 (8)

Eigenvalues of the "unperturbed" operator L0 will be the roots of this equation. These roots
are defined as the abscissa of the intersection points of the curves

y = sin
(π
6
+
√
3ρ
)
, y =

1

2
e3ρx, x 6 0.
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When x = 0 both curves have a common point y =
1

2
. Zero points of the functions

sin
(π
6
+
√
3ρ
)

will be µk = − π

6
√
3
− (k − 1)π, k = 1, 2, . . . . Then for the eigenvalues ρk of

the operator L0, we obtain
ρk = µk + (−1)

k
εk, k = 1, 2, ... (9)

moreover, lim
k→∞

εk = 0.
Eigenfunctions of the operator L0 will be functions

uk (x) = e2ρkx −
(
cos

√
3ρkx+

√
3 sin

√
3ρkx

)
e−ρkx. (10)

The function (10) satisfies all conditions of the problem (1)–(6).
Conjugate operator L∗

0 has the form:

L∗
0v = l∗0 (v) = v′′′ (x)− λ̄v (x) = 0, v (0) = 0, v (1) = 0, v′ (1) = 0. (11)

Eigenvalues of the operator L∗
0 coincide with eigenvalues of the operator L0 and the corresponding

eigenfunctions of the operator L∗
0 will be the functions

vk (x) = e−2ρkx −
(
cos

√
3ρkx+N sin

√
3ρkx

)
eρkx, (12)

where N =
cos

√
3ρk − e3ρk

sin
√
3ρk

.

The function P (x) under the integral in (5) we represent in the form of a biorthogonal
expansion in Fourier series by the system {vk (x)}:

P (x) =

∞∑
k=1

akvk (x). (13)

Calculating the integrals in (5), taking (12) and (13) into account, we will have the following
form of the determinant ∆1 (ρ):

∆1 (ρ) =
(
− sin

√
3ρ−

√
3 cos

√
3ρ
)
+
(
sin

√
3ρ−

√
3 cos

√
3ρ
)
×

×

( ∞∑
k=1

αk

[
e2(ρ−ρk)

2 (ρ− ρk)
− 1

2 (ρ− ρk)
+

2ρ+ ρk

(2ρ+ ρk)
2
+ 3ρ2k

− e2ρ+ρk

(2ρ+ ρk)
2
+ 3ρ2k

×

×
(√

3ρk sin
√
3ρk + (2ρ+ ρk) cos

√
3ρk

)
+N

√
3ρk

(2ρ+ ρk)
2
+ 3ρ2k

+

+N
e2ρ+ρk

(2ρ+ ρk)
2
+ 3ρ2k

(
(2ρ+ ρk) sin

√
3ρk −

√
3 cos

√
3ρk

)])
−

−
(
2 sin

√
3ρ−

√
3e3ρ

)
+
(
2 sin

√
3ρ−

√
3e3ρ

)( ∞∑
k=1

αk

[
2ρ+ ρk

(2ρk + ρ)
2 −

(√
3ρ
)2 +

+
e−(2ρ+ρk)

(2ρk + ρ)
2 −

(√
3ρ
)2 (√3ρ sin

√
3ρ− (2ρk + ρ) cos

√
3ρ
)
+

1

8 (ρk − ρ)
−

− eρk−ρ

8 (ρk − ρ)
·
(
cos

√
3 (ρk − ρ) +

√
3 sin

√
3 (ρk − ρ)

)
− 1

2
· ρk − ρ

(ρk − ρ)
2
+ 3(ρk + ρ)

2 +

+
1

2
· eρk−ρ

(ρk − ρ)
2
+ 3(ρk + ρ)

2 ·
(√

3 (ρk+ ρ) sin
√
3 (ρk+ ρ) + (ρk− ρ) cos

√
3 (ρk+ ρ)

)
+

+
N

2
·

√
3 (ρk + ρ)

(ρk − ρ)
2
+ 3(ρk + ρ)

2 +
N

2
· eρk−ρ

(ρk − ρ)
2
+ 3(ρk + ρ)

2

(
(ρk + ρ) sin

√
3 (ρk + ρ)−
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−
√
3 (ρk + ρ) cos

√
3 (ρk + ρ)

)
+

1

8
· N

ρk − ρ
+

1

8
· N

ρk − ρ
e
ρk−ρ

·
(
sin

√
3 (ρk − ρ)−

− cos
√
3 (ρk + ρ)

)])
−
(
2 cos

√
3ρ+ e3ρ

)
·

( ∞∑
k=1

αk

[ √
3ρ

(2ρ2k + ρ)
2
+ 3ρ2

− 1

4
·

√
3

ρk − ρ
+

+
1

4
·
√
3 (ρk + ρ)

ρk + 2ρ
− N

8
· 1

ρk − ρ
+

1

2
· ρk − ρ

3(ρk + ρ)
2
+ (ρk − ρ)

2 − e−(2ρk+ρ)

(2ρ2k + ρ)
2
+ 3ρ2

×

×
(√

3ρ cos
√
3ρ+ (2ρk + ρ) sin

√
3ρ
)
+

1

4
· e

ρk−ρ

ρk − ρ

(√
3 cos

√
3 (ρk − ρ) + sin

√
3 (ρk − ρ)

)
+

+
1

4
· eρk−ρ

ρk+ 2ρ

(
sin

√
3 (ρk+ ρ)−

√
3 (ρk+ ρ) cos

√
3 (ρk+ ρ)

)
+
1

8
N
eρk−ρ

ρk− ρ

(√
3 sin

√
3 (ρk− ρ)+

+cos
√
3 (ρk − ρ)

)
− 1

2
· ρk − ρ

3(ρk + ρ)
2
+ (ρk − ρ)

2

(
(ρk − ρ) cos

√
3 (ρk + ρ) +

+
√
3 (ρk + ρ) sin

√
3 (ρk + ρ)

)])
, (14)

where N =
cos

√
3ρk − e3ρk

sin
√
3ρk

, which is an entire analytic function of the variable ρ, since at the

points ρ = ρk it has poles of first order, at these points the determinant ∆0 (ρ) has roots.
Therefore, we have proved

Theorem 1. We represent the characteristic determinant of the "perturbed" spectral problem
(1)–(2) in the form (14), where the determinant ∆0 (ρ) is the characteristic determinant of the
"unperturbed" spectral problem (1)-(6), αk are Fourier coefficients of the biorthogonal expansion
(13 ) of the functions P (x) by the system of eigenfunctions {vk (x)} of the conjugate unperturbed
spectral problem (1)–(2).

Remark 1. The "perturbed" spectral problem (1)–(2) is reduced to the study of zeros of the
entire analytic function ∆1 (ρ). The study of zeros of an entire analytic function ∆1 (ρ) remains
open.
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Характеристический определитель возмущенного
регулярного дифференциального оператора третьего
порядка на отрезке

Нурлан С. Иманбаев
Южно-Казахстанский педагогический университет имени Жанибекова

Шымкент, Казахстан
Институт математики и математического моделирования

Алматы, Казахстан

Аннотация. В работе рассматривается спектральная задача для оператора третьего порядка при
интегральном возмущении одного из краевых условий, являющихся регулярными, одновременно
усиленно регулярными, где особенностью задачи является, что сопряжённым оператором будет
нагруженный дифференциальный оператор третьего порядка с регулярными (усиленно регуляр-
ными) краевыми условиями. Построен характеристический определитель спектральной задачи, на
основании которой предпологаются выводы об собственных значениях возмущённого оператора.

Ключевые слова: дифференциальный оператор, интегральное возмущение, сопряженный опе-
ратор, нагруженный, собственные значение, собственные функции, характеристический определи-
тель, целая функция.
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Abstract. This study explores the Bianchi type-V cosmological model with in the frame work of general
relativity, featuring a perfect fluid governed by the polytropic equation in Lyra’s Geometry, expressed
p = αρ + kρn, as proposed at [1]. We considered the case representing phantom universe for(1 + α
+ kρn−1) 6 0, k < 0 , where ρ increases with the radius a(t). The role of Lyra;s Geometry has been
discussed/ The solution to Einsteins field equation have been derived, providing insights into the physical
and cosmological attributes of this particular model.
Keywords: accelerated expansion, polytropic Eequation of state, perfect fluid, phantom universe, Lyra’s
geometry.
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Introduction
In modern cosmology, the present combination of the universe’s energy is delineated as around

5% ordinary matter, 20% dark matter, and 75% dark energy [1] The universe’s expansion ini-
tiated with a remarkable inflationary surge propelled by vacuum energy. Between 10−35 and
10−33 seconds after the onset of the Big Bang, the universe underwent a staggering expansion by
a factor of 1030 [2–4]. However, inflation fails to provide an explanation for the time preceding
the origin of the universe. As a result, the universe transitioned into the radiation era and, as
the temperature decreased less than 103 K, the matter era advanced [5]. Currently, the universe
undergoes accelerated expansion [6], attributed to either the cosmological constant or a form of
dark energy with negative pressure violating the strong energy condition [7]. This phase repre-
sents a second inflationary period, which is distinct from the initial one. However, the nature of
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the pre-radiation era (very early universe), dark matter and dark energy has remained enigmatic
and mysterious, prompting speculation. The nature of the early universe in the context of the
Big Bang theory is not understood [8]. The characteristic s of the universe are not consistent
with weather the universe was hot or cold state. The investigation of cosmic microwave back-
ground radiation (CMB) was achieved via the hot universe theory [9–11] therefore, we accepted
the Big Bang theory. According to that theory, the early universe was combined with an ultra-
relativistic classical gas can present a photon, electrons, positrons, quarks, antiquarks, etc. It is
clearly observed that at the early stage of the universe, the scale factor vanishes while the energy
density and temperature become infinite. This situation reveals the initial cosmological singular-
ity commonly known as the Big Bang. The up-to-date studies on a cosmological model based on
Bose–Einstein condensate dark matter (BEC DM). The Bose–Einstein condensate EoS [12–15]
can be generalized as p = αρ + kρ2. If k > 0 the model represents repulsive, if k < 0, the
model represents attractive self-interaction and when k = 0, the standard linear equation of
state p = αρc2.

This paper delves into the examination of the modified equation of state, as proposed by [1].

p = αρ+ kρn (1)

The author of [16, 17] reviewed different available sources and studied the likeness between the
polytropic equation of state and a cosmological model, where the fluid that fills the universe has
an effective bulk viscosity. The author of [18] suggested that a polytropic gas model. The authors
of [19] used the available information from different sources and studied the polytropic inflation-
ary model in brane world scenario. The author [20] studied Bianchi-I Dark with polytropic DE.
The authors of [21] studied the Kantowski universe with the Polytropic EoS parameter. The au-
thors of [22] conducted a remarkable study on anisotropic and homogeneous cosmological models
with the polytropic EoS parameter. The authors of [23–25] performed an intended study on
Bianchi-type-V cosmological models in modified theories of gravitation.

Einstein’s field equations, integral to comprehending the uniformity and static model of the
universe, impose constraints allowing only dynamic cosmological models for non-zero energy
density. Consequently, Einstein’s general theory of relativity becomes interpretable in terms of
geometry. Following the advent of general relativity, Weyl [26] in 1918 expanded Riemannian
geometry, applying it to physical contexts to formulate the initial unified theory encompassing
gravity and electromagnetism. However, Einstein vehemently opposed Weyl’s unified theory,
leading to its neglect for over several years. Subsequently, Lyra [27] introduced a gauge function,
effectively modifying Riemannian geometry and rendering it a structureless manifold. This alter-
ation naturally gave rise to cosmological constants within the fabric of the universe’s geometry.
Since we have performed remarkable research, we are interested in continuing our research with
this paper on the Bianchi type-V model and the energy-momentum tensor consisting of a perfect
fluid with polytropic equation of state in Lyra’s Geometry. In the case (1 + α + kρn−1) 6 0,
k < 0 the universe is considered to represent the phantom universe.

This document is structured as subsequent sections: In Section 2 Field equations of these met-
rics are obtained by Bianchi type-V metric in the existence of a perfect fluid with the polytropic
EoS parameter in Lyra’s Geometry. Section 3 is dedicated to solution of the model. Section 4
is devoted to the physical and geometric properties of the model. Section 5 — exact solution of
the model.

1. Metric and field equations

Since Bianchi models are spatially homogeneous and anisotropic and are more appropriate
for describing the universe because it has less symmetry than do standard FRW models. So, we
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considered here Bianchi type-V cosmological model.

ds2 = dt2 −A2dx2 −B2e−2xdy2 − C2e−2xdz2 (2)

where A(t), B(t) and C(t) are the three anisotropic directions of expansion in normal three-
dimensional space.
The average scale factor a(t), the spatial volume V and the average Hubble’s parameter are

a (t) = (ABC)
1
3 (3)

V = a3 = ABC (4)

H =
1

3
(H1 +H2 +H3 (5)

Here, H1 =
Á

A
, H2 =

B́

B
and H1 =

Ć

C
.

V́

V
=

(
Ȧ

A
+
Ḃ

B
+
Ċ

C

)
= 3H (6)

The Einstein modified the filed equation in normal gauge for Lyra’s modified equation is given
by (where 8πG = 1, C = 1 )

Rji −
1

2
gjiR+

[
3

2
ϕiϕ

j − 3

4
ϕkϕ

kgji

]
= −T ji (7)

ϕi = (β (t) , 0, 0, 0) (8)

where ϕi is the displacement vector Let Tij be the energy- momentum tensor of the matter [9].
Additionally,

T ij;j ≡ 0 (9)

The energy momentum tensor Tij

Tij = (p+ ρ)uiuj − pgij (10)

where ρ is the energy density, p is the pressure and ui is the four velocity vectors satisfying
giju

iuj = 1. The above perfect fluid obeys the polytropic equation of state.

p = αρ+ kρn with k < 0 (11)

The conservation equation T ij;j ≡ 0 leads to

ρ̇+ (p+ ρ)

(
Ȧ

A
+
Ḃ

B
+
Ċ

C

)
= 0 (12)

Using Eq. (11) and Eq. (12), we have

ρ̇+ 3Hρ(1 + α+ kρn−1) = 0 (13)

We considered the case here for the phantom universe is (1 + α+ kρn−1) 6 0, k < 0 [23], where
−1 6 α 6 1, k is the polytropic constant and n is the polytropic index. Moreover conservation
of the L.H.S of Eq. (7) leads to

Rji −
1

2
gjiR+

[
3

2
ϕiϕ

j − 3

4
ϕkϕ

kgji

]
= 0 (14)
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3

2
ϕi

[
∂ϕj

∂xj
+ ϕlΓjlj

]
+

3

2
ϕj
[
∂ϕi
∂xj

− ϕlΓ
l
ij

]
− 3

4
gjiϕk

[
∂ϕk

∂xj
+ ϕlΓklj

]
− 3

4
gjiϕ

k

[
∂ϕk
∂xj

− ϕlΓ
l
kj

]
= 0 (15)

Eq. (10) leads to
3

2
ββ̇ +

3

2
β2

(
Ȧ

A
+
Ḃ

B
+
Ċ

C

)
= 0 (16)

2. Solution and model
In a co-moving coordinate system, by Eqs. (7) and (10) we have

B̈

B
+
C̈

C
+
ḂĊ

BC
− 1

A2
+

3

4
β2 = p (17)

Ä

A
+
C̈

C
+
ȦĊ

AC
− 1

A2
+

3

4
β2 = p (18)

Ä

A
+
B̈

B
+
ȦḂ

AB
− 1

A2
+

3

4
β2 = p (19)

ȦḂ

AB
+
ḂĊ

BC
+
ȦĊ

AC
− 3

A2
− 3

4
β2 = −ρ (20)

2Ȧ

A
− Ḃ

B
+
Ċ

C
= 0 (21)

Integrating Eq. (21), we obtain
A2 = BC (22)

Without loss of generality, subtracting (17) from (18) and (18) from (19) and taking the second
integral of each, we obtain the following three relations.

A

B
= c1e

∫ d1
a3 dt,

A

C
= c2e

∫ d2
a3 dt and

B

C
= c3e

∫ d3
a3 dt (23)

where c1, c2, c3, d1, d2 and d3 are constants of integration. Since, a (t) = (ABC)
1
3 , by Eq. (17)

and Eqs. (23) we obtain

A(t) = l1ae
(m1

∫
a−3dt), B(t) = l2ae

(m2

∫
a−3dt), C(t) = l3ae

(m3

∫
a−3dt) (24)

where l1 =(d1d2)
1
3 , m1 =

k1 + k2
3

, l2 =

(
d3
d1

) 1
3

, m2 =
k3 − k1

3
, l3 =(d3d2)

− 1
3 , m3 =

− (k3 + k2)

3
The constants m1,m2,m3 and l1, l2, l3 will satisfy these two conditions:

m1 +m2 +m3 = 0 and l1l2l3 = 1 (25)

Using Eq. (22) in Eqs. (24), we obtain

l1 = 1, l2 = l−1
3 = k1(say), m1 = 0, m2 = −m3 = k2(say) (26)

By using Eq. (26) in Eqs. (25), we have

A (t) = a (t) , B (t) = k1a(t).e
(k2

∫
(a(t))−3dt), C(t) =

a(t)

k1
.e(−k2

∫
(a(t))−3dt) (27)

By using Eq. (27) in Eqs. (2) we have

ds2 = dt2 − a2dx2 −
[
k1a(t).e

(k2
∫
(a(t))−3dt)

]2
e−2xdy2 −

[
a(t)

k1
.e(−k2

∫
(a(t))−3dt)

]2
e−2xdz2 (28)

This represents the Bianchi type-V cosmological model with an average scale factor.
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3. Physical and geometric properties
Solve the differential equation Eq. (13) in case of (1 + α+ kρn−1) 6 0, k < 0, represents the

phantom universe, where the density increases with the radius. We obtain density, average scale
factor and pressure as follows

ρ =

[
1 + α

a−3(1+α)(n−1) − k

] 1
n−1

for (1 + α) > 0 (29)

a (t) =

[
1 + α

ρn−1
+ k

]3(1+α)(n−1)

(30)

p = α

[
1 + α

a−3(1+α)(n−1) − k

] 1
n−1

+ k

[
1 + α

a−3(1+α)(n−1) − k

] n
n−1

(31)

Clearly, ρ (t) ∝ [a(t)]
3 indicates that the universe is considered to be the phantom universe.

ω (t) =
p

ρ
= α+ k

[
1 + α

a−3(1+α)(n−1) − k

]
(32)

When (1 + α) > 0 or α > −1 and k < 0, the EoS parameter ω (t) < −1 representing the
model is the phantom universe, which leads to no Big Rip singularity. Solving Eq. (16) for the
displacement vector β(t), we have

β(t) = ca−3 (33)

c is the integration constant Considering c=1 and substituting a(t) = β−1/3(t) in eqs. (28), (31)
and (32), we have

ρ =

[
1 + α

β(1+α)(n−1) − k

]( 1
n−1 )

(34)

p = α

[
1 + α

β(1+α)(n−1) − k

]( 1
n−1 )

+ k

[
1 + α

β(1+α)(n−1) − k

]( n
n−1 )

(35)

ω (t) = α+ k

[
1 + α

β(1+α)(n−1) − k
(36)

ds2 = dt2 − dx2

β
2
3 (t)

−

[
k1.

e(k2
∫
β(t)dt)

β
1
3 (t)

]2
e−2xdy2 −

[
e(−k2

∫
β(t)dt)

k1β
1
3 (t)

]2
e−2xdz2 (37)

Since, ρ(t) ∝ [a(t)]
3 and ρ(t) ∝ 1

β(t)
, it can be described with this displacement vector β(t) in

the late universe. Since the ρ increases with respect to a(t) the universe accelerating rapidly. At
n = −1, the analytical model of phantom universe represents bouncing universe "disappearing"
at t=0.

4. Exact solutions of the model
The significance of the hyperbolic function as an exponential component is that the derived

deceleration parameter demonstrates time dependence, highlighting that the universe’s is in the
acceleration phase. Therefore, opting for this average scale factor is deemed physically acceptable.
Consider an average scale factor a(t) as by [26]

a (t) = (sinht)
1
3 (38)
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Therefore, by Eqs. (32) and (35)
A(t) = (sinht)

1
3 . (39)

B(t) = k1(sinht)
1
3 (cotht− cosecht)k2 (40)

C (t) =
(sinht)

1
3 (cotht− cosecht)k2

k1
. (41)

Substituting Eqs. (38)–(41) in Eq. (2) we get

ds2 = dt2 − t
2
3 dx2 −

[
(sinht)

1
3 (cotht− cosecht)k2

]2
e−2xdy2−

−

[
(sinht)

1
3 (cotht− cosecht)k2

k1

]2
e−2xdz2.

(42)

This represents the field equation of the Bianchi type-V cosmological model with polytropic EoS
parameter in Lyra’s geometry which is in phantom era.
We obtain the spatial volume V(t), density (ρ), pressure (p), EoS parameter ω (t), Hubble’s
parameter H(t), energy density parameter Ω(t), scalar expansion θ(t), deceleration parameter
q (t), anisotropy parameter, and shear scalar for the model are

V (t) = a3 = sinht. (43)

ρ =

[
1 + α

(sinht)
(1+α)(n−1) − k

]( 1
n−1 )

(44)

p = α

[
1 + α

(sinht)
(1+α)(n−1) − k

]( 1
n−1 )

+ k ·

[
1 + α

(sinht)
(1+α)(n−1) − k

]( n
n−1 )

(45)

ω (t) = α+ k ·

[
1 + α

(sinht)
(1+α)(n−1) − k

]( −1
n−1 )

(46)

H(t) = cotht (47)

Ω(t) =
ρ

3H
=

[
1+α

(sinht)(1+α)(n−1)−k

] 1
n−1

3 cotht
(48)

θ (t) = 3H = 3 cotht (49)

q (t) =
d

dt

(
1

H

)
− 1 = sech2t− 1 (50)

Am =
1

3

(
3

cotht · sinht

)2

. (51)

σ2 =

(
1

sinht

)2

(52)

Here, we can note that spatial volume is zero for t=0 and that the scalar expansion is infinite,
which is the big bang scenario. Additionally pressure (p), density (ρ), Hubble’s(H) and shear
scalar (σ) diverge in the early universe. As t→ ∞ increases the, volume becomes infinity where
the pressure (p), density (ρ), Hubble parameter (H) and shear scalar (σ) approach zero. Since,
limt→∞

ρ

θ2
= constant represents the anisotropic nature of the model.
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Volume V v/s Cosmic time t displacement vector β(t) v/s average scale
factor a(t)

density ρ v/s average scale factor a(t) EoS parameter ω (t) ρ v/s average scale
factor a(t)

Conclusion

In this paper, we studied the Bianchi type-V cosmological model in the presence of a perfect
fluid with polytropic equation of state. We considered a this case (1 + α + kρn−1) < 0, k < 0
representing that the model of the universe is phantom stage with increasing density with respect
to average scale factor. We observe that the spatial volume is zero for t=0 and that the scalar
expansion is infinite, which shows that the universe starts evolving with zero volume at t=0
which is the big bang scenario. We also, observed in this model that as time increases, the

volume increases and becomes infinitely large t → ∞. Clearly, ρ (t) ∝ [a (t)]
3 and ρ(t) ∝ 1

β(t)
$

indicates that the universe is considered to be the phantom universe, where the density increases
with the radius (average scale factor). Moreover pressure increases with respect to the scale
factor. The EoS parameter ω (t) < −1 representing the model is the phantom universe and
leads to no Big Rip singularity. When n = −1 this is the analytical model of the phantom
bouncing universe "disappearing" at t=0. limt→∞

ρ

θ2
= constant indicates that this model is an

anisotropic model.
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Существование космологического фантома типа Бьянки
с политропным параметром уравнения состояния
в геометрии Лиры

Сурьянараяна Корну
Раджамаханти Сантикумар

А.Лакшмана Рао
М.Раманамурти

П.Судхир Кумар
К.Ситхарам

Б.Дивья
Институт технологий и менеджмента Адитьи

К. Коттуро Теккали
Шрикакулам-532201, Андхра-Прадеш, Индия

Аннотация. Эта работа исследует космологическую модель Bianchi Type-V с в рамках общей тео-
рии относительности, в которой есть идеальная жидкость, управляемая политропическим уравне-
нием в геометрии, выраженной p = αρ + kρn, как предложено в citens. Мы рассмотрели случай,
представляющий фантомную вселенную для (1 + α + k ρn−1) 6 0, k < 0, где ρ увеличивается с
радиусом a(t). Была получена роль геометрии Лиры;

Ключевые слова: ускоренное расширение, политропическое уравнение состояния, идеальная
жидкость, фантомная вселенная, геометрия Лиры.
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Abstract. We apply the notion of a one-side-ordered minimal polynomial to investigations in finite
semifields. A proper finite semifield has non-associative multiplication, that leads to the anomalous
properties of its left and right spectra. We obtain the sufficient condition when the right (left) order
of a semifield element is a divisor of the multiplicative loop order. The interrelation between the min-
imal polynomial of non-zero element and its right (left) order is described using the spread set. This
relationship fully explains the most interesting and anomalous examples of small-order semifields.
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1. Introduction and preliminaries

The weakening of the field axioms leads to more general algebraic systems such as near-fields,
semifields and quasifields. According to [1], a semifield is a set Q with two binary algebraic
operations + and ∗ such that:

1) ⟨Q,+⟩ is an abelian group with neutral element 0;
2) ⟨Q∗, ∗⟩ is a loop (Q∗ = Q \ {0});
3) both distributivity laws hold, a ∗ (b + c) = a ∗ b + a ∗ c, (b + c) ∗ a = b ∗ a + c ∗ a for all

a, b, c ∈ Q.
The first examples of non-trivial semifields (not the fields) were constructed by L. E. Dickson

in 1906, the multiplicative law in a proper semifield is non-associative. By replacing the two-
sided distributivity with a one-sided one, we get the concept of a quasifield (left or right). A
quasifield with associative multiplication is a near-field. Unlike the finite near-fields, which
were completely classified by H. Zassenhaus in 1936, neither semifields nor even quasifields have
received an exhaustive classification by now.

The absence of associativity even in a finite semifield and a finite quasifield leads to it having a
number of specific properties, which are poorly studied. The identification of structural features
and anomalous properties is an important step in solving the classification problem of finite
quasifields. The most complete review is presented by N. L. Johnson at al. in Handbook [2].

The following problems for finite proper quasifields were presented in 2013 by V. M. Levchuk
at research seminar of chair of algebra of Moscow State University, see also [3].
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c⃝ Siberian Federal University. All rights reserved
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(A) Enumerate maximal subfields and their possible orders.
(B) Find the finite quasifields Q with not-one-generated loop Q∗.
(C) What loop spectra Q∗ of finite semifields and quasifields are possible?
(D) Find the automorphism group AutQ.

The notion of spectrum is used for quasifields and semifields taking into account the abcense
of associativity. The product of m multipliers is said to be m-th degree of a fixed element a ∈ Q∗,
if every multiplier coincides with a. The smallest integer m > 1 such that there exists the m-th
degree of a, which is equal to the identity, is called the order of a and denoted by |a|. The set of
orders of all elements is called the spectrum of multiplicative loop Q∗.

Similarly, using the right-ordered and the left-ordered m-th degrees

am) = am−1) ∗ a, a(m = a ∗ a(m−1, a1) = a = a(1,

we define the right order |a|r and the left order |a|l of a and the right and the left spectra of Q∗

respectively.
Even the weakened associativity of multiplication allows us to obtain important results about

loops and, consequently, semifields and quasifields. Thus, Lagrange’s theorem and some other
classical group-theoretic theorems can be transferred to binary associative loops or Moufang
loops (A.N. Grishkov, A. V. Zavarnitsin) [4]. In general, Lagrange’s theorem is not valid for a
multiplicative loop of a semifield or quasifield. In particular, even the semifields of the minimal
order 16 contain the elements of the right and left order 6, which do not divide the order of the
loop. In the exceptional non-primitive Knuth–Rúa semifield of order 32, all elements except 0
and 1 have the same right and left order 21.

To identify the patterns of the right and left spectra, we apply the classical concept of a
minimal polynomial of a nonzero element to the study of finite semifields. Let Q be a semifield
of order pn, p be prime. The right-ordered minimal polynomial of an element a ∈ Q is said to be
a monic polynomial

µra(x) = xm + c1x
m−1 + · · ·+ cm−1x+ cm ∈ Zp[x] (1)

of minimal degree such that

am) + c1a
m−1) + · · ·+ cm−1a+ cm = 0.

The left-ordered minimal polynomial µla(x) is defined likewise. Some useful properties of one-
sided-ordered minimal polynomials see in [5].

The main result of the paper is the following theorem, where «lcm» is a least common multiple
of some numbers.

Theorem 1. Let Q be a non-associative semifield of order pn (p be prime), the right-ordered
minimal polynomial of an element a ∈ Q∗ has the canonical decomposition into irreducible fac-
tors:

µra(x) = φs11 (x)φs22 (x) . . . φsds (x) ∈ Zp[x].
Then the right order of an element a is a divisor of the number

lcm(pm1 − 1, pm2 − 1, . . . , pmd − 1, k1, k2, . . . , kd),

where mi is the degree of irreducible polynomial φi(x), the number ki equals to 1 if si = 1,
otherwise ki is the minimal with conditions

C1
ki

... p, C2
ki

... p, . . . , Csi−1
ki

... p,

for all i = 1, 2, . . . , d.
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As a corollary, we indicate the important special cases of small-rank semifields: for orders p3,
p4, p5. Moreover, we can say that our results are true for left orders and left-ordered minimal
polynomials in finite semifields. Also, for right and left quasifield, respectively.

The research method is closely related to linear spaces and spread sets, is based on multi-
plication recording in a quasifield as a linear transformation in the associated linear space. The
matrix operations allow us to effectively apply the method to prove the theoretical result and to
illustrate it by the examples of some semifields of orders 24, 25, 26, 34, 54, 134.

2. Spread set and minimal polynomials

It is well-known, that the order of finite semifield or quasifield is the prime number degree
pn [1]. A finite quasifield may be constructed on the basis of a linear space over an appropriate
finite field. Let Q be a n-dimensional linear space over the field Zp, θ is a bijective mapping from
Q to GLn(p) ∪ {0} such that:

1) det(θ(u)− θ(v)) ̸= 0 ∀u, v ∈ Q, u ̸= v,
2) θ(0, 0, . . . , 0) = 0 is zero matrix, θ(1, 0, . . . , 0) = E is identity matrix.
Define the multiplication law on Q by the rule

u ∗ v = uθ(v), u, v ∈ Q,

then ⟨Q,+, ∗⟩ is a right quasifield of order pn. The multiplicative neutral element θ−1(E) is
denoted as e. The image

R = {θ(u) | u ∈ Q} ⊂ GLn(p) ∪ {0} (2)

is called a spread set. And inversely, the right multiplication Ra : x→ x ∗ a in a right quasifield
Q is a linear transformation of the linear space Q over the prime subfield Zp. The set of Ra
for all a ∈ Q is the spread set of Q. For more information see [6], the well-known properties is
presented by following preposition:

1) Q is a semifield iff its spread set R is closed under addition;
2) Q is a semifield iff R is closed under multiplication;
3) Q is a field iff R is a field.
Evidently, the matrix representation of the spread set depends on the base of Q as a vector

space. Another base choice with the transition matrix T leads to the new spread set TRT−1, so
different spread sets can define the isomorphic quasifields. Next, we will choose the appropriate
matrix representation of a spread set up to the matrices conjugation. As a rule, we will assume
the first basic vector e1 = e and we will construct the base of Q such that the matrix θ(a) (for
the chosen element a) be of more convenient form – Jordan normal form or close to it.

Some properties of one-side-ordered minimal polynomials in a finite semifield Q correspond
to similar results in finite fields, see [5]. The right- or the left-ordered minimal polynomial of an
element a ∈ Q∗ is not necessarily irreducible, but µra(0) ̸= 0, µla(0) ̸= 0. The right-(left-)ordered
minimal polynomial is a factor of the polynomial xk − 1, where k = |a|r (k = |a|l). The minimal
polynomial of a has the degree 1 or 2 iff a belongs to a subfield of order p2 in Q, see [7].

Let a ∈ Q∗ and A = θ(a) is the corresponding matrix from the spread set R ⊂ GLn(p)∪{0}.
Then the right-ordered minimal polynomial of an element a is factor of the minimal polynomial
of the matrix A. Moreover, the right order of a is a factor of the order of the matrix A in the
general linear group GLn(p) (proved in [8]).

For completeness, we will prove the following simple but useful result.
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Lemma 1. Let Q be a semifield of order pn with the spread set R (2). If an elelment a ∈ Q does
not belong to the prime subfield Zp then the characteristic polynomial of the matrix A = θ(a) ∈ R
has no linear factors over Zp.

Proof. Assume that the statement is false and the polynomial det(A−λE) has the factor λ−α,
α ∈ Zp. Then the linear transformation with the matrix A has an eigenvector v ∈ Q∗ with the
eigenvalue α:

vθ(a) = αv ⇒ v ∗ a = v ∗ α,

it contradicts the definition of a loop Q∗. �

Evidently that the statement is true for any (right) quasifield too, if Zp ⊂ Z(Q).
Remind that for any square mathix A the characteristic matrix A−λE can be transform, by

equivalent tranformations, to the normal diagonal form:

A− λE ∼


E1(λ) 0 . . . 0

0 E2(λ) . . . 0

. . . . . . . . . . . .

0 0 . . . En(λ)

 ,

where the non-zero invariant factors Ei(λ) ∈ Zp[λ] are monic polynomials, and Ei(λ) is a divisor
of Ei+1(λ), 1 6 i < n. Moreover, the characteristic polynomial of A is

det(A− λE) = (−1)nE1(λ)E2(λ) . . . En(λ),

and the last invariant factor equals to the minimal polynomial of A: En(λ) = µA(λ).

3. Main results

We will prove the main Theorem 1.1 by the sequence of lemmas each of them can be considered
as an independent result. These lemmas represent the necessary partial cases, and the theorem
proof can be constructed by evident induction.

Consider the right-ordered minimal polynomial µra(x) for an element a ∈ Q∗, this polynomial
is a divisor of µA(x) for A = θ(a). It is clear that the right order of a is uniquely defined by
the polynomial µra(x); |a|r equals to the length of the neutral element orbit under the linear
transformation ψ = Ra : y → y ∗ a. When the degree of the polynomial µra(x) is m < n, we
can consider the map ψ, instead of n-dimensional linear space Q, in the m-dimensional linear
sub-space La ⊂ Q with the base e, a, a2, a3), . . . , am−1).

Lemma 2. If the right-ordered minimal polynomial µra(x) ∈ Zp[x] of an element a ∈ Q∗ is an
irreducible polynomial of the degree m then the right order of a is a divisor of the number pm−1.

Proof. Consider the right-ordered polynomial µra(x) (1) and construct the matrix A of the linear
transformation ψ : y → y ∗ a of the linear space La using the base above:

eψ = e ∗ a = a = (0, 1, 0, 0, . . . , 0),

aψ = a ∗ a = a2 = (0, 0, 1, 0, . . . , 0),

(a2)ψ = a2 ∗ a = a3) = (0, 0, 0, 1, . . . , 0),

. . . ,

(am−1))ψ = am−1) ∗ a = am) = −cm − cm−1a− · · · − c1a
m−1) = (−cm,−cm−1, . . . ,−c1);
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A =


0 1 0 . . . 0

0 0 1 . . . 0

0 0 0 . . . 1

−cm −cm−1 −cm−2 . . . −c1

 .

It is the companion matrix of µra(x), and the set

F = Zp(A) = {b0E + b1A+ b2A
2 + · · ·+ bm−1A

m−1 | bi ∈ Zp, i = 0, 1, . . . ,m− 1}

is the field of order pm, see [9]. So, the orbit length of the element e ∈ La under ψ equals to the
order of the matrix A in the cyclic group F ∗, |a|r is a divisor of pm − 1. �

As can be seen, the lemma proven generalizes the corollary from Lagrange’s theorem that the
element order is a divisor of the finite group order. For any nonzero element a of an arbitrary
finite semifield Q, the result is incorrect, see examples below. The result of the lemma is trivial
when a belongs to the simple subfield Zp: the minimal polynomial is linear and the right (and
left) order of the element divides p − 1. It is clear that the result is also valid for an element
from any subfield of a finite semifield Q.

Note that the transition from the semifield Q = (Q,+, ∗) to the opposite semifield
Qop = (Q,+, ◦) with the multiplication x ◦ y = y ∗ x interchanges the right order and the left
order of a, also the right-ordered minimal polynomial and the left-ordered minimal polynomial.
Thus, all results proved for the right spectrum can be transferred to the left spectrum.

Lemma 3. If the right-ordered minimal polynomial of an element a ∈ Q∗ is µra(x) = φ2(x),
where φ(x) is irreducible polynomial of degree m, n = 2m, then the right order of a is a divisor
of the number p(pm − 1).

Proof. Clear that the normal diagonal form of the matrix θ(a) − λE is diag(1, 1, . . . , 1, φ2(λ)).
Choose the base of Q such that the matrix θ(a) be of the form

A =

(
B E

0 B

)
,

where all the blocks are (m × m)-dimensional, so the normal diagonal form of B − λE is
diag(1, 1, . . . , 1, φ(λ)). For instance, we can write the matrix B as the companion matrix of
the polynomial φ(x) by the manner above. Such the base choice is possible because the matrices
A and θ(a) are conjugated, see the previous section.

Evidently, for any k ∈ N we have

Ak =

(
Bk kBk−1

0 Bk

)
.

The image of the neutral element e = (1, 0, 0, . . . , 0) under the linear transformation ψk : y → yAk

coincides to e iff k ≡ 0 (mod p) and Bk = E. The second condition follows from the irreducibility
of the polynomial φ(x), because the set Zp(B) of (m×m)-matrices is the field of order pm. So,
the order of matrix A in the group GLn(p) is a divisor of p(pm − 1), the lemma is proved. �

Additionally, we note that this reasoning shows the need for the divisibility of |a|r by the
number p. We will not focus on this condition because of the complexity in the general case.

Lemma 4. If the right-ordered minimal polynomial of an element a ∈ Q∗ is the product of two
different irreducible polynomials µra(x) = φ1(x)φ2(x) of orders m1 and m2, n = m1 +m2, then
the right order of a is a divisor of the least common multiple of numbers pm1 − 1 and pm2 − 1.
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Proof. The normal diagonal form of the matrix θ(a) − λE is diag(1, . . . , 1, φ1(λ)φ2(λ)), so, up
to conjugation, the matrix θ(a) can be chosen as

A =

(
B 0

0 C

)
.

Here the block B is (m1 × m1)-matrix and B − λE ∼ diag(1, 1, . . . , 1, φ1(λ)), the block C is
(m2 ×m2)-matrix and C − λE ∼ diag(1, 1, . . . , 1, φ2(λ)). The order of the matrix A evidently
equals to the least common multiple of the orders of B and C in general linear groups GLm1

(p)

and GLm2
(p), or, more precisely, in cyclic multiplicative groups of associated fields

F1 = {f(B) | f(x) ∈ Zp[x]} ≃ GF (pm1) and F2 = {f(C) | f(x) ∈ Zp[x]} ≃ GF (pm2).

The lemma is proved. �

Remark 1. It is clear that the case of more than two irreducible factors in the polynomial µra(x)
decomposition is considered by induction. Moreover, in the case when m1 +m2 < n, we must
replace the linear space Q with its linear subspace La.

It remains to consider the case when the irreducible polynomial φ(x) is s-times factor of
µra(x), s > 2. It is easy to show, that in this case, the choice of the base allows us to write the
corresponding (ms×ms)-dimensional block in the form:

A =



B E 0 0 . . . 0

0 B E 0 . . . 0

0 0 B E . . . 0

. . . . . . . . . . . . . . . . . .

0 0 0 0 . . . E

0 0 0 0 . . . B


.

Now we can raise it to the k-th degree using Newton’s binomial:

Ak =



Bk C1
kB

k−1 C2
kB

k−2 C3
kB

k−3 . . . 0

0 Bk C1
kB

k−1 C2
kB

k−2 . . . 0

0 0 Bk C1
kB

k−1 . . . 0

. . . . . . . . . . . . . . . . . .

0 0 0 0 . . . C1
kB

k−1

0 0 0 0 . . . Bk


.

The image of the neutral element e = (1, 0, . . . , 0) equals to eAk = e when two condition hold:
1) the order of the matrix B in GLm(p) (or in multiplicative group of the associated field

GF (pm)) is a divisor of the number k and
2) the characteristic p is a divisor of the binomial coefficients C1

k , C
2
k , . . . , C

s−1
k .

These arguments, together with the lemmas and the remark, complete the proof of the The-
orem 1.1.

Remark 2. The result of the theorem remains valid for the right order and right-ordered minimal
polynomial in a finite right quasifield, as well as for the left order and left-ordered minimal
polynomial in a finite left quasifield (including a semifield).

The following corollary represents some important cases of small-rank semifield.
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Corollary 1. Let Q be non-associative semifield of order pn, a ∈ Q∗. The right order and the
left order of an element a are divisors of:

1) p3 − 1, when n = 3;
2) p4 − 1 or p(p2 − 1), when n = 4;
3) p5 − 1 or (p2 − 1)(p3 − 1), when n = 5.

Thus, any three-dimensional finite semifield satisfies to the corollary of Lagrange’s theorem.
We can not guarantee it for arbitrary four- and five-dimensional semifield. In the case of n = 6

the listing of all the variants is too complicated.

4. Examples

1. Illustrate the results by the example of a semifield of order 16. It is known that there
exist 23 pairwise non-isomorphic semifields of order 16, see enumeration by E. Kleinfeld and
results of PK. Shtukkert and V.M. Levchuk, see [3]. The detailed table in that review contains
the information on spectra, subfields and automorphisms. All the semifields of order 16 are
right and left primitive, that is the multiplicative loop Q∗ is the set of left-ordered and right-
ordered degrees of some element a. So, the right and left spectra contains the number 15,
these spectra are the following (for different semifields): {1, 3, 15}, {1, 3, 6, 15}, {1, 3, 5, 6, 15},
{1, 5, 6, 15}. The number 6 in the spectra is not the divisor of |Q∗| = 15, but from corollary
we have p(p2 − 1) = 2 · 3 = 6, in this case we see the right- or left-ordered minimal polynomial
(x2 + x+ 1)2.

2. The results on 3-primitive semifield projective planes of order 81 are presented in [10].
There exist exactly 8 non-isomorphic semifield planes of order 81 that admit an involution auto-
morphism which fixes pointwise a subplane of order 9. Corresponding 8 non-isotopic semifields of
order 81 have the right and left spectra containing only divisors of |Q∗| = 80: {1, 2, 4, 8, 16, 40, 80}
or {1, 2, 4, 8, 16, 80}.

Another example of semifields of order 81 is the commutative Cohen–Ganley semifield [11]

Q = {(x, y) | x, y ∈ F ≃ GF (9)}

with the multiplication

(x, y) ◦ (u, v) = (xv + yu+ x3u3, yv + ηxu+ η−1xu), x, y, u, v ∈ F,

η is non-square in F . The spread set of this semifield considered as 4-dimensional linear space
over Z3 consists of matrices

θ(x1, x2, x3, x4) = x1E + x2


0 1 0 0

0 0 1 0

0 0 0 1

2 0 1 0

+ x3


0 0 1 0

0 0 0 1

2 0 2 2

1 2 0 1

+ x4


0 0 0 1

2 0 1 0

1 2 0 1

0 1 0 0

 ,

x1, x2, x3, x4 ∈ Z3. The next two tables present the elements a ∈ Q∗, their minimal polynomials
µra(x) = µla(x) and their right (left) orders |a|r = |a|l calculated by the second author.

Note that the elements with minimal polynomials of degree 1 and 2

{(1, 0, 0, 0), (2, 0, 0, 0), (0, 1, 2, 0), (0, 2, 1, 0), (1, 1, 2, 0), (1, 2, 1, 0), (2, 1, 2, 0), (2, 2, 1, 0)},

together with zero vector form the subfield of order 9. It is so-called middle nucleus of Q:

Nm = {b ∈ Q | (a ∗ b) ∗ c = a ∗ (b ∗ c) ∀b, c ∈ Q}.
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Table 1. Right order is a divisor of p4 − 1 = 80

Element a ∈ Q∗ µra(x) |a|r
(1, 0, 0, 0) x− 1 1
(2, 0, 0, 0) x− 2 2

(0, 1, 2, 0), (0, 2, 1, 0) x2 + 1 4
(2, 0, 1, 0), (2, 1, 0, 2), (2, 1, 1, 0), (2, 1, 1, 1) x4 + x3 + x2 + x+ 1 5

(1, 1, 2, 0), (1, 2, 1, 0) x2 + x+ 2 8
(2, 1, 2, 0), (2, 2, 1, 0) x2 + 2x+ 2 8

(1, 0, 2, 0), (1, 2, 0, 1), (1, 2, 2, 0), (1, 2, 2, 2) x4 + 2x3 + x2 + 2x+ 1 10
(0, 0, 0, 1), (0, 0, 0, 2), (0, 1, 2, 2), (0, 2, 1, 1) x4 + x2 + 2 16
(0, 0, 1, 0), (0, 1, 0, 2), (0, 1, 1, 0), (0, 1, 1, 1) x4 + x2 + x+ 1 40
(0, 0, 2, 0), (0, 2, 0, 1), (0, 2, 2, 0), (0, 2, 2, 2) x4 + x2 + 2x+ 1 40
(1, 0, 0, 1), (1, 0, 0, 2), (1, 1, 2, 2), (1, 2, 1, 1) x4 + 2x3 + x2 + 1 40
(2, 0, 0, 1), (2, 0, 0, 2), (2, 1, 2, 2), (2, 2, 1, 1) x4 + x3 + x2 + 1 40
(1, 0, 1, 0), (1, 1, 0, 2), (1, 1, 1, 0), (1, 1, 1, 1) x4 + 2x3 + x2 + x+ 2 80
(2, 0, 2, 0), (2, 2, 0, 1), (2, 2, 2, 0), (2, 2, 2, 2) x4 + x3 + x2 + 2x+ 2 80

Table 2. Right order is a divisor of p(p2 − 1) = 24

Element a ∈ Q∗ µra(x) |a|r
(0, 1, 1, 2), (0, 2, 2, 1) (x2+ 2x+ 2)(x2+ x+ 2) 8
(1, 1, 1, 2), (1, 2, 2, 1) (x2 + 1)(x2 + 2x+ 2) 8
(2, 1, 1, 2), (2, 2, 2 ,1) (x2 + 1)(x2 + x+ 2) 8

(0, 0, 1, 1), (0, 0, 1, 2), (0, 0, 2, 1), (0, 0, 2, 2), (0, 1, 0, 0), (x2 + 1)2 12
(0, 1, 0, 1), (0, 1, 2, 1), (0, 2, 0, 0), (0, 2, 0, 2), (0, 2, 1, 2)
(1, 0, 1, 1), (1, 0, 1, 2), (1, 0, 2, 1), (1, 0, 2, 2), (1, 1, 0, 0), (x2 + x+ 2)2 24
(1, 1, 0, 1), (1, 1, 2, 1), (1, 2, 0, 0), (1, 2, 0, 2), (1, 2, 1, 2)
(2, 0, 1, 1), (2, 0, 1, 2), (2, 0, 2, 1), (2, 0, 2, 2), (2, 1, 0, 0), (x2 + 2x+ 2)2 24
(2, 1, 0, 1), (2, 1, 2, 1), (2, 2, 0, 0), (2, 2, 0, 2), (2, 2, 1, 2)

The feature of this example is the number of «right roots» of the polynomials. This number
equals m for irreducible polynomials of degree m (see Tab. 1), and it does not equal m for
reducible ones (see Tab. 2).

Question. How many «right roots» and «left roots» does a polynomial f(x) ∈ Zp[x] have in a
semifield Q of order pn, if deg(f) = m?

3. The results of the first author on the semifield planes of order p4 with the special auto-
morphisms subgroup H ≃ Q8 in [12] were illustrated by the examples of semifield planes and
semifields of order 54 and 134. It was proved that all the coordinatizing semifields are both left
and right primitive, non-commutative. Each of them have 1, 2 or p + 2 maximal subfields of
order p2, the automorphism group is Z2 or Zp+1.

Let Mn be the set of all divisors of integer n. According to the corollary, the right spectrum
of semifields of order 625 above is contained in

M54−1 ∪ {15, 30, 40, 60, 120} ⊂M54−1 ∪M5·(52−1),

for the semifields of order 134 the right spectrum is the subset of

M134−1 ∪ {21, 91, 104, 182, 273, 312, 364, 546, 728, 1092, 2184} ⊂M134−1 ∪M13·(132−1).
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4. Consider two exceptional non-primitive semifields, for more information see [3]. In 1991
G.P. Wene wrote the hypothesis: any finite semifield is right or left primitive. In 2004 I.F. Rúa
gave the counter-example to Wene’s conjecture, using a Knuth semifield R of order 32. This
commutative Knuth-Rúa semifield is neither right nor left primitive. The second counter-example
is Hentzel-Rúa semifield H of order 64, which was constructed in 2007. These semifields have no
elements of one-sided order 31 and 63 respectively. Another counter-examples are still unknown.

Note that even non-primitive Knuth–Rúa and Hentzel–Rúa semifields are right-cyclic, these
semifields admit a Zp-base

{e, a, a2), . . . , an−1)},
for some element a.

It is known that any element a ∈ R \ {0, 1} has the right (and left) order 21. The direct
calculation presented in [5] shows that the right-ordered minimal polynomial µra(x) is

x5 + x4 + 1 = (x2 + x+ 1)(x3 + x+ 1) or x5 + x+ 1 = (x2 + x+ 1)(x3 + x2 + 1).

So, by the corollary, we obtain (p2 − 1)(p3 − 1) = 21, which is consistent with earlier results [3].
Now consider the Hentzel–Rúa semifield H of order 64, using the information from [5]. Note

that the right-ordered minimal polynomial of a ∈ H is not necessarily equal to the minimal
polynomial of the associated matrix A = θ(a).

The most interesting situation we see when the right-ordered minimal polynomial of a is
(x2 + x+1)3. According the main theorem 1.1 for m1 = 2 and s1 = 3, the right order of a must

be a divisor of the number lcm(22 − 1, k1), where k1 is the minimal with the conditions C1
k1

... 2,

C2
k1

... 2. From Pascal’s triangle
1
1 1
1 2 1
1 3 3 1
1 4 6 4 1

we see that k1 = 4, lcm(22 − 1, 4) = 12 = |a|r. One can check the rest of the cases in the Tab. 3.

Table 3. Orders and minimal polynomials in H

|a|l = |a|r ml
a(x) = mr

a(x) mA(x)
7 (x3 + x+ 1)(x3 + x2 + 1) (x3 + x+ 1)(x3 + x2 + 1)
12 (x2 + x+ 1)3 (x2 + x+ 1)3

15 x4 + x+ 1 (x4 + x+ 1)(x2 + x+ 1)
6 (x2 + x+ 1)2 (x2 + x+ 1)3

7 x3 + x+ 1 (x3 + x+ 1)2

or or
x3 + x2 + 1 (x3 + x2 + 1)2

3 x2 + x+ 1 x2 + x+ 1
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О спектрах и минимальных многочленах
в конечных полуполях

Ольга В. Кравцова
Илья К. Кузьмин

Сибирский федеральный университет
Красноярск, Российская Федерация

Аннотация. Для исследования конечных полуполей применяется понятие односторонне-
упорядоченного минимального многочлена. Отсутствие ассоциативности умножения в собственном
полуполе приводит к аномальным свойствам его левого и правого спектра. Получено достаточное
условие делимости порядка мультипликативной лупы на правый (левый) порядок элемента. С
использованием регулярного множества полуполя описана связь минимального многочлена нену-
левого элемента и его правого (левого) порядка. Эта взаимосвязь дает исчерпывающее объяснение
наиболее интересным аномальным примерам полуполей малых порядков.

Ключевые слова: полуполе, правый порядок, правый спектр, правоупорядоченный минималь-
ный многочлен, регулярное множество.
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Abstract. The work is devoted to the study of the real roots of the system of transcendental Aris–
Amundson equations. It is shown that the number of real roots is related to the number of real roots of
some entire function (resultant). The number of complex roots is investigated.
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Introduction
Finding the number of real roots of polynomials is a classical algebraic problem. The Hermite

method of quadratic forms, the Sturm method, the Descartes sign rule, and the Byudan–Fourier
theorem are devoted to this problem (see, for example, [1]). Further development of these
methods for polynomials can be found in the work [2] and the monograph [3]. For entire func-
tions, the question of localization of real positive roots was considered in the classical works of
N.G. Chebotarev [4] (pp. 28–56), as well as in the work of [5] (we refer to the collected works of
N.G. Chebotarev, since his original works are hardly accessible).

For systems of equations, the number of real roots was studied in the articles [6–8]. In the
article [9], the number of real roots was related to the number of real roots of the resultant.

The monographs [10,11] consider algebraic and transcendental systems of equations. Systems
of transcendental equations arise, for example, in the study of equations of chemical kinetics [12].
One of the problems that arise there is the problem of the number of real positive roots of a
system of equations in a reaction polyhedron. As an example, the Aris-Amundson system has
been studied.

1. Multiple roots of the resultant
Let us consider one of the models of a continuous perfectly stirred reactor, the so-called

Aris-Amundson model in the dimensionless form (see [12, ch. 2])

dx

dτ
= f(y)(1− x)− x = f1(x, y),

dy

dτ
= βf(y)(1− x)− s(y − 1) = f2(x, y), (1)

where f(y) = Daeγ(1−1/y). All constants are positive.
The stationary states of the system (1) are solutions of the stationarity system

f1(x, y) = 0, f2(x, y) = 0, (2)
∗akytmanov@sfu-kras.ru https://orcid.org/0000-0002-7394-1480
†khodos_olga@mail.ru

c⃝ Siberian Federal University. All rights reserved
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which can be written as
Daeγ(1−1/y)(1− x)− x = 0,

βDaeγ(1−1/y)(1− x)− s(y − 1) = 0.

Denoting Da = b, t = γ (1− 1/y), we get the system

bet(1− x)− x = 0, βbet(1− x)− s
t

γ − t
= 0. (3)

Obviously, the system (3) has no roots with zero coordinates.
Earlier in the work [13], the Zeldovich–Semenov model was studied in a similar way. The

main idea of the study is the application of the multidimensional theory of residues, the study
of power sums of roots and residue integrals (see [10,11]).

Then we get

bet · β(γ − t)− st

β(1− t)
− st

β(γ − t)
= 0.

Thus, the entire function of the first order of growth can serve as the resultant of the system (2)

F (t) = bet(βγ − t(β + s))− st = 0.

Let us check it for multiple zeros. We convert it to the form

φ(t) = bet − st

βγ − t(β + s)
.

Calculating the derivative, we get

φ′(t) = bet − sβγ

(βγ − t(β + s))2
.

Obviously, if F (t) = 0 and F ′(t) = 0 at some point t, then φ(t) = 0 and φ′(t) = 0 at this point.
The converse is also true.

Then from the equalities φ(t) = 0, φ′(t) = 0 we get

t1,2 =
βγ ∓

√
β2γ2 − 4β2γ − 4βγs

2(β + s)
.

Substituting these values, for example, into the first equation, we get

b · exp

(
βγ ∓

√
β2γ2 − 4β2γ − 4βγs

2(β + s)

)
=

s

β + s
· βγ ∓

√
β2γ2 − 4β2γ − 4βγs

βγ ±
√
β2γ2 − 4β2γ − 4βγs

. (4)

Thus, in equality (4), there is an exponential function on the left, and a power function on
the right. Therefore, they cannot match for almost all parameter values. Then for almost all
parameter values there are no multiple roots of the function φ(t) (and therefore F (t)).

Proposition 1. For almost all parameter values the function φ(t) (and therefore F (t)) has no
multiple roots.
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2. The number of real roots of the resultant
Next, we use the following statement (see [14]).

Theorem 1. If the system (2) with real coefficients is such that it has no roots with zero coordi-
nates and all zeros of the resultant F (t) are simple, then the number of real roots of the system
(2) coincides with the number of real roots of the function F (t).

From the system (2) we get 1 − x = 1 +
s

β
(1 − y), x =

s

β
(y − 1). We substitute it into the

first equation

beγ(1−1/y) ·
(
1 +

s

β
(1− y)

)
+
s

β
(1− y) = 0.

The resultant looks like

φ(y) = beγ(1−1/y) · β − s(y − 1)

s(y − 1)
− 1,

and we find the number of roots of φ(y).
First, we find the intervals of increase and decrease of φ(y).

φ′(y) =
beγ(1−1/y)

s
· −(γs+ β)y2 + γ(β + 2s)y − γ(β + s)

y2(y − 1)2
.

The derivative φ′(y) = 0 if and only if

−(γs+ β)y2 + γ(β + 2s)y − γ(β + s) = 0.

Solving the resulting quadratic equation, we find the discriminant

D = γ2β2 − 4γβ2 − 4γβs.

Solutions to the quadratic equation are

y1,2 =
γ(β + 2s)∓

√
γ2β2 − 4γβ2 − 4γβs

2(sγ + β)
.

If D > 0, that is, γβ − 4(β + s) > 0, then

ψ(y) = −(γs+ β)y2 + γ(β + 2s)y − γ(β + s)

has two real roots y1 < y2.
Since the graph of the function ψ(y) is a parabola with branches down, then ψ(y) < 0 on the

interval (−∞; y1) ∪ (y2;∞) and ψ(y) > 0 in the interval (y1; y2).
If D = 0, that is, γβ − 4(β + s) = 0, then ψ(y) has one real root y0 and ψ(y) < 0 on the

interval (−∞; y0) ∪ (y0;∞).
If D < 0, that is, γβ − 4(β + s) < 0, then ψ(y) has no real roots and ψ(y) < 0 on the entire

real line.
Let us show that if D > 0, then the roots of ψ(y) lie to the right of 1, that is, 1 < y1 6 y2.

Note beforehand that if D > 0, then γ > 4.

Indeed, D > 0 is equivalent to the inequality γ > 4+
4s

β
, which implies that γ > 4 (β, s > 0).

Assume that y1 =
γ(β + 2s)−

√
D

2(sγ + β)
> 1. This inequality is equivalent to β(γ − 2) >

√
D.

Since γ > 4, the left and right sides of the last inequality are non-negative, which means it is
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equivalent to β2(γ − 2)2 > γ2β2 − 4γβ2 − 4γβs. Simplifying it, we get the equivalent condition
4β(β + γs) > 0, which is always true, since β, γ, s > 0. Thus, our assumption that y1 > 1 is
correct. That is, for D > 0, the condition 1 < y1 6 y2 is satisfied.

It follows from the above that if D > 0, that is, γ2β2 − 4γβ2 − 4γβs > 0, then φ′(y) has two
real roots 1 < y1 < y2 and φ′(y) < 0 on the set (−∞; 0)∪ (0; 1)∪ (1; y1)∪ (y2; +∞), φ′(y) > 0 in
the interval (y1; y2). So φ(y) decreases on the set (−∞; 0) ∪ (0; 1) ∪ (1; y1) ∪ (y2; +∞) and φ′(y)
increases in the interval (y1; y2).

It also follows from the above that if D > 0, that is, γ2β2 − 4γβ2 − 4γβs > 0, then φ′(y)
has two real roots 1 < y1 < y2 and φ′(y) < 0 on the set (−∞; 0) ∪ (0; 1) ∪ (1; y1) ∪ (y2; +∞),
φ′(y) > 0 in the interval (y1; y2). So φ(y) decreases on the set (−∞; 0)∪(0; 1)∪(1; y1)∪(y2; +∞)
and φ′(y) increases in the interval (y1; y2).

If D = γ2β2 − 4γβ2 − 4γβs = 0, then φ′(y) has one real root y0 > 1 and φ′(y) < 0 on the set
(−∞; 0)∪(0; 1)∪(1; y0)∪(y0; +∞). So φ(y) decreases on the set (−∞; 0)∪(0; 1)∪(1; y0)∪(y0; +∞).
If D = γ2β2 − 4γβ2 − 4γβs = 0, then φ′(y) has one real root y0 > 1 and φ′(y) < 0 on the set
(−∞; 0)∪(0; 1)∪(1; y0)∪(y0; +∞). So φ(y) decreases on the set (−∞; 0)∪(0; 1)∪(1; y0)∪(y0; +∞).

If D = γ2β2 − 4γβ2 − 4γβs < 0, then φ′(y) has no real roots and φ′(y) < 0 over the entire
domain of φ′(y), which means φ(y) decreases over the entire domain of definition of φ(y).

For a more accurate understanding of the behavior of the function φ(y), we find the limits
of φ(y) at ±∞ and at the break points: lim

y→−∞
φ(y) = −beγ − 1 < 0, lim

y→0−0
φ(y) = −∞,

lim
y→0+0

φ(y) = −1, lim
y→1−0

φ(y) = −∞, lim
y→1+0

φ(y) = +∞, lim
y→+∞

φ(y) = −beγ − 1 < 0

Now we find the number of roots of the function φ(y).
1. If  D > 0,

φ(y1) < 0,
φ(y2) > 0,

or more precisely
γ2β2 − 4γβ2 − 4γβs > 0,

be
γβ−

√
γ2β2−4γβ2−4γβs

2(β+s) · γβ +
√
γ2β2 − 4γβ2 − 4γβs− 2(β + s)

2s
− 1 < 0,

be
γβ+

√
γ2β2−4γβ2−4γβs

2(β+s) · γβ −
√
γ2β2 − 4γβ2 − 4γβs− 2(β + s)

2s
− 1 > 0,

then φ(y) has three real roots 1 < Y1 < Y2 < Y3.
For example, if b = 0.04, γ = 10, β = 1, s = 1, we get the discriminant D = 20 > 0,

y1 =
15−

√
5

11
≈ 1.16035745659093 > 1, y2 =

15 +
√
5

11
≈ 1.5669152706818 > y1, φ(y1) ≈

−0.16584745271763 < 0, φ(y2) ≈ 0.13869366143044 > 0 and the function φ(y) has three real
roots Y1 ≈ 1.073488201 > 1, Y2 ≈ 1.356686984 > Y1, Y3 ≈ 1.733497054 > Y2 (see Fig. 1).

Another example: for b = 0.001, γ = 10, β = 10, s = 1 we get the discriminant

D = 5600 > 0, y1 = =3−
√
14

2
≈1.129171306>1, y2 = 3 +

√
14

2
≈ 4.870828694 > y1,

φ(y1) ≈ −0.76011792742972 < 0, φ(y2) ≈ 3.4763004785113 > 0 and the function φ(y) has
three real roots Y1 ≈ 1.011153756 > 1, Y2 ≈ 1.812214562 > Y1, Y3 ≈ 9.890609328 > Y2 (see Fig.
2).

2. When the following conditions are met
γ2β2 − 4γβ2 − 4γβs > 0,

be
γβ−

√
γ2β2−4γβ2−4γβs

2(β+s) · γβ +
√
γ2β2 − 4γβ2 − 4γβs− 2(β + s)

2s
− 1 = 0
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Fig. 1. φ(y) has 3 real roots

Fig. 2. φ(y) has 3 real roots

(the case when y1 is a multiple real root of φ(y)) or
γ2β2 − 4γβ2 − 4γβs > 0,

be
γβ+

√
γ2β2−4γβ2−4γβs

2(β+s) · γβ −
√
γ2β2 − 4γβ2 − 4γβs− 2(β + s)

2s
− 1 = 0

(the case when y2 is a multiple real root of φ(y)), the function φ(y) has two real roots 1 < Y1 < Y2.
An example when Y1 is a multiple real root (Y1 = y1) is the following: for γ = 10, β = 10,

s = 1, b = =
(4−

√
14) · e

40−10
√

14

−6+
√

14

16 +
√
14

we get the discriminant D = 5600 > 0, y1 = 3 −
√
14

2
≈

1.129171307 > 1, y2 = 3 +

√
14

2
≈ 4.870828694 > y1, φ(y1) = 0, φ(y2) ≈ 17.6604210584 > 0 and

the function φ(y) has two real roots Y1 = y1 = 3−
√
14

2
≈ 1.129171307 > 1, Y2 ≈ 10.73089616 >

Y1 (see Fig. 3).
3. If

γ2β2 − 4γβ2 − 4γβs < 0,

the function φ(y) has one real root Y1 > 1.

Proposition 2. The resultant has no more than 3 real roots, therefore, the system (2) has,
according to Theorem 1, no more than 3 real roots.
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Fig. 3. φ(y) has 2 real roots

3. Complex roots of the system
Recall Hadamard’s theorem for entire functions of finite order of growth (see, for example,

[15]). Expressions E(u, 0) = 1 − u, E(u, p) = (1 − u)eu+
u2

2 +·+up

p , p = 1, 2, . . . are called
approximate multipliers.

If a function f(t) on the complex plane has a finite order of growth ρ and t1, . . . , tn, . . . its
zeros, then there exists an integer p 6 ρ independent of n such that the product

∞∏
n=1

E

(
t

tn
, p

)
(5)

converges for all t if the series converges ∑(
r

rn

)p+1

,

where r1, r2, . . . are the absolute values of the zeros of the function f(t), and this series converges
for all values of r if p+ 1 > ρ.

The product (5) with the smallest of the integers p for which the series converges is called
the canonical product constructed from zeros f(t), and this smallest p is called its genus.

Theorem 2 (Hadamard). If the an entire function f(t) of order ρ has zeros t1, t2, . . . , and
f(0) ̸= 0, then

f(t) = eQ(t)P (t),

where P (t) is the canonical product constructed from zeros f(t), and Q(t) is a polynomial of
degree no higher than ρ.

Consider the resultant
F (t) = bet(βγ − t(β + s))− st.

This is a entire function of the first order of growth.
If it has a finite number of zeros, then according to Hadamard’s theorem it will have the form

F (t) = et · Pm(t),

where Pm(t) is a certain polynomial. From here

et =
st

b(βγ − t(β + s))
· Pm(t),
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which is impossible, since there is a transcendental function on the left, and a rational one on
the right.

Thus, the resultant F (t) has an infinite number of complex roots tk, |tk| → +∞ as k → ∞.
From the system (3), we express x and y in terms of t and get

y =
γ

γ − t
, x =

st

β(γ − t)
.

Then at the points tk we have xk =
stk

β(γ − tk)
, yk =

γ

γ − tk
. Therefore, xk → − s

β
, yk → 0

as k → ∞.

The work was supported by the Russian Science Foundation, project no. 24-21-00023.
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О модели Ариса-Амундсона
Александр М. Кытманов

Ольга В. Ходос
Сибирский федеральный университет

Красноярск, Российская Федерация

Аннотация. Работа посвящена исследованию вещественных корней системы трансцендентных
уравнений Ариса–Амундсона. Показано, что число вещественных корней связано с числом веще-
ственных корней некоторой целой функции (результанта). Исследовано число комплексных корней.

Ключевые слова: системы трансцендентных уравнений, результант, простой корень.
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Abstract. The work studies commutative and idempotent finite groupoids that are associated with
subnetworks of multilayer feedforward neural networks (hereinafter simply neural networks). Previously,
the concept of a neural network subnet was introduced. This paper introduces the concept of a generalized
subnetwork of a neural network. This concept generalizes the previously introduced concept. The
resulting groupoids are called additive and multiplicative groupoids of generalized subnets of a given
neural network. These groupoids model the union and intersection of generalized subnets of a neural
network. The conditions that the neural network architecture must satisfy in order for the additive
groupoid of generalized subnets to be associative are identified. The conditions that the neural network
architecture must satisfy in order for the multiplicative groupoid of generalized subnets to be associative
are obtained. Subgroupoids of the constructed groupoids are studied.
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Introduction

In this work, only multilayer feedforward neural networks are considered (therefore, we will
further call them simply neural networks or networks). Information about neural networks can
be found in the works [1–4]. The work is a continuation of the works [1, 5, 6]. In the work [1]
for each network N , a commutative and idempotent groupoid is constructed AGS(N ). This
groupoid is called the additive groupoid of neural network subnets of the neural network N . In
the work [6] a multiplicative groupoid of subnets MGS(N ) is constructed. The supports of the
groupoids AGS(N ) and MGS(N ) coincide.

The connection between elements of groupoids AGS(N ) and MGS(N ) with neural network
subnets N is discussed in [1,6]. Article [1] introduces the concept of a subnetwork of a multilayer
feedforward neural network (see Definition 4 of [1]). Subnet data is obtained from the original net-
work by disabling a certain set of neurons. After switching off the selected neurons, the synaptic
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connections that connect the excluded neurons to any other neurons disappear. The remain-
ing neurons and synaptic connections have the same architectural parameters as in the original
network. That is, the activation functions, threshold values, weights of synaptic connections for
the neurons and synaptic connections remaining in the subnetwork do not change. Elements of
a groupoid AGS(N ) (hence, MGS(N )) contain information about the neurons remaining after
switching off. The operation in the groupoid AGS(N ) allows you to model the merging (i.e.
unioning) of two subnets into one network, whenever possible. The groupoid operation MGS(N )

allows you to model the intersection of two subnets when possible.

Objectives of the work. Introduction of new groupoids that allow modeling of various pro-
cesses associated with neural networks. Studying the properties of a neural network depending
on the algebraic properties of groupoids built on this neural network.

Main results. This work expands the concept multilayer feedforward neural network. By virtue
of Definition 3 of [1], a neural network must have at least two layers of neurons. The latter seemed
justified in the context that it is networks with at least 2 layers that are of practical value. But
this led to excessive formalism. Thus, some elements of the groupoid AGS(N ) could be associated
with subnets of the neural network N , but many others could not. At the same time, in practice,
situations arise when it is convenient to carry out various manipulations with layers of neurons.
In other works, neural networks were composed of neurons (see, for example, [2]), which were
associated with abstract automata.

Definition 3 of [1] in this work has been modified so that a neural network can have one
layer of neurons (see Definition 1.1). A single neuron can now also be considered a neural
network by Definition 1.1. In this work, the concept of a neural network subnet was expanded
(see Definition 1.3). Now a neural network subnet can consist of neurons of one layer (see
Definition 2.1). One neuron can now also be considered a subnetwork. In Definition 4 of [1]
subnetworks were required to contain neurons of at least two layers.

The Definition 2.1 introduces the concept of a generalized neural network subnet. This con-
cept allows us to consider generalized subnetworks in which a certain selected set of synaptic
connections has been disconnected. The disconnection of a synaptic link is modeled by assigning
a weight of zero to that synaptic link. The introduction of this feature is justified from a practi-
cal point of view. In practice, it can be convenient to remove weak synaptic connections from a
trained neural network (that is, weight connections that are small enough and have little effect
on the operation of the network). The latter leads to improved performance of the algorithm
built on neural network principles.

The introduction of the concept of a generalized subnetwork of a neural network leads to the
appearance of additive groupoid of generalized subnets and multiplicative groupoid of generalized
subnets: ÂGS(N ) and M̂GS(N ) (see Definition 2.2). The elements of these groupoids now carry
information about the neurons that remain after removing all other neurons, and about the
synaptic connections that will be disconnected. Operations in these groupoids will continue to
model the union and intersection of neural network subnets.

Let n(N ) denote the number of layers of neurons in the network N . The main results of
the work are formulated in the form of Theorems 3.1, 3.2 and 4.1. The groupoid ÂGS(N ) is
associative iff n(N ) = 1 or n(N ) = 2. The groupoid M̂GS(N ) is associative iff in the neural
network N only the first and last layers have more than one neuron. In particular, gruppoid
M̂GS(N ) is associative if n(N ) = 1 or n(N ) = 2; in these cases, there are no restrictions on
the layers of neurons. Thus, we see that the associativity condition for the groupoids ÂGS(N )

and M̂GS(N ) imposes restrictions on architecture (i.e. structure) of the neural network N .
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Theorem 4.1 reveals the connection between the generalized subnetwork N ′ networks N and
subgroupoids of groupoids ÂGS(N ) and M̂GS(N ).

Algebraic properties of groupoids ÂGS(N ) and M̂GS(N ) are closely related to the structure
of the graph of the neural network N (this is confirmed by Theorems 3.1, 3.2).

1. Basic definitions

Further, R is the set of real numbers and F (R) := Hom(R,R) is the set of all mappings from
R to R.

Definition 1.1. Let the following objects be given:
1) the tuple (M1, . . . ,Mn) of length n > 1 of finite non-empty sets, where for i ̸= j the condition
Mi ∩Mj = ∅ is satisfied;
2) the set S := (M1 ×M2) ∪ (M2 ×M3) ∪ · · · ∪ (Mn−1 ×Mn);
3) the mapping f : S → R;
4) the set A :=M1 ∪ · · · ∪Mn;
5) the mapping g : A→ F (R);
6) the mapping l : A→ R.

Then the tuple N = (M1, . . . ,Mn, f, g, l) will be called a multilayer feedforward neural net-
work.

Neural network operation. Each neural network N = (M1, . . . ,Mn, f, g, l) and each two
bijections

i :M1 :→ {1, . . . , |M1|}, o :Mn → {1, . . . , |Mn|}

corresponds to the mapping Fi,o,N : R|M1| → R|Mn|, which implements the operation of a
neural network as a computing circuit. The mapping Fi,o,N is defined using an artificial neuron
(McCulloch–Pitts; see [2]) model. If compositions of neural networks are studied, then the
bijections i and o must be written into the definition of definition 1.1 (see [7]).

Standard notations associated with neural networks. We will associate the following
notations with each neural network N = (M1, . . . ,Mn, f, g, l):

n(N ) = n, A(N ) =

n∪
i=1

Mi, Syn(N ) =

n−1∪
i=1

Mi ×Mi+1.

Thus, n(N ) is the number of all layers of the neural network, A(N ) is the set of all neurons, and
Syn(N ) is the set all synaptic connections. We will call the tuple (M1, . . . ,Mn) the main tuple
of neurons of the network N .

A tuple of empty sets will be denoted by the symbol ∅ := (∅, . . . ,∅) (the length of such
a tuple will always be clear from the context). Let two tuples X = (X1, . . . , Xn) and Y =

(Y1, . . . , Yn) of finite sets be given. Then we will use the notation

X ∪ Y := (X1 ∪ Y1, . . . , Xn ∪ Yn); X ∩ Y := (X1 ∩ Y1, . . . , Xn ∩ Yn);

X ⊆ Y ⇔ (X1 ⊆ Y1) ∧ (X2 ⊆ Y2) ∧ · · · ∧ (Xn ⊆ Yn).

Definition 1.2. Let (X1, . . . , Xn) be some tuple composed of finite sets. We will say that the
tuple is continuous if for any distinct i, j in{1, . . . , n} the following implication holds: if Xi ̸= ∅
and Xj ̸= ∅ and i < j, then for any s ∈ {i, i+ 1, . . . , j − 1, j} the inequality Xs ̸= ∅ holds. The
tuple ∅ is considered continuous by definition.
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For a tuple of sets to be continuous, it must not contain an alternation of a non-empty set
with an interval of empty sets, and then again with a non-empty set.

Let us introduce a definition of subnet, similar to Definition 4 from [1]. But it differs from it
in that single-layer networks can now also be subnets.

Definition 1.3. Let the neural network be defined N = (M1, . . . ,Mn, f, g, l) and a continuous
tuple (X1, . . . , Xn) is given such that the conditions are satisfied (X1, . . . , Xn) ⊆ (M1, . . . ,Mn)
and (X1, . . . , Xn) ̸= ∅. We assume that (Y1, . . . , Ym) is a tuple obtained from a tuple
(X1, . . . , Xn) by deleting components equal to the empty set, where m 6 n. If f ′ is the re-
striction of the function f on the set S′ := (Y1×Y2)∪ (Y2×Y3)∪ · · ·∪ (Ym−1×Ym) and g′, l′ are
the restriction of the function g and the restriction of the function l on the set A′ := Y1∪· · ·∪Ym,
then the object N ′ := (Y1, . . . , Ym, f

′, g′, l′) will be called subnet of the network N . We will say
that the tuple (X1, . . . , Xn) induces a subnetwork N ′. The tuple (Y1, . . . , Ym) is the main tuple
of neurons of the subnetwork N ′. In general, the tuples (X1, . . . , Xn) and (Y1, . . . , Ym) can be
different.

Groupoids AGS(N ) are introduced into [1], and groupoids MGS(N ) are introduced into [6].
For the convenience of the reader, we give an explicit definition below.

Definition 1.4. Let a neural network N = (M1, . . . ,Mn, f, g, l) be defined with a main tuple of
neurons M = (M1, . . . ,Mn). The set of all possible continuous tuples X ⊆M will be denoted by
the symbol AGS(N ). Further, X and Y are two arbitrary element from AGS(N ). Let us define
binary algebraic operations (+) and (∗) on the set AGS(N ):

X + Y :=

{
X ∪ Y , if X ∪ Y ∈ AGS(N ),

∅, if X ∪ Y /∈ AGS(N );
X ∗ Y :=

{
X ∩ Y , if X ∩ Y ∈ AGS(N ),

∅, if X ∩ Y /∈ AGS(N ).

Then the groupoid AGS(N ) := (AGS(N ),+) will be called additive groupoid of neural net-
work subnets N . The groupoid MGS(N ) := (AGS(N ), ∗) will be called the multiplicative groupoid
of neural network subnets N .

Remark 1.1. Each tuple X ̸= ∅ of AGS(N ) induces some subnetwork. Two different tuples
from AGS(N ) induce different subnets of the network N (this follows trivially from the definition
of 1.3). Each subnet of the network N is induced by some tuple from AGS(N ). Thus, there is
a bijection between the set of all subnets of the network N and the set AGS(N ) \ {∅}.

Remark 1.2. The changes made to Definitions 3 and 4 from [1] does not change the contents
of the set AGS(N ). Additionally, these changes do not affect definitions of operation: (+) and
(∗). These changes allow more elements in AGS(N ) to be associated with subnets. Continuous
tuples with only one layer different from the empty set did not induce any subnetworks due to
Definition 4 of [1]. Because the subnets from that definition had at least two layers. If G1(N ) is
the set of all subnets by Definition 4 of [1] and G2(N ) is the set of all subnets by Definition 1.3,
then the inclusion G1(N ) ⊂ G2(N ).

2. Generalized subnets

The concept of a neural network subnet, introduced by the Definition 1.3, describes objects
obtained from the original network by switching off a certain set of neurons and the deleting of
synaptic connections associated with disconnected neurons. Let’s build a model of a generalized
subnetwork that describes objects that can be obtained by turning off a certain set of neurons
and resetting the weights of a given set of synaptic connections to zero.

– 62 –



Andrey V. Litavrin, Tatyana V. Moiseenkova On some Commutative and Idempotent . . .

The set of all subsets of the set X, as usual, will be denoted by 2X . Let N =

(M1, . . . ,Mn, f, g, l). Then we introduce the set

ÂGS(N ) := AGS(N )× 2Syn(N ).

Elements from ÂGS(N ) will be denoted by capital Latin letters with a cap.

Definition 2.1. Let N ′ = (Y1, . . . , Ym, f
′, g′, l′) is subnet of network N , which is induced by

the tuple X from AGS(N ). We assume that S′ := (Y1 × Y2)∪ (Y2 × Y3)∪ · · · ∪ (Ym−1 × Ym) and
Q is a certain subset of set Syn(N ). Let us introduce the mapping

f ′′(s) :=

{
f ′(s), s /∈ Q,
0, s ∈ Q

(s ∈ S′).

Then the object N ′ := (Y1, . . . , Ym, f
′′, g′, l′) will be called a generalized subnetwork of the

network N . We will say that the tuple Û = (X,Q) induces a generalized subnet N ′. Cortege
(Y1, . . . , Ym) is the main tuple of neurons of the generalized subnet N ′.

Remark 2.1. A generalized subnet N ′ is an object that satisfies the definition of 1.1. Various
tuples from ÂGS(N ) can induce one generalized subnet N ′ of the network N (an important
difference with the case of simple subnets, see remark 1.1). A tuple Û induces a subnet of the
network N if and only if it contains in the set

ÂGS(N ) \ {(∅,W ) | W ⊆ Syn(N )}.

Definition 2.2. We assume that the neural network N = (M1, . . . ,Mn, f, g, l) is defined. Next,
Û1 = (X1, Q1), Û2 = (X2, Q2) — these are two arbitrary elements from ÂGS(N ). Let us define
binary algebraic operations (+) and (∗) on the set ÂGS(N ):

Û1 + Û2 :=

{
(X1 ∪X2, Q1 ∪Q2), if X1 ∪X2 ∈ AGS(N ),

(∅,∅), if X1 ∪X2 /∈ AGS(N );
(1)

Û1 ∗ Û2 :=

{
(X1 ∩X2, Q1 ∩Q2), if X1 ∩X2 ∈ AGS(N ),

(∅,∅), if X1 ∩X2 /∈ AGS(N ).
(2)

Then the groupoid ÂGS(N ) := (ÂGS(N ),+) will be called the additive groupoid of generalized
neural network subnets N and groupoid M̂GS(N ) := (ÂGS(N ), ∗) we will call multiplicative
groupoid of generalized neural network subnets N .

Remark 2.2. Operations in groupoids ÂGS(N ) and M̂GS(N ) are also denoted as in the
groupoids AGS(N ) and MGS(N ), respectively. In practice this does not lead to confusion. It is
always clear from the context what operation is meant. Further, for tuples from ÂGS(N ) it will
be convenient to use the operation of componentwise union and intersection. If Û1 = (X1, Q1)

and Û2 = (X2, Q2) then Û1 ∪ Û2 := (X1 ∪X2, Q1 ∪Q2) and Û1 ∩ Û2 := (X1 ∩X2, Q1 ∩Q2).

Remark 2.3. The additive generalized subnet groupoid models the merging of two subnets into
one when possible and returns the tuple (∅,∅) when this is not possible. The multiplicative
groupoid of generalized subnets models the intersection of two subnets (i.e., returns a subnet
that is contained in both networks) when possible and returns the tuple (∅,∅) when this is not
possible.
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3. Basic algebraic properties

The main result of this section is expressed in the form of Theorems 3.1 and 3.2. First,
we formulate and prove some algebraic properties of additive and multiplicative groupoids of
generalized subnets (see Properties 3.1, 3.2 and 3.3).

Property 3.1. For any neural network N the following statements are satisfied:
1) groupoids ÂGS(N ) and M̂GS(N ) are commutative and idempotent;
2) the tuple (∅,∅) is a neutral element of the groupoid ÂGS(N );
3) the tuple (∅,∅) has the multiplicative zero property in the groupoid M̂GS(N );
4) the tuple ((M1, . . . ,Mn), Syn(N )) is a neutral element in the groupoid M̂GS(N ), where
(M1, . . . ,Mn) is the main tuple of neurons of the network N ;
5) the tuple ((M1, . . . ,Mn), Syn(N )) has the multiplicative zero property in the groupoid
ÂGS(N ).

Proof. Commutativity and idempotency of the groupoids ÂGS(N ) and M̂GS(N ) is trivial follows
from (1) and (2).

Statements 2) – 5) follow from the definitions of the operations (+) and (∗). Indeed, let
Û = (X,Q) be an arbitrary element of the set ÂGS(N ) (hence, it is an element of groupoids
ÂGS(N ) and M̂GS(N )). We assume that (M1, . . . ,Mn) is the main tuple of neurons in the
network N . Then the equalities

Û + (∅,∅) = (X ∪∅, Q ∪∅) = Û , Û ∗ (∅,∅) = (X ∩∅, Q ∩∅) = (∅,∅),

Û ∗ ((M1, . . . ,Mn), Syn(N )) = (X ∩ (M1, . . . ,Mn), Q ∩ Syn(N )) = (X,Q),

Û + ((M1, . . . ,Mn), Syn(N )) = (X ∪ (M1, . . . ,Mn), Q ∪ Syn(N )) = ((M1, . . . ,Mn), Syn(N ))

show the validity of statements 2)–5). 2

Property 3.2. If X1∪X2, Y 1∩Y 2 ∈ AGS(N ), then for elements Û1 = (X1, Q1), Û2 = (X2, Q2)

of the groupoid ÂGS(N ) and elements Û3 = (Y 1,W1), Û4 = (Y 2,W2) of the groupoid M̂GS(N )
the equalities hold

Û1 + Û2 = (X1 +X2, Q1 ∪Q2), Û3 ∗ Û4 = (Y 1 ∗ Y 2,W1 ∩W2). (3)

Proof. Since on the left side of the equalities (3) the operations (+) and (∗) are operations of
groupoids ÂGS(N ) and M̂GS(N ), and on the right side these are groupoid operations AGS(N )

and MGS(N ), then by equalities (1) and (2) the equalities are satisfied

(X1 +X2, Q1 ∪Q2) =

{
(X1 ∪X2, Q1 ∪Q2), if X1 ∪X2 ∈ AGS(N )

(∅,∅), if X1 ∪X2 /∈ AGS(N )
= Û1 + Û2,

(X1 ∗X2, Q1 ∩Q2) =

{
(X1 ∩X2, Q1 ∩Q2), if X1 ∩X2 ∈ AGS(N )

(∅,∅), if X1 ∩X2 /∈ AGS(N )
= Û1 ∗ Û2,

which give equalities (3). 2

We define mapping Ψ : ÂGS(N ) → AGS(N ) as follows Ψ((X,Q)) := X, where (X,Q) ∈
ÂGS(N ) and X ∈ AGS(N ).
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Property 3.3. The following statements are true:
1) the mapping Ψ is a homomorphism of the groupoid ÂGS(N ) into the groupoid AGS(N );
2) the mapping Ψ is a homomorphism of the groupoid M̂GS(N ) into the groupoid MGS(N );
3) the sets Φ(ÂGS(N )) = AGS(N ) are equal.

Proof. Let
Û1 = (X1, Q1), Û2 = (X2, Q2), Û3 = (Y 1,W1), Û4 = (Y 2,W2)

these are arbitrary elements of the groupoids ÂGS(N ) and M̂GS(N ). We assume that X1 ∪X2

and Y 1 ∩ Y 2 are continuous tuples (i.e. tuples from AGS(N )). Then, by virtue of the equalities
(3), the equalities

Ψ(Û1+Û2) = Ψ((X1+X2, Q1∪Q2)) = X1+X2 = Ψ((X1, Q1))+Ψ((X2, Q2)) = Ψ(Û1)+Ψ(Û2),

Ψ(Û3 ∗ Û4) = Ψ((Y 1 ∗ Y 2,W1 ∩W2)) = Y 1 ∗ Y 2 = Ψ((Y 1,W1)) ∗Ψ((Y 2,W2)) = Ψ(Û3) ∗Ψ(Û4).

Let now the tuples X1 ∪X2 and Y 1 ∩ Y 2 not belong to AGS(N ). Then we have equalities

Ψ(Û1 + Û2) = Ψ((∅,∅)) = ∅ = X1 +X2 = Ψ((X1, Q1)) + Ψ((X2, Q2)) = Ψ(Û1) + Ψ(Û2),

Ψ(Û3 ∗ Û4) = Ψ((∅,∅)) = ∅ = Y 1 ∗ Y 2 = Ψ((Y 1, Q1)) ∗Ψ((Y 2, Q2)) = Ψ(Û3) ∗Ψ(Û4).

These equalities show that Ψ is a homomorphism from statements 1) and 2). Statements 1) and
2) have been proven. Statement 3) follows from the definition of the set ÂGS(N ). The property
is proved. 2

Theorem 3.1. For any neural network N the following statements are equivalent.
1) The condition n(N ) ∈ {1, 2} is satisfied.
2) The groupoid AGS(N ) is associative.
3) The groupoid ÂGS(N ) is associative.

Proof. Let us show that statement 1) is equivalent to statement 2). Let statement 1) be true.
Then for any X1, X2 ∈ AGS(N ) tuple X1+X2 will be a continuous tuple (since there is no way
to get a discontinuous tuple). Therefore, for any Y 1, Y 2, Y 3 ∈ AGS(N ) the relations

(Y 1+Y 2)+Y 3 = (Y 1∪Y 2)∪Y 3 = Y 1∪Y 2∪Y 3, Y 1+(Y 2+Y 3) = Y 1∪(Y 2∪Y 3) = Y 1∪Y 2∪Y 3.

These relations show that the groupoid AGS(N ) is associative. Therefore, the groupoid ÂGS(N )

is associative. Thus, from 1) it follows 2).
On the other hand, suppose that statement 2) holds and statement 1) does not hold. Then

n(N ) > 2. In this case, for any network N it is always possible to specify three tuples X1, X2,
X3 for which the condition is satisfied X1 + (X2 +X3) ̸= (X1 +X2) +X3. For example, you
can take tuples:

X1 = ({a},∅,∅, . . . ,∅), X2 = (∅, {b},∅, . . . ,∅), X3 = (∅,∅, {c}, . . . ,∅).

A contradiction has been obtained. It shows that from 2) follows (1). This means that statements
1) and 2) are equivalent.

Let us show that statements 2) and 3) are equivalent. Let statement 2) be true. The
groupoid AGS(N ) is associative if and only if n(N ) ∈ {1, 2}. Then, as noted above, for any
X1, X2 ∈ AGS(N ) tuple X1 ∪X2 is a continuous tuple. Therefore, by virtue of the equality (3)
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for any elements Û1 = (Y 1, Q1), Û2 = (Y 2, Q2), Û3 = (Y 3, Q3) groupoid ÂGS(N ) the following
relations hold:

(Û1 + Û2) + Û3 = (Y 1 + Y 2, Q1 ∪Q2) + (Y 3, Q3) = ((Y 1 + Y 2) + Y 3, (Q1 ∪Q2) ∪Q3) =

= (Y 1 ∪ Y 2 ∪ Y 3, Q1 ∪Q2 ∪Q3) = (Y 1 + (Y 2 + Y 3), Q1 ∪ (Q2 ∪Q3)) = Û1 + (Û2 + Û3).

From this we obtain the associativity of the groupoid ÂGS(N ). Thus, from 2) follows 3).
Statement 3) implies statement 2). Indeed, since Ψ is a homomorphism of ÂGS(N ) into

AGS(N ) and Φ(ÂGS(N )) = AGS(N ) (see property 3.3), then from the associativity of the
groupoid ÂGS(N ) implies the associativity of the groupoid AGS(N ).

Statements 2) and 3) are equivalent. Since 2) is equivalent to 1), then 3) is equivalent to 1).
The theorem is proved. 2

Remark 3.1. Statement 2 of [1] states that the groupoid AGS(N ) is associative if and only if
N is a two-layer neural network. The discrepancy with the results of Theorem 3.1 is due to the
fact that in the work [1] single-layer neural networks were not considered. Taking this fact into
account, it can be argued that the results of Statement 2 of [1] and Theorem 3.1 are consistent.

Theorem 3.2. For any neural network N the following statements are equivalent.
1) In a neural network N = (M1, . . . ,Mn, f, g, l), only the input layer M1 and the output layer
Mn can contain more than one neuron.
2) The groupoid MGS(N ) is associative.
3) The groupoid M̂GS(N ) is associative.

Proof. Let us show that statements 1) and 2) are equivalent. Let statement 1) be true. If
n(N ) ∈ {1, 2}, then for any X = (X1, . . . , Xn) and Y = (Y1, . . . , Yn) from MGS(N ) the tuple
X ∩ Y is continuous. In this case, X ∗ Y = X ∩ Y . Due to the associativity of the operation (∩)
on sets, we have the associativity of the operation (∩) on tuples from MGS(N ). Therefore the
groupoid MGS(N ) is associative.

We assume that n(N ) > 2 and X = (X1, . . . , Xn), Y = (Y1, . . . , Yn) are two elements of the
groupoid MGS(N ) such that the tuple X ∩ Y is not continuous. This means that the following
conditions are met:
(c.1) there is an index i ∈ {1, . . . , n} such that Xi ∩ Yi = ∅;
(c.2) there are indices u, v ∈ {1, . . . , n} such that the conditions are satisfied

u < i < v, Xu ∩ Yu ̸= ∅, Xv ∩ Yv ̸= ∅.

From (c.2) the conditions follow: i ̸= 1 and i ̸= n. Condition (c.1) cannot be satisfied. Indeed,
since Statement 3) holds, then Xi = Yi = {a}, where a is an element of layer Mi. Thus, we have
shown that for any X and Y from The MGS(N ) tuple X ∩ Y is continuous. Consequently, the
identity X ∗ Y = X ∩ Y holds. Therefore the groupoid MGS(N ) is associative. Statement 1)
gives statement 2).

Let us show that statement 2) implies statement 1). Let the groupoid MGS(N ) is associative
and statement 1) does not hold. Since statement 1) does not hold, then n(N ) > 2 and there is
an index i /∈ {1, n} such that layer Mi contains more than one neuron. For any tuple Y from
MGS(N ) we denote by Ks(Y ) the s-th component of the tuple Y . For any network N with the
specified conditions, we can define tuples Y 1, Y 2 and Y 3 from MGS(N ) so that the following
conditions are satisfied:

Ki−1(Y 1) = {a}, Ki(Y 1) = {b}, Ki+1(Y 1) = {c}, Ks(Y 1) = ∅ (s /∈ {i− 1, i, i+ 1});
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Ki−1(Y 2) = {a}, Ki(Y 2) = {m}, Ki+1(Y 2) = {c}, Ks(Y 2) = ∅ (s /∈ {i− 1, i, i+ 1});

Ki−1(Y 3) = ∅, Ki(Y 3) = ∅, Ki+1(Y 3) = {c}, Ks(Y 3) = ∅ (s /∈ {i− 1, i, i+ 1})

(a ∈Mi−1, b,m ∈Mi, c ∈Mi+1).

Then the equalities hold (Y 1 ∗ Y 2) ∗ Y 3 = ∅, Y 1 ∗ (Y 2 ∗ Y 3) = Y 3. The equality data shows the
lack of associativity in the groupoid MGS(N ) if |Mi| > 2 and i ̸= 1, n. This contradiction shows
that statement 1) must be true if statement 2) is true. Statements 1) and 2) are equivalent.

Let us show that from statement 2) and 3) are equivalent. Let 2 be fulfilled The groupoid
MGS(N ) is associative if and only if Statement 1) holds. Therefore, for any X1, X2 ∈ MGS(N )

tuple X1 ∩ X2 is a continuous tuple. Therefore, by virtue of equalities (3) for any elements
Û1 = (Y 1, Q1), Û2 = (Y 2, Q2), Û3 = (Y 3, Q3) groupoid M̂GS(N ) the following relations hold:

(Û1 ∗ Û2) ∗ Û3 = (Y 1 ∗ Y 2, Q1 ∩Q2) ∗ (Y 3, Q3) = ((Y 1 ∗ Y 2) ∗ Y 3, (Q1 ∩Q2) ∩Q3) =

= (Y 1 ∩ Y 2 ∩ Y 3, Q1 ∩Q2 ∩Q3) = (Y 1 ∗ (Y 2 ∗ Y 3), Q1 ∩ (Q2 ∩Q3)) = Û1 ∗ (Û2 ∗ Û3).

From this we obtain the associativity of the groupoid M̂GS(N ). Thus, from 2) follows 3).
Statement 3) implies statement 2). Indeed, since the groupoid MGS(N ) is a homomorphic

image of the groupoid M̂GS(N ) (see property 3.3), then the associativity of M̂GS(N ) implies
the associativity of MGS(N ). Statements 2) and 3) are equivalent. Since 2) is equivalent to 1),
then 3) is equivalent to 1). The theorem is proved. 2

4. Generalized subnets and subgroupoids

Theorem 4.1. Let N ′ be a generalized subnet of the neural network N . Then the set ÂGS(N )

has a subset T (N ′) such that this subset is a subgroupoid in the groupoid ÂGS(N ) and a sub-
groupoid in the groupoid M̂GS(N ). In this case, the isomorphisms hold

(T (N ′),+) ∼= ÂGS(N ′), (T (N ′), ∗) ∼= M̂GS(N ′).

Proof. Let the tuple Û = (X,Q) induce a generalized subnet N ′. Let’s build a set

T (N ′) := {(V ,W ) ∈ ÂGS(N ) | V ⊆ X, W ⊆ Syn(N ′)}.

From the construction it is clear that T (N ′) ⊆ ÂGS(N ) does not depend on the set Q. The
set T (N ′) contains the tuple (∅,∅). Moreover, T (N ′) is closed under the operation (+) in the
groupoid ÂGS(N ). Indeed, if T̂1, T̂2 are two arbitrary elements from T (N ′), then at least one
of the conditions is satisfied: T̂1 + T̂2 = (∅,∅), T̂1 + T̂2 = T̂1 ∪ T̂2. In both cases we have
T̂1 + T̂2 ∈ T (N ′). Thus, T (N ′) is a subgroupoid of the groupoid ÂGS(N ). Similarly, we obtain
that T (N ′) is a subgroupoid of the groupoid M̂GS(N ).

Let us show that (T (N ′),+) is isomorphic to ÂGS(N ′). Since Û = (X,Q) induces a gener-
alized subnet N ′, then X is a continuous tuple. We assume that the first non-empty component
of the tuple X has number u, and the last non-empty component has number v. Since X is a
continuous tuple, the neural network N ′ has exactly v−u+1 layers (follows from the definition).
As before, let Ks(Y ) denote the s-th component of the tuple Y from AGS(N ). Let us define a
mapping α : T (N ′) → ÂGS(N ′) so that for an arbitrary element (Y ,W ) ∈ T (N ′) and arbitrary
s ∈ {1, . . . , v − u+ 1} the equalities hold

α((Y ,W )) := (α(Y ),W ), Ks(α(Y )) := Ku+s−1(Y ), (4)
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where α(Y ) is the first component of the tuple α((Y ,W )) by definition. Since the tuple X is
continuous and by virtue of the construction of the set T (Y ), then for any Y ∈ T (N ′) and an
arbitrary index d /∈ {u, u+1, . . . , v} we have Kd(Y ) = ∅. Therefore the α-images of two distinct
elements from T (N ′) are different (α is injective). The surjectivity of α follows easily from the
definitions of the set T (N ′) and ÂGS(N ′). Thus, α is a bijection of the set T (N ′) onto the set
ÂGS(N ′).

In what follows, operations in the groupoids ÂGS(N ′) and AGS(N ′) will be denoted by (+′).
Let Û1 = (Y 1,W1) and Û2 = (Y 2,W2) be two arbitrary elements of T (N ′). There are possible
cases: either Y 1 ∪ Y 2 is a continuous tuple, or Y 1 ∪ Y 2 is not a continuous tuple. Let the first
case be true. Then the identity Y 1 + Y 2 = Y 1 ∪ Y 2 is true, due to (4) tuple α(Y 1 ∪ Y 2) is a
continuous tuple. In addition, for any index s ∈ {1, . . . , v − u+ 1} the following equalities hold:

α(Û1 + Û2) = α((Y 1,W1) + (Y 2,W2)) = α(Y 1 + Y 2,W1 ∪W2) = (α(Y 1 ∪ Y 2),W1 ∪W2),

Ks(α(Y 1 ∪ Y 2)) = Ku+s−1(Y 1 ∪ Y 2) = Ku+s−1(Y 1) ∪Ku+s−1(Y 2) = Ks(α(Y 1)) ∪Ks(α(Y 2)).

From the last chain of equalities we obtain the condition α(Y 1) ∪ α(Y 2) ∈ AGS(N ′) and the
relations

α(Y 1 ∪ Y 2) = α(Y 1) ∪ α(Y 2) = α(Y 1) +
′ α(Y 2).

Therefore we have the relations

α(Û1+Û2) = (α(Y 1∪Y 2),W1∪W2) = (α(Y 1)∪α(Y 2),W1∪W2) = (α(Y 1)+
′α(Y 2),W1∪W2) =

= (α(Y 1),W1) +
′ (α(Y 2),W2) = α(Û1) +

′ α(Û2).

Now let Y 1 ∪ Y 2 be not a continuous tuple. Then, by virtue of (4), we have the relations
(α(∅),∅) = (∅,∅)′, where (∅,∅)′ is a tuple in the groupoid ÂGS(N ′).

Let there exist parameters d,m, k ∈ {u, u+ 1 . . . , v} such that the conditions

d < m < k, Kd(Y 1 ∪ Y 2) = Kd(Y 1) ∪Kd(Y 2) ̸= ∅, Kk(Y 1 ∪ Y 2) = Kk(Y 1) ∪Kk(Y 2) ̸= ∅,

Km(Y 1 ∪ Y 2) = Km(Y 1) ∪Km(Y 2) = ∅.

The last statement is a necessary and sufficient condition for the fact that Y 1 ∪ Y 2 /∈ AGS(N ).
From the given equalities we derive the conditions

Kd−u+1(α(Y 1)) ∪Kd−u+1(α(Y 2)) = Kd(Y 1) ∪Kd(Y 2) ̸= ∅,

Kk−u+1(α(Y 1)) ∪Kk−u+1(α(Y 2)) = Kk(Y 1) ∪Kk(Y 2) ̸= ∅,

Km−u+1(α(Y 1))∪Km−u+1(α(Y 2)) = Km(Y 1)∪Km(Y 2) = ∅, d−u+1 < m−u+1 < k−u+1.

Therefore, the equality α(Û1) +
′ α(Û2) = (∅,∅)′ holds. From here we get

α(Û1 + Û2) = α((Y 1,W1) + (Y 2,W2)) = α((∅,∅)) = (α(∅),∅) = (∅,∅)′ = α(Û1) +
′ α(Û2).

This means that α is an isomorphism of the groupoid T (N ′) and ÂGS(N ′).
Similarly, it is proved that α is an isomorphism between the groupoid (T (N ′), ∗) and

M̂GS(N ′). Indeed, in the above reasoning, the operation (∪) must be replaced by the oper-
ation (∩), and the operation (+′) by the operation (∗′), which is an operation in the groupoid
M̂GS(N ′). The theorem is proved. 2
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The problems below are of interest.

Problems 4.1. Describe all subgroupoids H of the groupoid X(N ) such that H ∼= Y (N ′) for a
suitable generalized subnet N ′ networks N , where:

(a) X(N ) := ÂGS(N ), Y (N ′) := ÂGS(N ′); (b) X(N ) := M̂GS(N ), Y (N ′) := M̂GS(N ′).

Problems 4.2. Describe all subgroupoidsH of the groupoidX(N ) such thatH is not isomorphic
Y (N ′) for any generalized subnet N ′ of the N network, where:

(a) X(N ) := ÂGS(N ), Y (N ′) := ÂGS(N ′); (b) X(N ) := M̂GS(N ), Y (N ′) := M̂GS(N ′).

Solutions to problems 4.1 (a) and 4.2 (a) will give a description of all subgroupoids of the
groupoid ÂGS(N ) (similar, problems 4.1 (b) and 4.2 (b) give a description of all subgroupoids
of the groupoid M̂GS(N )).

Problems 4.3. Give a description of all subgroupoids of the H groupoid ÂGS(N ) such that H
is isomorphic ÂGS(N ′), where N ′ is the appropriate neural network. A similar question for the
groupoid M̂GS(N ).

In the above problems, a description of subgroupoids is understood as a description that
provides information about what elements a subgroupoid with the desired property contains.

Problems 4.4. Describe all pairs of neural networks (N ,K) for which isomorphism holds: a)
ÂGS(N ) ∼= M̂GS(K); b) ÂGS(N ) ∼= ÂGS(K); c) M̂GS(N ) ∼= M̂GS(K).

Problems 4.5. Give an element-by-element description of the monoids of all endomorphisms of
the groupoids ÂGS(N ) and M̂GS(N ).

Problems 4.6. Give an element-by-element description of the sets of all congruences of
groupoids ÂGS(N ) and M̂GS(N ).

Problems 4.5 and 4.6 are closely related (the connection between endomorphisms and congruences
of universal algebras is well known; see, for example, the homomorphism theorem).

This work is supported by the Krasnoyarsk Mathematical Center and financed by the Ministry
of Science and Higher Education of the Russian Federation (Agreement no. 075-02-2024-1429).
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О некоторых коммутативных и идемпотентных конечных
группоидах, связанных с подсетями многослойных
нейронных сетей прямого распространения сигнала

Андрей В. Литаврин
Татьяна В.Моисеенкова

Сибирский федеральный университет
Красноярск, Российская Федерация

Аннотация. В работе изучаются коммутативные и идемпотентные конечные группоиды, которые
связанны с подсетями многослойных нейронных сетей прямого распространения сигнала (далее,
просто нейронные сети). Ранее вводилось понятие подсети нейронной сети. В данной работе вводит-
ся понятие обобщенной подсети нейронной сети. Это понятие обобщает ранее введенное понятие.
Полученные группоиды получают название обобщенных подсетей заданной нейронной сети. Дан-
ные группоиды моделируют объединение и пересечение обобщенных подсетей некоторой нейронной
сети. Выявлены условия, которым должна удовлетворять архитектура нейронной сети, чтобы ад-
дитивный группоид обобщенных подсетей был ассоциативен. Получены условия, которым должна
удовлетворять архитектура нейронной сети, чтобы мультипликативный группоид обобщенных под-
сетей был ассоциативен. Изучаются подгруппоиды построенных группоидов.

Ключевые слова: группоид, многослойная нейронная сеть прямого распространения сигнала,
подсеть многослойной нейронной сети прямого распространения сигнала, аддитивный группоид
обобщенных подсетей, мультипликативный группоид обобщенных подсетей, обобщенная подсеть.
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Abstract. Equations of elasticity in a plane dynamic case are considered in this paper. The system
of equations is replaced by system of first-order differential equations with the same solution. The
solution-equivalent system is group fibration of the original system of equations. It is a combination of
the resolving and automorphic systems. Special classes of conservation laws are found for the resolving
system of equations. These laws allow one to find the solution of the original equations in the form of
surface integrals over the boundary of an elastic body.
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Introduction

Equations of linear elasticity theory were presented in the works of A.Cauchy, L.Navier,
B. Saint–Venant and others as early as in the 19 century. Since then, attempts have been made
to build solutions of the initial and boundary value problems. General solutions for equations of
elasticity theory in a dynamic were built by G. Lame, P. F. Papkovich, H. Neuber, M. Yakovak,
N. I. Ostrosablin and some others [1–3]. But according to the words of S. L. Sobolev " . . . the
knowledge of general solutions, with rare exception, gives nothing for solving important particular
problems, . . . , because we get, while solving these particular problems, a system of so complex
functional relations for arbitrary functions that their finding is practically impossible [4]". To
solve the elasticity theory problems a greate variety of contemporary mathematical methods are
used. Thus, methods of group analysis of differential equations were used [5–8 and the references
therein]. The theory of symmetries allowes one to build vast classes of invariant and partially-
invariant solutions which describe stress-strain state of elastic medium.
Symmetries, by virtue of their locality, are not appropriate for solving initial and boundary value
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problems. Here, conservation laws are more suitable for solving boundary value problems [9, 10
and the references therein]. In fact, conservation laws were used for solving linear equations
by B.Riemann and V. Volterra [11]. It is known [12] that equations of elasticity theory can be
presented with the use of group fibration in the form of a combination of two solution-equivalent
systems of first-order differential equations: resolving system and automorphic system. This fact
turned out to be very useful for constructing conservation laws and solving Cauchy problems
with their use.
In this article the conservation laws are built for the resolving system of differential equations
of elasticity theory which gave an opportunity to solve Cauchy problem for this system in the
form of surface integrals over the boundary of an elastic body. Further, Cauchy problem for the
automorphic system is solved. This allows one to build the solution of the initial problem for
the equations of elasticity theory in a dynamic case.

1. Preliminaries

Let us consider the equations of elasticity in a plane case

w1
tt = (λ+ 2µ)w1

xx + µw1
yy + (λ+ µ)w2

xy,

w2
tt = (λ+ 2µ)w2

yy + µw1
xx + (λ+ µ)w1

xy,
(1)

where λ, µ are Lame constants, w1, w2 are components of displacement vector, density is equal
to one. On the plane t = 0, the Cauchy problem is set

w1|t=9 = f1(x, y), w2|t=9 = f2(x, y).

w1
t |t=9 = g1(x, y), w2

t |t=9 = g2(x, y).
(2)

If functions f i, gi are continuous together with their derivatives on the plane t = 0 then all
derivatives of functions w1, w2 in any direction are known on this plane. It is known that system
of equations (1) is of hyperbolic type and it has characteristic surfaces defined as ω(t, x, y) = 0

which satisfy the following equation [10]

[(λ+ 2µ)(ω2
x + ω2

y)− ω2
t ][µ(ω

2
x + ω2

y)− ω2
t ] = 0. (3)

It is known [4, 5] that system of equations (1) allows a group of point symmetries generated by
operators

X1 = ∂x, X2 = ∂y, X0 = ∂t,

Z = y∂x − x∂y + w2∂w1 − w1∂w2 ,

P0 = w1∂w1 + w2∂w2 , Pw = h1∂w1 + h2∂w2 , R = x∂x + y∂y + t∂t,

(4)

where h1, h2 — arbitrary solution of equations (1). The presence of operator Pw = h1∂w1 +h2∂w2

allows one to perform group fibration of system of equations (1) [4, 11], that is, to present
it in the form of automorphic and resolving systems of equations. Let us consider operator
Pw = hx∂w1 + hy∂w2 , where h is arbitrary harmonic function. Invariants of operator Pw are
t, x, y.
Let us extend operator Pw on the first-order derivatives [4]

pw
1

= h∂w1 + h∂w2 + hx(∂w1
x
− ∂w2

y
) + hy(∂w1

y
+ ∂w2

x
).
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Differential invariants of the extended operator are

w1
t , w

2
t , w

1
x + w2

y, w
2
x − w1

y.

Assigning differential invariants to be functions of invariants, one can obtain the automorphic
system

w1
t = u(t, x, y), w2

t = v(t, x, y), θ(t, x, y) = w1
x + w2

y, ω(t, x, y) = w2
x¯w

1
y. (5)

Conditions of compatibility of equations (5) lead to the resolving system

ut = (λ+ 2µ)θx − µωy, vt = (λ+ 2µ)θy + µωx, θt = ux + vy, ωt = vx − uy. (6)

Solution of Lame system of equations (1) is equivalent to solution of systems (5), (6) [5, 6]. Using
initial conditions for equations (1), it is not difficult to obtain initial conditions for the functions
included in equations (5) and (6):

θ|t=0 = ∂xf
1 + ∂yf

2, ω|t=0 = ∂xf
2 − ∂yf

1, u|t=0 = g1, v|t=0 = g2. (7)

2. Problem formulation

Let us find the conservation laws for the resolving system of equations. This allows one to
solve Cauchy problem (7) for equations (6). Further on, using (5), one can solve Cauchy problem
(2) for equations (1).

3. Conservation laws for resolving system

Let us consider system of equations (6) in the form

F1 = ut − (λ+ 2µ)θx + µωy = 0, F2 = vt − (λ+ 2µ)θy − µωx = 0,

F3 = θt − ux − vy = 0, F4 = ωt − vx + uy = 0.
(8)

Definition. Expression of the form

At +Bx + Cy =

4∑
i=1

ρiFi (9)

is called the conservation law for system of equations (8). Here ρi are some linear differential
operators that are simultaneously not identically zero. Vector (A,B,C) is called conserved
current for conservation law (9).
More general definitions of conservation laws can be found in [8, 9 and the references therein].
Let us assume that conserved current is written as

A = α1u+ β1v + γ1θ + δ1ω,

B = α2u+ β2v + γ2θ + δ2ω,

C = α3u+ β3v + γ3θ + δ3ω,

(10)

where αi, βi, γi, δi are smooth functions that depend only on t, x, y.
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Note. System of equations (8) also has other conservation laws by virtue of linearity. However,
for our purposes it is sufficient to have conservation laws with conserved current in form (10).
Let us substitute (10) into (9). Then a first-degree polynomial with respect to derivatives
ut, ux, . . . , ωy and required functions u, v, θ, ω is obtained. Setting coefficients at these variables
equal to zero,one can obtain

α1 = ρ1, α2 = −ρ2, α3 = −ρ4, β1 = ρ2, β2 = −ρ4, β3 = −ρ3,
γ1 = ρ3, γ2 = −(λ+ 2µ)ρ1, γ3 = −(λ+ 2µ)ρ2, δ1 = ρ4, δ2 = −µρ2, δ3 = −µρ1.

(11)

α1
t − γ1x + δ1y = 0, β1

t − δ1x − γ1y = 0,

γ1t − (λ+ 2µ)α1
x − (λ+ 2µ)β1

y = 0,

δ1t − µβ1
x + µα1

y = 0.

(12)

It follows from (10)—(12) that conserved current is written as

A = α1u+ β1v + γ1θ + δ1ω,

B = −γ1u− δ1v − (λ+ 2µ)α1θ − µβ1ω,

C = δ1u− γ1v − (λ+ 2µ)β1θ + µα1ω.

(13)

It follows from (12) that (γ1, δ1) is an arbitrary solution of equations of elasticity (1).
Let us find the solution of equations (1) in the form of Lame

γ1 = Φx +Ψy, δ
1 = Φy −Ψx, (14)

where Φ,Ψ are arbitrary solutions of equations

(λ+ 2µ)(Φxx +Φyy)− Φtt = 0, (15)

µ(Ψxx + ψyy)− ψtt = 0. (16)

First, let us find the solution of equations (1) in the form

γ1 = Φx, δ
1 = Φy, (17)

Then it follows from (12) that

α1
t = 0, β1

t = Φtt/(λ+ 2µ).

Further on, it is assumed that

α1 = 0, β1 = Φt/(λ+ 2µ). (18)

Let us find the solution of equation (15) in the form of Kirchhoff

Φ =
1

r
(G1(t− t0 + (

√
λ+ 2µ)−1 r) +G2(t− t0 − (

√
λ+ 2µ)−1 r),

where r =

√
(x− x0)

2
+ (y − y0)

2
, (t0, x0, y0) is some point such that t0 ̸= 0. Let us assume

that
G1 = (t− t0 + (

√
λ+ 2µ)−1 r)1+n, G2 = −(t− t0 − (

√
λ+ 2µ)−1 r)1+n, (19)
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where n ∈ R, n > 1.
Then

γ1 = −x− x0
r3

((t− t0 + (
√
λ+ 2µ)−1r)1+n − (t− t0 − (

√
λ+ 2µ)−1r)1+n)−

− (1 + n)(x− x0)(
√
λ+ 2µ)

−1

r2
((t− t0 + (

√
λ+ 2µ)−1r)n + (t− t0 − (

√
λ+ 2µ)−1r)n),

δ1 = −y − y0
r3

((t− t0 + (
√
λ+ 2µ)−1r)1+n − (t− t0 − (

√
λ+ 2µ)−1r)1+n)−

− (1 + n)(y − y0)(
√
λ+ 2µ)

−1

r2
((t− t0 + (

√
λ+ 2µ)−1r)n + (t− t0 − (

√
λ+ 2µ)−1r)n),

β1 =
(1 + n)

r(λ+ 2µ)
((t− t0 + (

√
λ+ 2µ)−1r)n + (t− t0 − (

√
λ+ 2µ)−1r)n), α1 = 0.

(20)

Now let us find the solution of equations (1) in the form

γ1 = Ψy, δ1 = −Ψx. (21)

Then from (12) it follows
β1
t = 0, α1

t = Ψtt/µ.

Further on, it is assumed that
β1 = 0, α1 = Ψt/µ. (22)

Let us find the solution of equation (16) in the form of Kirchhoff

Φ =
1

r
(G3(t− t0 + (

√
µ)−1 r) +G4(t− t0 − (

√
µ )−1r).

Let us assume that

G3 = (t− t0 + (
√
µ)−1 r)1+m, G4 = −(t− t0 − (

√
µ )−1r)1+m, (23)

where m ∈ R.
Then

γ1 = −x− x0
r3

((t− t0 + (
√
µ)−1r)1+m − (t− t0 − (

√
µ)−1r)1+m)−

−
(1 +m)(x− x0)(

√
µ)

−1

r2
((t− t0 + (

√
µ)−1r)m + (t− t0 − (

√
µ)−1r)m),

δ1 = −y − y0
r3

((t− t0 + (
√
µ)−1r)1+m − (t− t0 − (

√
µ)−1r)1+m)−

−
(1 +m)(y − y0)

√
µ

r2
((t− t0 +

√
µr)m + (t− t0 −

√
µr)m),

α1 =
(1 +m)

rµ
((t− t0 + (

√
µ)−1r)m + (t− t0 − (

√
µ)−1r)m), β1 = 0.

(24)

4. Solving Cauchy problem for resolving system
of equations

Characteristic cones with the origin at the point (t0, x0, y0) are shown in Fig. 1. The lateral
surface of the outer cone is given by the equation

S1 : (λ+ 2µ)(t− to)
2 − (x− x0)

2 − (y − y0)
2 = 0, (25)
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and the lateral surface of the inner cone is given by the equation

S2 : µ(t− to)
2 − (x− x0)

2 − (y − y0)
2 = 0. (26)

Fig. 1. Characteristic cones

Intersections of cones (25) and (26) with the plane t = 0 are circles S3, S4. Initial conditions
on functions u, v, θ, ω are given inside these circles.
Let us consider domain V1 bounded by surface S1 and by plane t = 0. Then it follows from (9)
that ∫∫∫

V1

(At +Bx + Cy)dxdydt = 0. (27)

Let us consider cylinder Tε of radius (x− x0)
2 + (y − y0)

2 = ε2 inside the outer cone as shown
in Fig. 2.

Fig. 2. Solving the Cauchy problem to find θ(x0, y0, t0)

Functions α1, β1, γ1, δ1 have no peculiarities inside the domain bounded by surface S1, by
cylindrical surface Tε and by plane t = 0. Using the Gauss–Ostrogradskiy formula, one can

– 76 –



Sergei I. Senashov . . . Solving Cauchy problem for elasticity equations . . .

obtain from (27) that∫∫∫
V1\T ε

(At +Bx + Cy)dxdydt =

∫∫
S1

Adxdy +Bdydt+ Cdtdx+

+

∫∫
Tε

Adxdy +Bdydt+ Cdtdx+

∫∫
S3

Adxdy +Bdydt+ Cdtdx = 0.

(28)

By virtue of choosing function Φ the integral
∫∫
S1

Adxdy +Bdydt+ Cdtdx = 0. It is not difficult

to see that the integral
∫∫
S3

Adxdy +Bdydt+ Cdtdx has no peculiarities. That is why, it is

necessary to calculate only the integral∫∫
Tε

Bdydt+ Cdtdx (29)

on the assumption that ε is small. Assume that x − x0 = ε cosϕ, y − y0 = ε sinϕ. Let us
substitute these expressions into (29) and obtain∫∫
Tε

Bdydt+ Cdtdx =

=

t0∫
0

εdt

2π∫
0

(
(−γ1u−δ1v − (λ+2µ)α1θ − µβ1ω) cosϕ− (δ1u− γ1v − (λ+2µ)β1θ +µα1ω) sinϕ

)
dϕ.

Since
γ1 = − 2 cosϕ

ε
√
λ+ 2µ

(2n+ 1)(t− t0)
n + o(ε),

δ1 = − 2 sinϕ

ε
√
λ+ 2µ

(2n+ 1)(t− t0)
n + o(ε),

α1 =
2√

λ+ 2µ
(n+ 1)(t− t0)

n + o(ε), β1 = 0,

it follows that∫∫
Tε

Bdydt+ Cdtdx =

= −(λ+ 2µ)

∫ t0

0

(∫ 2π

0

θ(α1 cosϕ+ β1 sinϕ)dϕ− µ

∫ 2π

0

ω(β1 cosϕ− α1 sinϕ)dϕ

)
dt =

= 2π
√
λ+ 2µ(2n+ 1)

∫ t0

0

(t− t0)
n
θ(x0, y0, t)dt.

The last expression is obtained with ε→ 0.
Finally, it follows from (28) and (29) that

2π
√
λ+ 2µ(2n+ 1)

∫ t0

0

(t− t0)
n
θ(x0, y0, t)dt =

∫∫
S3

Adxdy.

Differentiating the last expression with respect to t0, one can obtain that
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θ(x0, y0, t0) =
1

2π(n+ 1)
√
λ+ 2µ

∂

∂t0

∫∫
S3

Adxdy, (30)

where A = α1u+ β1v + γ1θ + δ1ω,

γ1 = −x− x0
r3

((
r√

λ+ 2µ
− t0

)1+n

−
(
− t0 −

r√
λ+ 2µ

)1+n)
−

− (x− x0)(1 + n)

r2
√
λ+ 2µ

((
r√

λ+ 2µ
− t0

)n
+

(
− t0 −

r√
λ+ 2µ

)n)
,

δ1 = −y − y0
r3

((
r√

λ+ 2µ
− t0

)1+n

−
(
− t0 −

r√
λ+ 2µ

)1+n)
−

− (y − y0)(1 + n)

r2
√
λ+ 2µ

((
r√

λ+ 2µ
− t0

)n
+

(
− t0 −

r√
λ+ 2µ

)n)
,

β1 =
(1 + n)

r(γ + 2µ)

((
r√

λ+ 2µ
− t0

)n
−
(
− t0 −

r√
λ+ 2µ

)n)
, α1 = 0.

Now let us perform the same procedure for the inner cone but for solutions (20), (21) and obtain

ω(x0, y0, t0) =
1

2π(n+ 1)
√
µ

∂

∂t0

∫∫
S3

Adxdy, (31)

where A = α1u+ β1v + γ1θ + δ1ω,

α1 = −y − y0
r3

((
r
√
µ
− t0

)1+m

−
(
− t0 −

r
√
µ

)1+m)
−

− (y − y0)(1 +m)

r2
√
µ

((
r
√
µ
− t0

)m
+

(
− t0 −

r
√
µ

)m
),

β1 = −x− x0
r3

((
r
√
µ
− t0

)1+m

−
(
− t0 −

r
√
µ

)1+m)
−

− (y − y0)(1 +m)

r2
√
µ

((
r
√
µ
− t0

)m
+

(
− t0 −

r
√
µ

)m)
,

γ1 =
(1 +m)

r

((
r
√
µ
− t0

)m
−
(
− t0 −

r
√
µ

)m)
, δ1 = 0.

Now, taking into account (30)–(31) and initial conditions (2)

ut = (λ+ 2µ)θx − µωy, vt = (λ+ 2µ)θy + µωx

, one can obtain from (6) that

w1
t = u =

∫ t

0

((γ + 2µ)θx − µωy)dt+ g1(x, y), w2
t = v =

∫ t

0

((γ + 2µ)θy + µωx)dt+ g2(x, y).

Taking into account (5) and initial conditions (2), one can finally find that

w1 =

∫ t

0

udt =

∫ t

o

(∫ t

0

((γ + 2µ)θx − µωy)dt

)
dt+ g1(x, y)t+ f1(x, y),

w2 =

∫ t

0

vdt =

∫ t

o

(∫ t

0

((λ+ 2µ)θy + µωx)dt

)
dt+ g2(x, y)t+ f2(x, y).

(32)

– 78 –



Sergei I. Senashov . . . Solving Cauchy problem for elasticity equations . . .

Relations (32) provide the solution of Cauchy problem for system of equations (1).

Note. The method of solving Cauchy problem stated in this paper can be used with some
modifications to solve three-dimensional dynamic problems for equations of elasticity. This will
be performed in the following works.

This paper was carried out by the team of the scientific laboratory “Smart Materials and
Structures” within the state assignment of the Ministry of Science and Higher Education of the
Russian Federation for the implementation of the project "Development of multifunctional smart
materials and structures based on modified polymer composite materials capable to function in
extreme conditions" (Project no. FEFE-2020-0015).

References

[1] V.Novatsky, Theory of elasticity, Novosibirsk, Nauka, 1983 (in Russian).

[2] N.I.Ostrosablin, Symmetry operators and general solutions of equations of linear theory of
elasticity, Applied Mechanics and Technical Physics, 36(1995), no. 5, 98–104.

[3] N.I Ostrosablin, General solutions and reduction of systems of equations of linear theory
of elasticity to a diagonal form, Applied Mechanics and Technical Physics, 34(1993), no. 5,
112–122.

[4] S.L.Sobolev, Equations of mathematical physics, Moscow: State Publishing House of Tech-
nical and Theoretical Literature, 1956 (in Russian).

[5] L.V.Ovsyannikov, Group analysis of differential equations, Moscow, Nauka, 1978 (in Rus-
sian).

[6] B.D.Annin, V.O.Bytev, S.I.Senashov, Group properties of elasticity and plasticity equations,
Novosibirsk, Nauka, 1983 (in Russian).

[7] S.I.Senashov, I.L.Savostyanova, On elastic torsion around three axes, Siberian Journal of
Industrial Mathematics, 24(2021), no. 1, 120–125 (in Russian).
DOI: 10.33048/sibjim.2021.24.109

[8] B.D.Annin, V.D.Bondar, S.I.Senashov, Determination of elastic and plastic deformation
regions in the problem of uniaxial tension of a plate weakened by holes, Siberian Journal of
Industrial Mathematics, 23(2020), no. 1, 11–16 (in Russian).

[9] O.V.Gomonova, S.I.Senashov, Group analysis and exact solutions of the equations of plane
deformation of an incompressible nonlinear elastic body, Applied Mechanics and Technical
Physics, 62(2021), no. 1, 179–186 (in Russian).

[10] O.V.Gomonova, S.I.Senashov, O.N.Cherepanova, Group analysis of ideal plasticity equa-
tions, Applied Mechanics and Technical Physics, 62(2021), no. 5, 208–216 (in Russian).

[11] V.I.Smirnov, Course of Higher Mathematics, Moscow, Nauka, 1981 (in Russian).

[12] V.Yu.Prudnikov, Yu.A.Chirkunov, Group bundle of Lame equations, Solid State Mechanics,
22(2009), no. 3, 471–477 (in Russian).

– 79 –



Sergei I. Senashov . . . Solving Cauchy problem for elasticity equations . . .

Решение задачи Коши для уравнений упругости
в плоском динамическом случае

Сергей И. Сенашов
Ирина Л. Савостьянова

Сибирский государственный университет науки и технологий имени академика М. Ф. Решетнева
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Ольга Н. Черепанова
Сибирский федеральный университет

Красноярск, Российская Федерация

Аннотация. Рассмотрены уравнения упругости в плоском динамическом случае. Эта система
заменена равносильной системой дифференциальных уравнений первого порядка. Равносильная
система есть групповое расслоение исходной системы уравнений, она является объединением раз-
решающей и автоморфных систем. Для разрешающей системы уравнений найдены специальные
классы законов сохранения, которые позволили найти решение исходных уравнений в виде поверх-
ностных интегралов по границе упругого тела.

Ключевые слова: уравнения упругости в плоском динамическом случае, задача Коши, законы
сохранения, точные решения
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Spatial selection methods are currently considered the most effective methods of dealing
with interference [1–4]. In this case, the maximum immunity to radio interference in the useful
signal band is determined by the dynamic range of the radio path and the analog-to-digital
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interference power. Only in this case will the signal and interference be successfully converted
into digital form and it will be possible to use methods for optimal filtering of useful signals
and spatial selection of interference.If the power of the interfering signal is too high, the radio
path cannot operate in linear mode and the receiver is practically blocked. In this case, optimal
filtering or frequency division of signals does not help in suppressing interference. Expanding
the dynamic range of the radio path and ADC is one of the main conditions for creating noise-
resistant radio equipment [5, 6]. The effectiveness of interference suppression by spatial selection
methods is largely determined by the degree of interference correlation between the receiving
channels of the adaptive antenna array. This explains the high requirements for the identity
of frequency and phase characteristics of receiving channels, nonlinearity parameters of paths,
accuracy of calculation of weight coefficients and other decorrelating factors. In this case, the
interference suppression coefficient in the adaptive antenna array depends on the modulus of the
interchannel interference correlation coefficient. The closer the correlation coefficient is to unity,
the higher the interference suppression coefficient [7]. Many methods for improving the noise
immunity of radio devices are aimed at equalizing the characteristics of receiving channels. This
is the equalization of time delays between antenna elements, taking into account the geometry
of the location of antenna elements and the wave front of received interference oscillations, and
correction of the frequency characteristics of receiving channels [8, 9].In addition, to form the
required shape of the radiation pattern in the antenna array, it is necessary to take into account
all the delays that arise in the receiving paths, starting from the feeds to the beamforming device,
with an accuracy of several degrees in the phase of the carrier frequency [10, 11]. In a number
of practical cases, it is quite difficult to ensure the fulfillment of the listed conditions, which
inevitably entails a decrease in the efficiency of the adaptive antenna array. It is required to
evaluate the impact of differences in the characteristics of receiving channels on the efficiency of
interference suppression. This assessment will make it possible to justify the requirements for
the permissible difference in the characteristics of the reception channels of the designed radio
devices.

1. Mathematical description of the model of receiving
channels of an adaptive antenna array

The block diagram of the model of the receiving channels of the adaptive antenna array and
the assessment of the differences in their characteristics is shown in Fig. 1

Here it is assumed that the N -dimensional vector of complex amplitudes of a mixture of
interference and internal noise y(t) = {yi(t)}Ni=1, processed during spatial filtering, is the result of
transforming the components of the interference vector from the output of the adaptive antenna
array yAAA(t) = {y(AAA)

m (t)}Nm=1 in N linear filters having different impulse characteristics
νm(t),m ∈ 1, N . This difference in impulse characteristics decorrelates the interference in the
receiving channels, as a result of which the possible level of their compensation is reduced.
Assessing the impact of differences in the impulse characteristics of linear filters on the achievable
level of noise compensation is the goal of further analysis.

Vectors y(t) and yAAA(t) are related to each other by equalities

y(t) =

∫ ∞

−∞
D(τ)yAAA(t− τ)dt, (1)

where D(t) = diag { vm(t)}Nm=1 is the diagonal matrix of impulse characteristics of receiving
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Fig. 1. Block diagram of the model of the receiving channels of the adaptive antenna array and
assessment of the differences in their characteristics

channels. By integral of a vector we mean a vector of integrals of its elements. The correlation
matrix of the vector y(t), which determines the achievable level of interference compensation, in
accordance with (1) is equal to:

Φ = {φpq}Np,q=1 = y(t)y∗(t) =

∞∫
−∞

∞∫
−∞

D(τ)ΦAAA(τ, s)D
∗(s)dτds (2)

where
ΦAAA(τ, s) = yAAA(t− τ) (yAAA(t− s))

∗− (3)

correlation matrix of vector yAAA(t) output signals of adaptive antenna array modules.
In the case under consideration, this vector corresponds to a mixture of Gaussian noise and

stationary noise with a zero average value and a correlation matrix

ΦAAA(τ, s) = ΦAAA δ(τ − s) (4)

where δ(x) is the delta function. Under these conditions, the correlation matrix (2) has the form

Φ = {φpq}Np,q=1 =

∫ ∞

−∞
D(s)ΦAAAD∗(s) ds, (5)

φpq =

∫ ∞

−∞
νp(s)φ

(AAA)
pq ν∗q (s) ds = φ(AAA)

pq apq, p, q ∈ 1, N, (6)

A = {apq}Np,q=1 =

∫ ∞

−∞
v(t)v∗(t)dt, apq =

∫ ∞

−∞
νp(t)ν

∗
q (t)dt. (7)

It follows that each element of the correlation matrix is equal to the product of the corre-
sponding elements of the correlation matrix (2) of the vector yAAA(t) and the correlation matrix
(6) of the vector ν(t) = {νm(t)}Nm=1 of the impulse characteristics of the receiving channels.
Therefore, the matrix Φ is the Schur–Hadamard product of the matrices ΦAAA and A, which is
usually denoted as

Φ = ΦAAA ⊗A. (8)
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In the particular case of identical impulse characteristics νm(t) = ν0(t), m ∈ 1, N , when

ν(t) = ν0(t) e,

e∗ = [ 1 , 1 , . . . , 1 ],

A = c · e e∗,

c =

∫ ∞

−∞
|ν0(t)|2dt,

(9)

matrix (4) is proportional to matrix (3), due to which the achievable interference suppression
coefficient remains the same as when using directly the vector of output signals yAAA(t) of
the adaptive antenna array modules. However, in real conditions, the impulse characteristics
of receiving channels are not identical, and the loss of the interference suppression coefficient
is determined by matrix (7). This matrix depends on the magnitude of the differences in the
impulse characteristics of the receiving channels of the antenna array.

2. Estimation of the dependence of the interference sup-
pression coefficient on the magnitude of the differences
between the characteristics of the receiving channels of
the antenna array

Quantitative estimates of the influence of differences in impulse characteristics on the noise
suppression coefficient were carried out for the case of Gaussian impulse characteristics of the
form

νm(t) = exp(−π · F 2
m · (t− τm)

2
) · exp(j · 2π · (f0 + δfm) · (t− τm)), m ∈ 1, N (10)

whose parameters are:
- Fm = 1/Tm — the width of the frequency response (bandwidth) of the m-th filter at

level exp(−π/4) ≈ 0.456 from the maximum, inverse to the time length Tm of its impulse
characteristics at the same level;

- τm — delay associated with the "electrical length" of the m-th reception path;
- δfm — shift of the center frequency of the m-th filter from the value f0.
An additional parameter of the m-th filter in the general case is also its gain cm. However,

it does not affect the desired level of achievable interference suppression coefficient KIS , which,
when protecting the first (main) channel by a system of Nk = N − 1 auxiliary (compensation)
channels, is equal to

KIS = φ11ω11, (11)

where ω11 is the first diagonal element of the matrix inverse to the correlation matrix (2), (8)

Ψ = {ωpq}Np,q=1 = Φ−1. (12)

Indeed, let the impulse characteristics of them-th filter be equal to ν̃m(t) = cm·νm(t), then the
corresponding impulse characteristics vector is equal to ν̃(t) = C ·ν(t), where C = diag{cm}Nm=1

is the real diagonal gain matrix. In this case, the matrix Ã a is equal to Ã =
∞∫

−∞
ν̃(t)ν̃∗(t)dt =
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= C·A·C, so the matrices Φ̃ and Ψ̃ are respectively equal to Φ̃ = {φ̃pq}Np,q = ΦAAA⊗Ã = C·Φ·C
and Ψ̃ = { ω̃pq} = Φ̃−1 = C−1 ·Ψ ·C−1.

The corresponding value of the achievable interference suppression coefficient (11) in this
case is equal to K̃IS = φ̃11 · ω̃11 = c1 · φ̃11 · c1 · c−1

1 · ω̃11 · c−1
1 = φ̃11 · ω̃11 = KIS and, therefore,

coincides with the value obtained without taking into account different gain factors. Therefore,
in what follows, impulse characteristics of the form (10) are used without unimportant additional
amplification parameters.

Under these conditions, the elements of matrix (7) are equal

apq =

∫ ∞

−∞
gpq(t) dt,

gpq(t) = νp(t) · ν∗q (t) = exp(−spq(t)) · exp(j · 2 · π · φpq(t)),

spq(t) = π · (F 2
p · (t− τp)

2
+ F 2

q · (t− τq)
2
) =

= π · ((F 2
p + F 2

q ) · (t− b)
2
+

F 2
p · F 2

q

F 2
p + F 2

q

· (τp − τq)
2
),

b =
F 2
q · τq + F 2

p · τp
F 2
q + F 2

p

,

φpq(t) = (δfp − δfq) · t+ δfq · τp − δfp · τq.

(13)

Using the well-known integral∫ ∞

−∞
exp(−a · x2) exp(−j · β · x)dx =

∫ ∞

−∞
exp(−a · x2) · cos(β · x)dx =

√
π/a · exp

(
− β2

4a

)
the elements of matrix (7) can be written in the form

apq =
c√

F 2
p
+ F 2

q

· exp
(
− π ·

ν2q · ν2p(χp − χq)
2 + (µp − µq)

2

ν2p + ν2q

)
×

× exp

(
− j · 2π ·

(ν2p · µq + ν2q · µp) · (χp − χq)

ν2p + ν2q

)
,

p, q ∈ 1, N,

(14)

where νp = Fp/F0 = 1 + ep, µp = δfp/F0, χp = τp/T0, p ∈ 1, N are the relative values of the
corresponding filter parameters, c is a constant that does not affect the level of noise suppression.
It is convenient to choose it so that, with the same filter parameters of all channels with nominal
parameters, when F 2

q = F 2
p = F 2

0 , νp = 1, µp = µq = 0, τp = τq, p, q ∈ 1, N the value of a = 1.
This is done at the value c =

√
2 · F0, at which

apq =

√
2√

ν2
p
+ ν2q

· exp
(
− π ·

ν2q · ν2p(χp − χq)
2 + (µp − µq )

2

ν2p + ν2q

)
×

× exp

(
− j · 2π ·

(ν2p · µq + ν2q · µp) · (χp − χq)

ν2p + ν2q

)
,

p, q ∈ 1, N

(15)

The last formula, together with (8), (11), (12), allows us to obtain quantitative values of
the interference suppression coefficient for arbitrary values of the parameters of the impulse
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characteristics of the filters (Fig. 1) of the receiving channels of the antenna array. In the general
case, these parameters are random, so the values of the corresponding suppression coefficients
(11) obtained on their basis are also random. What is practically important is its average value
KIS = φ11 · ω11 over the set of filter parameters, which depends on their distribution laws.
Below are the results of its assessment, obtained under the assumption that these parameters are
mutually independent and have normal (Gaussian) distributions with zero means and variances
σ2
ε , σ2

µ, σ2
χ respectively.

Fig. 2 and 3 show the dependence of the magnitude of the decrease in the average interference
suppression coefficient KIS from n = 2 to 5 active jammers on the dispersion σ2

ε = σ2
µ = σ2

χ = σ2

of the parameters of the differences in the characteristics of the receiving paths:

δ =
KIS(kmax, ℓmax)

KISaν
, KIS(kmax, ℓmax) = (kmax, ℓmax)

−1 ·
kmax∑
k=1

ℓmax∑
ℓ=1

KISk,ℓ (16)

The terms of the sum in (16) are the values of the interference suppression coefficient for
the k-th (k ∈ 1, kmax = 500) implementation of a random set of parameters for differences in
the characteristics of receiving paths with a given dispersion in the ℓ-th (ℓ ∈ 1, ℓmax = 1000)

version of the random location of interference sources in space.The denominator (16) KISaν

corresponds to the average value of the interference suppression coefficient over the ℓmax positions
of active jammers under hypothetical conditions of complete coincidence of the characteristics
of all receiving channels and the nominal value of their parameters νp, µp, χp. The ratio of the
total interference power to the internal noise power in the main reception channel is η = 20dB

(Fig. 2) and η = 30dB (Fig. 3).

Fig. 2. Dependence of the magnitude of the reduction in the interference suppression coefficient
on the dispersion of differences in the characteristics of receiving channels (η=20dB) : a−n=2;
b− n = 3; c− n = 4; d− n = 5

The dependence curves in these figures have the following meaning:
- dependence curve 1. The electrical lengths of the receiving paths are the same, there is

no shift in their central frequencies, and only the widths of their passbands differ, i.e., ν2p ̸= ν2q ,

µp = µq = 0, χp = χq, and in accordance with (15)

apq =
√
2/
√
ν2p + ν2q , p, q ∈ 1, . . . , N (17)

- dependence curve 2. The electrical lengths and bandwidths of the receiving paths are the
same, but the settings of the central frequencies differ, i.e. ν2p = ν2q = 1, µp ̸= µq, χp = χq,

apq = exp(−π
2
(µp − µq)

2
), p, q ∈ 1, . . . , N ; (18)

– 86 –



Valery N. Tyapkin . . . Model of Receiving Channels of an Adaptive Antenna Array . . .

Fig. 3. Dependence of the magnitude of the reduction in the interference suppression coefficient
on the dispersion of differences in the characteristics of receiving channels (η=30dB) : a−n=2;
b− n = 3; c− n = 4; d− n = 5

- dependence curve 3. The settings of the central frequencies and bandwidth of the receiving
paths are the same, but their electrical lengths differ, i.e. ν2p = ν2q = 1, µp = µq = 0, χp ̸= χq,

apq = exp(−π
2
(χp − χq)

2
), p, q ∈ 1, . . . , N ; (19)

- dependence curve 4. The electrical lengths of the receiving paths are the same, but the
settings of their central frequencies and bandwidths differ, i.e. ν2p ̸= ν2q , µp ̸= µq, χp = χq,

apq =

√
2√

ν2p + ν2q

· exp(−π · (µp − µq)
2

ν2p + ν2q
), p, q ∈ 1, . . . , N (20)

- dependence curve 5. The setting of the central frequencies is the same, but the passbands
and electrical lengths of the receiving channels differ, i.e. ν2p ̸= ν2q , µp = µq = 0, χp ̸= χq,

apq =

√
2√

ν2p + ν2q

· exp(−π ·
ν2p · ν2q (χp − χq)

2

ν2p + ν2q
), p, q ∈ 1, . . . , N (21)

- dependence curve 6. The bandwidths of the receiving paths are the same, but the settings
of their central frequencies and electrical lengths differ, i.e. ν2p = ν2q = 1, µp ̸= µq, χp ̸= χq,

apq = exp

(
−π · (χp − χq)

2
+ (µp − µq )

2

2

)
· exp(−j · π · (µp + µq) · (χp − χq)),

p, q ∈ 1, . . . , N ;

(22)

- dependence curve 7. All characteristics of receiving paths differ — bandwidths, center
frequency settings and electrical lengths. The elements apq are calculated using (15).

In Fig. 4 and 5 show the empirical distribution functions of the reduction in the interference
suppression coefficient (16) over a set of L = 1000 locations of two (n = 2) (a, b) and four (n = 4)
(c, d) active jammers with values of dispersion parameters of the differences in the characteristics
of receiving paths of σ2 = 0.02(a, c) and σ2 = 0.1(b, d). The ratio of the total interference power
to the internal noise power in the main reception channel is η = 20dB (Fig. 4) and η = 30dB

(Fig. 5). They provide more complete information about the statistical properties of losses,
allowing one to estimate their confidence intervals in the analyzed situations.
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Fig. 4. Empirical distribution functions for the reduction in interference suppression coefficient
due to differences in the characteristics of receiving channels (η = 20dB) : a− n = 2, σ2 = 0.02;
b− n = 2, σ2 = 0.1; c− n = 4σ2 = 0.02; d− n = 4, σ2 = 0.1

Fig. 5. Empirical distribution functions for the reduction in interference suppression coefficient
due to differences in the characteristics of receiving channels (η = 30dB) : a− n = 2, σ2 = 0.02;
b− n = 2, σ2 = 0.1; c− n = 4, σ2 = 0.02; d− n = 4, σ2 = 0.1

3. Analysis of the calculation results for reducing the level of
interference suppression coefficient caused by differences
in the characteristics of receiving channels

Analysis of the results of calculations performed to reduce the value of the interference sup-
pression coefficient caused by differences in the characteristics of receiving channels allows us to
draw the following conclusions:

1. The average (over multiple positions of active jammers) reduction in the achievable level of
interference compensation due to differences in the characteristics of receiving channels depends
on: - the nature and extent of differences; - number and intensity of interference sources.

2. The difference in the bandwidths of receiving channels has the least influence (dependence
curve 1). With dispersion σ2

ε = 0.01 of random relative bands νp = Fp/F0 = 1 + εp, p, q ∈ 1, N ,
the average loss of the interference suppression coefficient KIS when changing the number of
active jammers from 2 to 5 is from 1 to 1.7 dB with a ratio of interference power to internal noise
power of η = 20dB (Fig. 2) and from 2.2 up to 5 dB with η = 30dB (Fig. 3).

3. Differences in the setting of central frequencies and electrical lengths of receiving paths
with equal dispersions σ2

µ = σ2
χ of random delays χp = τp/T0 and relative shifts of the central

frequency µp = δfp/F0, p ∈ 1, N have almost the same effect on the amount of losses (dependence
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curves 2 and 3). The reason for this is the coincidence in this case of the elements apq(18) of the
"decorrelation matrix" A(7). These elements are on average smaller than in the previous case,
which is why the negative impact of the factors caused by them is greater.

4. Under practically important conditions of "small" dispersions σ2
ε = 0.01, the elements

of the apq (20) and (21) do not have significant differences. Because of this, the influence of
differences in passbands simultaneously with a shift in the center frequency or with a difference
in the electrical lengths of the receiving paths (dependence curves 4 and 5) is approximately the
same and has greater weight than the influence of the previous factors. At the same time, the
combined effect of differences in the central frequencies and electrical lengths of the receiving
paths with the same passbands (dependence curve 6) can reduce the value of KIS both more
and less than in the previous case.

5. The average reduction in the interference suppression coefficient KIS under the isolated
and combined action of the factors under consideration increases with increasing intensity and
number n of interference sources. As follows from the analysis of Fig. 4 and 5, the confidence
intervals are maximum under the combined action of the factors under consideration and increase
with increasing dispersion σ2 of the parameters of differences in the characteristics of receiving
paths, the number and relative intensity of interference.

It is advisable to use the proposed model and the program that implements it when justifying
the requirements for the permissible value of differences in the characteristics of the receiving
channels of the designed radio devices.

References

[1] V.N.Tyapkin, V.N.Ratushnyak, D.D.Dmitriev, V.G.Konnov, Space-time processing of sig-
nals in angle measurement navigation receivers, 2016 International Siberian Conference on
Control and Communications, SIBCON 2016 – Proceedings, Moscow, 12–14 may 2016,
Moscow, 2016, 7491671. DOI: 10.1109/SIBCON.2016.7491671

[2] S.N.Karutin, V.N.Kharisov, V.S.Pavlov, Optimal Space-Time Processing Algorithms for
High-Precision Applications, Radioengineering, (2018), no. 9, 131–138.
DOI: 10.18127/j00338486-201809-23.

[3] Radio-Electronic Systems: Fundamentals of Construction and Theory. Directory, Ed. 2nd,
revised and additional, Edited by Ya.D. Shirman, Мoscow, Radiotekhnika, 2007.

[4] V.N.Tyapkin, I.N.Kartsan, D.D.Dmitriev, S.V.Efremova, Algorithms for adaptive process-
ing of signals in a flat phased antenna array, International Siberian Conference on Control
and Communications, SIBCON 2017 – Proceedings, Astana, 29–30 june 2017, Astana, 2017,
7998452. DOI: 10.1109/SIBCON.2017.7998452.

[5] V.N.Kharisov, A.V.Peltin, The Spatial-Temporal Algorithm for Processing of Multipath
Signal for Receivers with an Antenna Array, Radioengineering, (2017), no. 11, 32–38.

[6] V.N.Tyapkin, D.D.Dmitriev, T.G.Moshkina, Potential Interference Immunity of Naviga-
tion Equipment of Customers of Satellite Radio Navigational Systems, Vestnik SibSAU,
43(2012), no. 3, 113–119 (in Russian).

– 89 –



Valery N.Tyapkin . . . Model of Receiving Channels of an Adaptive Antenna Array . . .

[7] V.N.Tyapkin, D.D.Dmitriev, Yu.L.Fateev, N.S.Kremez, The Synthesis Algorithm for Spatial
Filtering to Maintain a Constant Level of the Useful Signal, J. Sib. Fed. Univ. Math. Phys.,
9(2016), no. 2, 258–268. DOI: 10.17516/1997-1397-2016-9-2-258-268

[8] V.N.Tyapkin, I.N.Kartsan, D.D.Dmitriev, A.E.Goncharov, Correcting Non-Indentityin Re-
ceiving Channels in Interference-Immune Systems for Glonass and GPS, International
Siberian Conference on Control and Communications, SIBCON 2015 – Proceedings, Omsk,
21–23 may 2015, Omsk, 2015, 7147246. DOI: 10.1109/SIBCON.2015.7147246.

[9] V.N.Tyapkin, E.N.Garin, V.N. Ratushniak, et al., The Spatial Noise Suppression In Vari-
ous Configurations Goniometric Of Navigation Equipment, Science Intensive Technologies,
17(2016), no. 8, 52–56 (in Russian).

[10] V.S.Efimenko, V.N.Kharisov, Adaptive Space-Time Filtering for Multi-Channel Reception,
Soviet Journal of Communications Technology and Electronics, 32(1987), no. 9, 1893–1901
(in Russian).

[11] I.N.Kartsan, A.E.Goncharov, P.V.Zelenkov, et al., Synthesis of an Algorithm for Interfer-
ence Immunity, IOP Conference Series: Materials Science and Engineering, Krasnoyarsk,
11–15 april 2016, Vol. 155, Krasnoyarsk: Institute of Physics Publishing, 2016, 012019.
DOI: 10.1088/1757-899X/155/1/012019.

Модель приемных каналов адаптивной антенной решетки
для оценки влияния различия их характеристик
на эффективность подавления помех

Валерий Н. Тяпкин
Дмитрий Д. Дмитриев

Сибирский федеральный университет
Красноярск, Российская Федерация
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Павел В. Луферчик

АО "НПП "Радиосвязь"
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Игорь В. Тяпкин
Евгений Д. Михов

Сибирский федеральный университет
Красноярск, Российская Федерация

Аннотация. В статье предложена математическая модель, позволяющая оценить влияние раз-
личий в характеристиках приемных каналов на качество подавления шумовых помех в радио-
технических устройствах, оснащенных антенными решетками. Исследовано влияние различий в
ширине полосы пропускания приемных каналов, настройки их центральных частот и электриче-
ских длин.Приведены зависимости потерь величины среднего коэффициента подавления помех
от дисперсии параметров различий в характеристиках приемных каналов. Предложенную модель
целесообразно использовать при обосновании требований к допустимой величине различий харак-
теристик приемных каналов проектируемых радиотехнических устройств

Ключевые слова: антенная решетка, подавление помех, различие характеристик приемных ка-
налов, коэффициент подавления помех.
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Abstract. The concept of a Rν-generalized solution for the Stokes problem with model boundary
conditions in a domain with a corner singularity is defined in the paper. Weighted analogue of the
Ladyzhenskaya–Babuska–Brezzi conditions in a domain with a re-entrant corner is proven.
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Introduction

The Stokes system is considered in the paper. Solution of such system is the main problem
in computational fluid dynamics. The system with homogeneous Dirichlet boundary conditions
for the velocity field has been studied from both theoretical and practical points of view. A
detailed analysis of the problem is presented in [1, 2]. Using Schur complement operator (see, for
example, [3]), the problem is reduced to separately find velocity field u and pressure p. Moreover,
in order to find the pressure function, it is not necessary to know its values on the boundary
of a domain and require additional smoothness of the solution (see, for example, [3]). In the
presented paper, fundamentally different boundary conditions are considered, namely, u · n = 0

and curl u = 0, where u · n = u1n1 + u2n2,n is the outer unit normal vector to the boundary

and curl u =
∂u2
∂x1

− ∂u1
∂x2

. Such boundary conditions will be called model conditions. They

are of particular interest from a practical point of view associated with the Schur complement
operator. More details on this can be found in [4]. On the other hand, it is fundamental to
consider the Stokes system in a polygonal non-convex domain Ω with a re-entrant corner ω on
the boundary, i.e., a corner greater than π. In this case, a problem with a corner singularity
is considered. Moreover, it is known (see, for example, [5]) that generalized solution of such
problem in the velocity-pressure variables (u, p) does not belong to the Sobolev spaces W2

2(Ω)

and W 1
2 (Ω), respectively. Therefore, using any classical approximate approach (see [6]), by the

principle of consistent estimates its approximate solution converges to an exact one at the rate
∗78321a@mail.ru https://orcid.org/0000-0002-7585-4559

c⃝ Siberian Federal University. All rights reserved
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no faster than O(hα), where h is the space step, and α is significantly less than one and decreases
with increasing the value of corner ω. At the same time, an appropriate convergence rate is of
the order O(h) as is in the case of a convex domain Ω. The solution of the Stokes problem with
model boundary conditions is defined in the paper as Rν-generalized solution in sets of weighted
spaces. In this case, solution is sought in sets of more general spaces than weighted Sobolev
spaces W k

2,β(Ω), β > 0. Note that resulting variational formulation for determining generalized
solution of the problem is not symmetric unlike the classical one [4]. This further adds difficulties
to the proof of existence and uniqueness of Rν-generalized solution of the Stokes problem with the
proposed model boundary conditions. For the first time Rν-generalized solution was defined for
elliptic problems with Dirichlet boundary conditions [7]. Approximate Rν-generalized solution
obtained with the weighted finite element method converges to an exact solution with the rate
O(h) for various differential problems with Dirichlet boundary conditions [8–12]. Convergence
rate of such solutions does not depend on the value of a re entrant corner ω. Moreover, the
result is achieved without refinement of the mesh in the vicinity of the singularity point. In the
presented paper function properties in sets of weighted spaces are studied. A weighted analogue
of the Ladyzhenskaya-Babushka-Brezzi conditions for the Stokes problem with the considered
model boundary conditions is established.

1. Formulation of the Stokes problem with model boundary
conditions. Definition of an Rν-generalized solution

Let domain Ω be a bounded non-convex polygon with the boundary ∂Ω. It contains a re-
entrant corner ω, ω ∈ (π, 2π) at the origin O = (0, 0), Ω̄ = Ω ∪ ∂Ω.

Let x = (x1, x2) be an element of R2, ∥x∥ =
√
x21 + x22, dx = dx1dx2. The Stokes problem

is formulated as follows. For given functions f = (f1, f2) and g in Ω find the velocity field
u = (u1, u2) and pressure p, which satisfy the system of differential equations and boundary
conditions of the form

−△u+∇p = f , div u = g in Ω, (1)

u · n = 0 on ∂Ω, (2)

curl u = 0 on ∂Ω, (3)

where u ·n = u1n1+u2n2, curl u =
∂u2
∂x1

− ∂u1
∂x2

and n = (n1, n2) is the outer unit normal vector

to ∂Ω.
Let us define necessary spaces and sets of weight functions. The weighted space of functions

v(x) with limited norm is denoted by L2,α(Ω):

∥v∥L2,α(Ω) =

(∫
Ω

ρ2α(x) v2(x)dx

)1/2

, α > 0.

Spaces and sets of functions v = (v1, v2) are marked in bold. Here v ∈ L2,α(Ω) if the quantity

∥v∥L2,α(Ω) =
(
∥v1∥2L2,α(Ω) + ∥v2∥2L2,α(Ω)

)1/2
is limited.

Let Hα(curl)(Ω) be the space of functions v(x) such that v ∈ L2,α(Ω) and curl v ∈ L2,α(Ω)

with bounded norm

∥v∥Hα(curl)(Ω) =
(
∥v∥2L2,α(Ω) + ∥curl v∥2L2,α(Ω)

)1/2
.
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The space of functions v(x) is denoted by Hα(div)(Ω) such that v ∈ L2,α(Ω) and div v ∈
L2,α(Ω) with limited norm

∥v∥Hα(div)(Ω) =
(
∥v∥2L2,α(Ω) + ∥div v∥2L2,α(Ω)

)1/2
.

Let
◦
Hα (div)(Ω) be the subspace of Hα(div)(Ω) such that {v ∈ Hα(div)(Ω) : v·n = 0 на ∂Ω}

with bounded norm of space Hα(div)(Ω). Next, the intersection of spaces
◦
Hα (div)(Ω) and

Hα(curl)(Ω) of functions v(x) is denoted by Uα(Ω) with limited norm

∥v∥Uα(Ω) =
(
∥v∥2L2,α(Ω) + ∥div v∥2L2,α(Ω) + ∥curl v∥2L2,α(Ω)

)1/2
.

Let W 1
2,α(Ω) be the weighted space of functions v(x) with bounded norm

∥v∥W 1
2,α(Ω) =

(
∥v∥2L2,α(Ω) +

∑
|l|=1

∫
Ω

ρ2α(x)|Dlv(x)|2dx
)1/2

,

where Dlv(x) =
∂|l|v(x)

∂xl11 ∂x
l2
2

, l = (l1, l2), |l| = l1 + l2, li are non-negative integers i ∈ {1, 2}. The

subspace of functions v(x) from W 1
2,α(Ω) is denoted by

◦
W

1

2,α (Ω) such that v = 0 on ∂Ω with

limited norm W 1
2,α(Ω). Similarly, spaces W1

2,α(Ω) and
◦
W

1

2,α (Ω) of functions v = (v1, v2) are

introduced such that vi ∈ W 1
2,α(Ω, δ) and vi ∈

◦
W

1

2,α (Ω, δ), respectively, with bounded norm

∥v∥W1
2,α(Ω) =

(
∥v1∥2W 1

2,α(Ω)
+∥v2∥2W 1

2,α(Ω)

)1/2
. The intersection of the circle with radius δ centred

at the origin O with Ω̄ is denoted by Ωδ = {x ∈ Ω̄ : ∥x∥ 6 δ ≪ 1, δ > 0}. Let us introduce the

weight function ρ(x) in Ω̄ as follows ρ(x) =

{
∥x∥, if x ∈ Ωδ,

δ , if x ∈ Ω̄ \ Ωδ.
Let us define the following conditions for function v(x)

∥v∥L2,α(Ω\Ωδ) > C1 > 0, (4)

|v(x)| 6 C2δ
α−τρτ−α(x), x ∈ Ωδ, (5)

where C2 is a positive constant, τ is a small positive parameter independent of δ, α and v(x).
A set of functions v(x) from space L2,α(Ω) satisfying conditions (4) and (5) with limited norm
L2,α(Ω) is denoted by L2,α(Ω, δ). Let L0

2,α(Ω, δ) be a subset of functions v(x) from L2,α(Ω, δ)

such that
∫
Ω

ρα(x)v(x)dx = 0 with bounded norm L2,α(Ω).

Next, we define sets Hα(curl)(Ω, δ), Hα(div)(Ω, δ),
◦
Hα (div)(Ω, δ) and Uα(Ω, δ) of functions

v = (v1, v2) from spaces Hα(curl)(Ω),Hα(div)(Ω),
◦
Hα (div)(Ω) and Uα(Ω), respectively, which

components satisfy conditions (4) and (5) with limited norms of relevant spaces. Let W 1
2,α(Ω, δ)

and
◦
W

1

2,α (Ω, δ) are sets of functions from spaces W 1
2,α(Ω) and

◦
W

1

2,α (Ω) respectively, satisfying
conditions (4), (5) and |D1v(x)| 6 C2δ

α−τρτ−α−1(x), x ∈ Ωδ, with bounded norm of space

W 1
2,α(Ω). Sets of functions v = (v1, v2) are denoted by W1

2,α(Ω, δ) and
◦
W

1

2,α (Ω, δ) such that

vi ∈W 1
2,α(Ω, δ) and vi ∈

◦
W

1

2,α (Ω, δ), respectively.
Let us prove the following assertion.
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Lemma 1. Let function u ∈ Uν(Ω, δ) and curl u = 0 on ∂Ω. Then for arbitrary function
v ∈ Uν(Ω, δ) the identity∫

Ω

∇u : ∇(ρ2νv)dx+ I(u,v) =

∫
Ω

curl u curl (ρ2νv)dx+

∫
Ω

div u div (ρ2νv)dx (6)

holds, where

I(u,v) := −

[ ∫
∂Ω

ρ2ν
∂u1
∂x1

n1v1ds+

∫
∂Ω

ρ2ν
∂u1
∂x2

n2v1ds+

∫
∂Ω

ρ2ν
∂u2
∂x1

n1v2ds+

∫
∂Ω

ρ2ν
∂u2
∂x2

n2v2ds

]
. (7)

Proof. By definition∫
Ω

∇u : ∇(ρ2νv)dx =

∫
Ω

[
∂u1
∂x1

∂(ρ2νv1)

∂x1
+
∂u1
∂x2

∂(ρ2νv1)

∂x2
+
∂u2
∂x1

∂(ρ2νv2)

∂x1
+
∂u2
∂x2

∂(ρ2νv2)

∂x2

]
dx, (8)

∫
Ω

curl u curl (ρ2νv)dx =

∫
Ω

[
∂u2
∂x1

∂(ρ2νv2)

∂x1
− ∂u2
∂x1

∂(ρ2νv1)

∂x2
−

− ∂u1
∂x2

∂(ρ2νv2)

∂x1
+
∂u1
∂x2

∂(ρ2νv1)

∂x2

]
dx,

(9)

∫
Ω

div u div (ρ2νv)dx =

∫
Ω

[
∂u1
∂x1

∂(ρ2νv1)

∂x1
+
∂u1
∂x1

∂(ρ2νv2)

∂x2
+

+
∂u2
∂x2

∂(ρ2νv1)

∂x1
+
∂u2
∂x2

∂(ρ2νv2)

∂x2

]
dx.

(10)

The following equalities

−
∫
Ω

∂u2
∂x1

∂(ρ2νv1)

∂x2
dx = −

∫
Ω

∂u2
∂x2

∂(ρ2νv1)

∂x1
dx+

∫
∂Ω

ρ2ν
∂u2
∂x2

n1v1ds−
∫
∂Ω

ρ2ν
∂u2
∂x1

n2v1ds, (11)

−
∫
Ω

∂u1
∂x2

∂(ρ2νv2)

∂x1
dx = −

∫
Ω

∂u1
∂x1

∂(ρ2νv2)

∂x2
dx+

∫
∂Ω

ρ2ν
∂u1
∂x1

n2v2ds−
∫
∂Ω

ρ2ν
∂u1
∂x2

n1v2ds (12)

are valid. Using expansions (8)-(10), one can obtain∫
Ω

∇u : ∇(ρ2νv)dx =

∫
Ω

curl u curl (ρ2νv)dx+

∫
Ω

div u div (ρ2νv)dx− E(u,v), (13)

where

E(u,v) :=

∫
Ω

[∂u1
∂x1

∂(ρ2νv2)

∂x2
+
∂u2
∂x2

∂(ρ2νv1)

∂x1
− ∂u2
∂x1

∂(ρ2νv1)

∂x2
− ∂u1
∂x2

∂(ρ2νv2)

∂x1

]
dx. (14)

Applying equalities (11) and (12) to (14), one can conclude

E(u,v) =

∫
∂Ω

ρ2ν
[∂u2
∂x2

n1v1 +
∂u1
∂x1

n2v2 −
∂u2
∂x1

n2v1 −
∂u1
∂x2

n1v2

]
ds. (15)

Using together (7), (15), conditions v · n = 0 and ∂u2

∂x1
− ∂u1

∂x2
= 0 on ∂Ω, and equality∫

∂Ω

ρ2ν
(∂u2
∂x1

− ∂u1
∂x2

)
n2v1ds =

∫
∂Ω

ρ2ν
(∂u2
∂x1

− ∂u1
∂x2

)
n1v2ds, one can obtain I(u,v) = E(u,v).

Lemma 1 is proven. �
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Let us introduce bilinear and linear forms

a(u,v) =

∫
Ω

curl u curl (ρ2νv)dx+

∫
Ω

div u div (ρ2νv)dx, b1(v, s) = −
∫
Ω

s div (ρ2νv)dx,

b2(u, q) = −
∫
Ω

(ρ2ν q) div u dx, l(v) =

∫
Ω

f · (ρ2νv)dx, c(q) =

∫
Ω

ρ2νg qdx.

Let us define the concept of an Rν-generalized solution of the Stokes problem (1)–(3) with
model boundary conditions in weighted sets.

Definition 1. A pair of functions (uν , pν) ∈ Uν(Ω, δ) × L0
2,ν(Ω, δ) is called Rν-generalized

solution of the Stokes problem (1)—(3) with function uν satisfies boundary conditions (2) and
(3) if for all pairs of functions (v, q) ∈ Uν(Ω, δ)× L0

2,ν(Ω, δ) the integral identities

a(uν ,v) + b1(v, pν) = l(v), (16)
b2(uν , q) = c(q) (17)

hold, where f ∈ L2,γ(Ω), g ∈ L2,β(Ω), 0 6 γ, β 6 ν and uν = (u1,ν , u2,ν).

Remark 1. Since bilinear form b2(·, ·) does not coincide with bilinear form b1(·, ·) the varia-
tional formulation for Rν-generalized solution of the problem is not symmetric, in contrast to the
standard variational formulation for a generalized solution of the problem [4].

Remark 2. Bilinear form a(·, ·) is not a symmetric one.

2. Auxiliary statements

Let us formulate and prove necessary statements.

Lemma 2 ( [13]). Let ν > 0. For an arbitrary function z ∈ L2,ν(Ω) that satisfies conditions (4),
(5) the following estimate ∫

Ωδ

ρ2ν−2z2dx 6 C2
3δ

2ν∥z∥2L2,ν(Ω) (18)

is valid, where C3 =
C2

C1

√
φ1 − φ0

2τ
, (φ1 − φ0) is the magnitude of the change of a re-entrant

corner.

Corollary 1. Let conditions of Lemma 2 be satisfied then∫
Ω

[ 2∑
i=1

(∂ρν
∂xi

)2]
z2dx 6 ν2C2

3δ
2ν∥z∥2L2,ν(Ω). (19)

Proof. Estimate (19) of Corollary 1 directly follows from the fact that
2∑
i=1

(∂ρν
∂xi

)2
=

=

{
ν2ρ2ν−2,x ∈ Ωδ,

0,x ∈ Ω̄ \ Ωδ
inequality (18).

Let us connect norms of functions z and ρνz from sets Uν(Ω, δ) and U0(Ω, δ), respectively.
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Lemma 3. Function z ∈ Uν(Ω, δ) if and only if ρνz ∈ U0(Ω, δ) and

∥ρνz∥U0(Ω) 6 C4∥z∥Uν(Ω), (20)

∥z∥Uν(Ω) 6 C4∥ρνz∥U0(Ω), (21)

where C4 = max{
√
2,
√

1 + 4ν2C2
3δ

2ν}.

Proof. 1. Let function z ∈ Uν(Ω, δ). Let us show that ρνz ∈ U0(Ω, δ) and inequality (20) holds.
Consider the following decompositions

curl(ρνz) = ρνcurl z+
[
z2
∂ρν

∂x1
− z1

∂ρν

∂x2

]
, (22)

div(ρνz) = ρνdiv z+
[
z1
∂ρν

∂x1
+ z2

∂ρν

∂x2

]
. (23)

Using expansions (22), (23), one can conclude that

∥curl(ρνz)∥2L2,0(Ω) 6 2∥curl z∥2L2,ν(Ω) + 4

∫
Ω

(∂ρν
∂x1

)2
z22dx+ 4

∫
Ω

(∂ρν
∂x2

)2
z21dx, (24)

∥div(ρνz)∥2L2,0(Ω) 6 2∥div z∥2L2,ν(Ω) + 4

∫
Ω

(∂ρν
∂x1

)2
z21dx+ 4

∫
Ω

(∂ρν
∂x2

)2
z22dx. (25)

Since ∥ρνz∥L2,0(Ω) = ∥z∥L2,ν(Ω) then applying relations (24), (25) and estimate (19), one can
obtaib the chain of inequalities

∥ρνz∥2U0(Ω) = ∥ρνz∥2L2,0(Ω) + ∥curl(ρνz)∥2L2,0(Ω) + ∥div(ρνz)∥2L2,0(Ω) 6 ∥z∥2L2,ν(Ω)+

+2∥curl z∥2L2,ν(Ω) + 2∥div z∥2L2,ν(Ω) + 4

2∑
j=1

∫
Ω

[ 2∑
i=1

(∂ρν
∂xi

)2]
z2j dx 6

(
1 + 4ν2C2

3δ
2ν
)
∥z∥2L2,ν(Ω)+

+2∥curl z∥2L2,ν(Ω) + 2∥div z∥2L2,ν(Ω) 6 max{2, 1 + 4ν2C2
3δ

2ν}∥z∥2Uν(Ω).

Estimate (20) is proven and ρνz ∈ U0(Ω, δ).

2. Let function ρνz ∈ U0(Ω, δ). Let us show that z ∈ Uν(Ω, δ) and inequality (21) holds. Let
us express in (22) and (23) terms

(
ρνcurl z

)
and

(
ρνdiv z

)
, respectively. Then

∥curl z∥2L2,ν(Ω) 6 2∥curl(ρνz)∥2L2,0(Ω) + 4

∫
Ω

(∂ρν
∂x1

)2
z22dx+ 4

∫
Ω

(∂ρν
∂x2

)2
z21dx, (26)

∥div z∥2L2,ν(Ω) 6 2∥div(ρνz)∥2L2,0(Ω) + 4

∫
Ω

(∂ρν
∂x1

)2
z21dx+ 4

∫
Ω

(∂ρν
∂x2

)2
z22dx. (27)

Since ∥z∥L2,ν(Ω) = ∥ρνz∥L2,0(Ω) then applying inequalities (26), (27) and estimate (19), one
can obtaib the chain of inequalities

∥z∥2Uν(Ω) = ∥z∥2L2,ν(Ω) + ∥curl z∥2L2,ν(Ω) + ∥div z∥2L2,ν(Ω) 6 ∥ρνz∥2L2,0(Ω) + 2∥curl(ρνz)∥2L2,0(Ω)+

+2∥div(ρνz)∥2L2,0(Ω) + 4

2∑
j=1

∫
Ω

[ 2∑
i=1

(∂ρν
∂xi

)2]
z2j dx 6 max{2, 1 + 4ν2C2

3δ
2ν}∥ρνz∥2U0(Ω).

Estimate (21) is obtained and z ∈ Uν(Ω, δ). Lemma 3 is proven. �
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Lemma 4. Let ν > 0. Then there exists a value δ0 = δ0(ν) > 0, such that for any δ ∈ (0, δ0]
and arbitrary function z ∈ Uν(Ω, δ) inequality

∥z∥2L2,ν(Ω) 6 8C2
Ω

(
∥curl z∥2L2,ν(Ω) + ∥div z∥2L2,ν(Ω)

)
(28)

holds.

Proof. Using Lemma 3 and Lemma 3.6 [6] and if z ∈ Uν(Ω, δ) then ρνz ∈ U0(Ω, δ), one can
obtain

∥ρνz∥L2,0(Ω) 6 CΩ

(
∥curl(ρνz)∥L2,0(Ω) + ∥div(ρνz)∥L2,0(Ω)

)
,

i. e.,
∥z∥2L2,ν(Ω) 6 2C2

Ω

(
∥curl(ρνz)∥2L2,0(Ω) + ∥div(ρνz)∥2L2,0(Ω)

)
. (29)

Applying estimates (24) and (25) for the first and second terms of the right-hand side of (29),
respectively and then inequality (19), one can find

∥z∥2L2,ν(Ω) 6 4C2
Ω

(
∥curl z∥2L2,ν(Ω) + ∥div z∥2L2,ν(Ω)

)
+ 8ν2C2

3C
2
Ωδ

2ν∥z∥2L2,ν(Ω)

and (
1− 8ν2C2

3C
2
Ωδ

2ν
)
∥z∥2L2,ν(Ω) 6 4C2

Ω

(
∥curl z∥2L2,ν(Ω) + ∥div z∥2L2,ν(Ω)

)
. (30)

For ν > 0, there exists such a value δ0 = δ0(ν) > 0 : ν2C2
ΩC

2
3δ

2ν
0 = 1

16 that for each δ ∈ (0, δ0]

the following chain of relations

1

2
∥z∥2L2,ν(Ω) 6

(
1− 8ν2C2

3C
2
Ωδ

2ν
)
∥z∥2L2,ν(Ω) 6 4C2

Ω

(
∥curl z∥2L2,ν(Ω) + ∥div z∥2L2,ν(Ω)

)
is valid, according to (30). Lemma 4 is proven.

By the definition of norm in space Uν(Ω) the following statement is derived directly from
Lemma 4.

Corollary 2. Let conditions of Lemma 4 be satisfied then

∥z∥2Uν(Ω) 6
(
1 + 8C2

Ω

)(
∥curl z∥2L2,ν(Ω) + ∥div z∥2L2,ν(Ω)

)
. (31)

3. Weighted analogue of LBB-conditions of forms bi(v, s)

Let us consider a weighted analogue of LBB-conditions of forms bi(v, s) on sets of functions
v ∈ Uν(Ω, δ) and s ∈ L0

2,ν(Ω, δ).

Theorem 1. For each ν > 0 there exists a value δ1 = δ1(ν) > 0 (δ1 6 δ0, δ0 from Lemma 4)
such that for all δ ∈ (0, δ1] and arbitrary function s ∈ L0

2,ν(Ω, δ) the following inequalities

0 < βi∥s∥L2,ν(Ω) 6 sup
v∈Uν(Ω,δ)

bi(v, s)

∥v∥Uν(Ω)

hold, where βi =
γi

2
√
1 + 8C2

Ω

, i = 1, 2.

Proof. It was proved [14] that there exists a value δ2 = δ2(ν) > 0 such that for all δ ∈ (0, δ2] and
arbitrary function s ∈ L0

2,ν(Ω, δ) the following inequalities

0 < γi∥s∥L2,ν(Ω) 6 sup

v∈
◦
W

1

2,ν(Ω,δ)

bi(v, s)

∥v∥W1
2,ν(Ω)

, γi > 0 (32)
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hold. If inequality (31) is used and estimate for arbitrary function v ∈
◦
W

1

2,ν (Ω, δ) is

∥div v∥L2,ν(Ω) + ∥curl v∥L2,ν(Ω) 6 2∥v∥W1
2,ν(Ω)

then, due to the fact that
◦
W

1

2,ν (Ω, δ) ⊂ Uν(Ω, δ) and for all δ ∈ (0, δ1], where δ1 = min{δ0, δ2},
one can obtain from (32) the chain of inequalities

γi∥s∥L2,ν(Ω) 6 sup

v∈
◦
W

1

2,ν(Ω,δ)

bi(v, s)

∥v∥W1
2,ν(Ω)

6 2 sup

v∈
◦
W

1

2,ν(Ω,δ)

bi(v, s)

∥div v∥L2,ν(Ω) + ∥curl v∥L2,ν(Ω)
6

6 2 sup
v∈Uν(Ω,δ)

bi(v, s)

∥div v∥L2,ν(Ω) + ∥curl v∥L2,ν(Ω)
6 2
√

1 + 8C2
Ω sup

v∈Uν(Ω,δ)

bi(v, s)

∥v∥Uν(Ω)
.

The estimate of Theorem 1 is obtained. �

Conclusions

The concept of Rν-generalized solution for the Stokes problem with model boundary condi-
tions in a polygonal non-convex domain with a re-entrant corner on the boundary in weighted
sets is defined in the paper. In this case, the variational formulation of the problem is not sym-
metric. Weighted analogue of the Ladyzhenskaya–Babushka–Brezzi conditions in special norms
of weighted spaces is established.

The research was carried out within the state assignment for IAM FEB RAS (no. 075-00459-
24-00).
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Весовой аналог LBB-условий для решения задачи Стокса
с модельными граничными условиями в области
с сингулярностью

Алексей В. Рукавишников
Институт прикладной математики

Дальневосточное отделение Российской академии наук
Хабаровск, Российская Федерация

Аннотация. В работе определено понятие Rν-обобщённого решения задачи Стокса с модельны-
ми граничными условиями в области с угловой сингулярностью. Доказан весовой аналог условий
Ладыженской–Бабушки–Брецци в области с входящим углом.

Ключевые слова: угловая особенность, задача Стокса с модельными граничными условиями,
Rν-обобщённое решение.
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Abstract. The work is devoted to a numerical study of the transport of proton exchange reaction
products in a benzoic acid melt after the interaction of its molecules with a lithium niobate crystal.
Due to dissociative adsorption from the surface of the substrate, positive lithium ions and negative
benzoate ions diffuse into the acid. The transfer of these reaction products is described using equations
in the continuos media approximation. The mathematical model takes into account the diffusion and
electromigration mechanisms of transport, as well as the recombination of ions. As a result of the
solution, stationary distributions of ion concentrations are obtained. Due to the large difference in the
kinetics of the reaction products, benzoate ions are grouped predominantly near the substrate, while
lithium ions tend to move away from it to a much greater distance. The work shows that the size of
the computational domain approaches the size of the reactor working space when the ions of both types
form boundary layers.

Keywords: proton exchange, boundary layer, numerical simulation.
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Introduction

The technology of enriching lithium niobate or lithium tantalate crystals with protons has
been actively used in the manufacturing of waveguides over the past decades. This technology
was first presented in the works [1, 2]. Its essence lies in the fact that a crystal sample is placed
in a benzoic acid melt at characteristic temperatures ∼ 500 K. As a result a complex chemical
reaction occurs on the substrate surface. Dissociation of acid molecules after their interaction
with the substrate leads to origin of negative benzoate ions and positive hydrogen ions on the
crystal surface. Protons tend to penetrate the crystal and replace lithium ions, which diffuse from
the near-surface region of the crystal into the acid. After some time, lithium ions recombine with
the benzoate ions remaining in the acid. As a result the lithium benzoate molecules are formed.
Thus, the protons penetrate into the crystal because of dissociative adsorption. As experiments
show, protonation with duration ∼ 1 − 2 h leads to the formation of a proton-enriched layer in
the substrate with a thickness of ∼ 5− 6 µm.

Active implementation of this technology in the production of channel and planar waveguides
has led to the emergence of a large number of its modifications [3]. Thus, to regulate the
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protonation rate, impurities are used, added both to benzoic acid [4, 5] and to the crystal [6]
before protonation. The presence of protons in the crystal changes its refractive index. Numerous
experiments show that the refractive index profiles, as well as the proton concentration profiles
in the formed near-surface layer of the crystal, have a characteristic stepped shape [1, 7]. These
profiles can be smoothed by additional annealing after proton exchange [8]. Many works are
devoted to the study of the complex phase structure of the crystal after its enrichment with
protons [9] and the effect of the conditions of proton exchange on this structure. For example,
the surfaces of samples are subjected to preliminary plasma treatment [10]. At present, special
attention is paid to the protonation of thin-film lithium niobate [11,12].

Theoretical investigation of the protonation process began with the work of Vohra [7], devoted
to the study of hydrogen ion transport inside the crystal. The results of this work demonstrated
a strong influence of the ion flux nonlinearity in the transport equation during description the
process of lithium ion substitution by protons. In turn, the annealing process is described using
the classical diffusion equation.

According to other works, the diffusion of lithium ions and benzoate ions into the benzoic
acid melt during protonation leads to the formation of a stationary boundary layer by benzoate
ions [13, 14]. This investigation shows that the transport and subsequent recombination of the
reaction products can be described using equations in the continuous media approximation.
Most of the lithium benzoate is produced in thin near-surface layer in the melt. It is known
from experiments that the presence of this impurity reduces the intensity of proton exchange
even at a small content of lithium benzoate in the melt [5]. Clarification of the characteristics of
the resulting boundary layer allows us to understand possible methods for controlling the proton
exchange process.

In the mentioned work [14] the size of the computational domain was comparable with the
thickness of the photolithographic mask (∼ 2 µm), which, on the one hand, is sufficient to
qualitatively show the presence of the boundary layer, but, on the other hand, can greatly
underestimate its size. Lithium ions, having a mobility an order of magnitude greater than
benzoate ions, are capable of moving away from the protonated surface. Then lithium ions reach
the opposite impenetrable boundary of the computational domain and, due to more intensive
recombination, prevent the diffusion of benzoate ions deep into the melt. This circumstance is
the reason why the transport of reaction products must be considered in regions which size is
much larger than the characteristic thickness of the photolithographic mask.

In the work [15] an asymptotic solution is obtained, which allows to estimate the thickness of
the boundary layer in the case when the size of the region under consideration are comparable
with the size of the reactor in which the proton exchange takes place. It should be noted
that, despite more realistic problem geometry, in this work a strong assumption is made. It
consist in neglecting the influence of the electric field formed in the region occupied by ions on
their concentration profiles. Because of this, according to the obtained analytical solution, the
thickness of the boundary layer grows indefinitely with the size of the reactor according to a
power law.

In this paper, a more complete mathematical formulation is considered in order to obtain
realistic characteristics of the boundary layer formed by ions.

1. Formulation of the problem
Let us consider a benzoic acid melt in contact with a homogeneous surface of a lithium niobate

crystal. The temperature of this melt is assumed to be constant and equal to 500 K, which is
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sufficient for proton exchange. Thus, lithium ions and benzoate ions should diffuse the melt from
the crystal side. Diffusion, electromigration, and recombination of ions are described using the
following system of equations in the continuous media approximation [16–18]:

div(ε0εE) = e(n+ − n−), E = −∇φ, (1)

∂n±

∂t
= D±∆n± ∓∇(k±n±E)− kRn+n−, (2)

where E, φ, n± are the fields of electric field strength, electric potential, and concentrations of
positive and negative ions. Concentration determines the number of ions per unit volume and
has a unit of measurement of m−3. Parameters e, ε, ε0 are the electron charge, the permittivity
of benzoic acid, and the electric constant. The diffusion coefficients, the mobility of lithium
and benzoate ions, and the recombination coefficient are denoted, correspondingly, by D±, k±,
and kR.

The coefficient of ion mobility relates the speed of their drift in the melt to the intensity
of the external electric field [19]. The estimation of diffusion and ion mobility coefficients for
the conditions of the present problem, as well as the comparison of these values with known
experimental data, were carried out in accordance with [13,19,20].

According to the results obtained in [14], in the formulation under consideration there are
no conditions for convective mass transfer [21], which allows us to describe the ion transport
in a one-dimensional formulation. After eliminating the electric field strength, the system of
equations (1)–(2) will have the form:

ε0εφ
′′ = e(n− − n+), (3)

∂n±

∂t
= D±n

′′
± ± k±(n

′
±φ

′ + n±φ
′′)− kRn+n−. (4)

The prime denotes the derivative with respect to the x coordinate. The coordinate axis is directed
along the normal to the crystal toward the melt. The interphase boundary is being considered as
the origin of coordinates. The boundary conditions on it relate the derivative of the concentration
to the ion flux density J , and also determine the reference point for the electric potential:

x = 0 : n′± = − J

D±
, φ = 0. (5)

At a distance h from the crystal, an impenetrable reactor wall is modeled, on which, in
addition, there is no electric field:

x = h : n′± = 0, φ′ = 0. (6)

The combination of boundary conditions (5)–(6) ensures the electrical neutrality of the sys-
tem: ∫ h

0

n+dx =

∫ h

0

n−dx. (7)

The boundary value problem (3)–(7) was solved in dimensionless variables. The units of
length, time, concentration and electric potential were taken to be h, h2/D+, Jh/D+ and
eJh3/ε0εD+, correspondingly. In these variables, the system of equations and boundary condi-
tions are written in the following form:

φ′′ = n− − n+, (8)
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∂n±

∂t
= A±n

′′
± ±B±(n

′
±φ

′ + n±φ
′′)− Cn+n−, (9)

x = 0 : n′± = −D+

D±
, φ = 0, (10)

x = 1 : n′± = 0, φ′ = 0, (11)

where

A± =
D±

D+
, B± =

k±eJh
3

D2
+ε0ε

, C =
kRJh

3

D2
+

. (12)

When varying the dielectric constant, it is taken into account that the recombination coeffi-
cient also changes with it [17]:

kR =
e(k+ + k−)

ε0ε
. (13)

2. Solution technique

To solve the boundary value problem (8)–(11), an explicit finite-difference scheme was used,
implemented using a program written in the C++ programming language. The Poisson equation
(8) was solved using the Liebman [22] scheme. Zero concentration and electric potential fields
were used as initial conditions: n±(t = 0, x) = φ(t = 0, x) = 0. The following values of dimen-
sional parameters were used in the calculations: k+= 1.5 · 10−7 m2/s·V, k−= 2 · 10−8 m2/s·V,
D+ = 10−8 m2/s, D− = 10−9 m2/s, J = 1018 s−1m−2. The value of the permittivity ε varied in
the range from 1 to 20 [14]. In turn, the sizes of the computational domain h were taken in the
range from 2 · 10−6 to 10−4 m.

Based on the results obtained earlier in [15], equations (4) have an analytical solution in the
case when k± = 0. Using the multiple scales method, we can determine the boundary layer
thickness δ, which is represented in the following form:

δ =
5h

1
4(

kRJ
D−

(
1
D−

− 1
D+

)) 1
4

. (14)

It follows from this formula that for the values of h used in the present calculations the size of
the boundary layer will be 1–2 orders of magnitude smaller than the size of the computational
domain. In order to minimize the numerical errors that potentially arise in the thin region
occupied by the boundary layer, and at the same time to save computer time, it is necessary to
thicken the computational grid near the origin.

The grid thickening was carried out according to the many-stage scheme. After determine the
size of the computational domain h, a uniform grid was formed, the nodes of which were located
at points with coordinates xi. Then, the variable step hi was calculated for a non-uniform grid
with the same number of nodes:

hi = a+ bxci . (15)

Thus, the computational domain was divided into 201 computational nodes, with a step of hi.
The values of the coefficients a, b and index c were selected in such a way that there were at
least 100 nodes per ion boundary layer. The specificity of distribution (15) allows the grid nodes
to be thickened in such a way that the grid step in the region occupied by the boundary layer is
constant. An example of grid step distribution is shown in Fig. 1a.
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Fig. 1. Example of grid step distribution depending on coordinate for a = 0.1, b = 5, c = 16 (a);
relative error ∆ of the boundary layer thickness calculation (triangles) and the concentration
of positive and negative ions in the center of the computational domain (circles and squares,
correspondingly) depending on the number of nodes N (b)

When representing the system of equations (8)–(9) in finite difference form, the partial deriva-
tives with respect to the coordinate x were calculated as follows:

∂u

∂x
=
ui+1 − ui−1

hi + hi+1
, (16)

∂2u

∂x2
=

2

hi + hi+1

(
ui+1 − ui
hi+1

− ui − ui−1

hi

)
. (17)

When calculating the spatial derivatives in the boundary conditions of the second kind (10)–(11),
as well as the time derivative in equations (9), a one-sided difference was used:

∂u

∂x̃
=
ui+1 − ui

h̃
, (18)

where x̃ is a generalized designation of the differentiation variable. In turn, h̃ is a generalized
designation of the step along the coordinate at the side points of the computational domain, as
well as the time step. An example of the convergence of the implemented scheme is shown in
Fig. 1b. Expressions (16)–(18) are first-order formulas.

3. Results of numerical simulation

Solution of the boundary problem (8)–(11) gives stationary profiles of concentration and elec-
tric potential in the benzoic acid melt. Their characteristic form is shown in Fig. 2. The time
necessary to originate stationary profiles in the model case, when the only ion transport mecha-
nism is diffusion, is ∼ 0.02 s. In turn, the reverse effect of the electric field on the concentration
profiles additionally stabilizes the system and reduces this time up to ∼ 0.01 s. It should be
noted that in this case the process of stationary profiles origination is longer compared to one
discussed in [14], since the size of the computational domain is significantly larger.
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Fig. 2. Profiles of concentration (a), field strength and electric potential (b) at h = 8 · 10−5 m
and ε = 10. Black and red curves correspond to the cases with and without electromigration,
correspondingly. a) Solid lines — concentration of benzoate ions, dots — concentration of lithium
ions. b) Solid lines — electric field strength, dashed lines — electric potential

Depending on whether electromigration is taken into account or not, a fundamental difference
in the profiles is noticeable from Fig. 2a. In the purely diffusion case (k± = 0), lithium ions reach
the opposite boundary one way or another by the time of stationary profiles origination. These
ions are present everywhere in the calculation region albeit in small concentrations. Including
electromigration in the model allows the electric field formed, the strength of which is directed
toward the crystal, to affect the ions. Thus, the lithium ion profile is slightly "pressed" to the
interphase boundary. As calculations have shown, in the case of large h, the concentration of
positive ions reaching the reactor wall tends to zero. Thus, concentration profile of these ions is
qualitatively no different from the concentration profile of benzoate ions.

Having significantly lower mobility than lithium ions, benzoate ions are not able to reach the
reactor wall in any case. These ions always form a boundary layer, the thickness of which varies
depending on how far the lithium ions can move away from the interface. In other words, taking
into account electromigration in the case where the size of the computational domain is large
enough leads to the formation of a coupled boundary layer.

Fig. 2b shows the profiles of the electric potential and electric field strength. Comparing these
profiles with the concentration profiles, it is easy to see that the electric field is most intense in
the region of the benzoate ion boundary layer. The strength locally reaches 3 · 104 V/m. The
electric field strength on the crystal surface is considered to be zero. This should be true in the
case where the X-cut of lithium niobate is protonated. Despite the fact that the condition on
the potential (5) is set at the crystal-melt boundary (but not on its derivative), the zero value
of the strength is obtained in the solution process.

The characteristic thickness of the benzoate ion boundary layer depending on the size of the
domain is shown in Fig. 3. It is evident that the results of solving the diffusion-recombination
problem qualitatively repeat the analytical solution [15] and the layer thickness grows indefinitely
with increasing h. In turn, electromigration does not allow lithium ions to move away from the
crystal at an arbitrarily large distance, therefore, at a certain value of h∗ ≈ 2 ·10−5 m, they form
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a boundary layer. At h > h∗, the characteristics of the boundary layers remain the same as in
the case of h = h∗. According to this result one can say that h∗ corresponds to Debye length of
the investigated system.

Fig. 3. Dimensional values of boundary layer thickness for the case of different permittivities.
Dots and dashed lines are the results of analytical [15] and numerical solutions for k± = 0; solid
lines are the numerical solution with account of electromigration. Black, red and blue curves
correspond to the case of ε = 1, 10 and 20, correspondingly

It is interesting to note that the effect of the electric field on the concentration profiles not
only "presses" the positive lithium ion profiles toward the crystal, but also reduces the size of the
region in which negative benzoate ions are present. The primary cause of this effect is a more
intense recombination associated with an increase in the concentration of lithium ions affected
by the electric field in the region near the crystal occupied by benzoate ions. Since the flux
density of positive and negative ions from the crystal surface is the same, the total number of
ions present in the melt should decrease, causing the boundary layer to shift toward the crystal.

Conclusion

As calculations have shown, after diffusion of lithium ions and benzoate ions into the benzoic
acid melt, ion transport complicated by electromigration and recombination takes place. Due
to the large difference in the kinetics of negative and positive ions participating in the proton
exchange, the concentration profiles differ considerably from each other and an electric field is
formed near the interphase. Taking into account the reverse effect of this field on ions greatly
changes the concentration profiles in the case when the size of the computational domain exceed
2 · 10−5 m. Analysis of the behavior of ions in a cavity with sufficiently large sizes allows us to
establish that not only benzoate ions, but also lithium ions form a stationary boundary layer.
The sizes of these structures remain unchanged with further growth of the computational domain
and are 2 · 10−6 m for benzoate ions and 2 · 10−5 m for lithium ions, correspondingly.

The work was supported by the Russian Science Foundation (Grant no. 24-29-20277) and
Perm Region.
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Диффузия и электромиграция ионов – продуктов реакции
протонного обмена в расплаве бензойной кислоты

Виталий А. Демин
Максим И. Петухов

Пермский государственный университет
Пермь, Российская Федерация

Аннотация. Работа посвящена численному исследованию транспорта продуктов реакции протон-
ного обмена в расплаве бензойной кислоты после взаимодействия ее молекул с кристаллом ниобата
лития. Вследствие диссоциативной адсорбции с поверхности подложки в кислоту проникают по-
ложительные ионы лития и отрицательные бензоат-ионы. Перенос данных продуктов рекции опи-
сывается при помощи уравнений в приближении сплошной среды. В математической модели учи-
тываются диффузионный и электромиграционный механизмы транспорта, а также рекомбинация
ионов. В результате решения получаются стационарные распределения концентрации ионов. Из-
за большой разницы в кинетике продуктов реакции бензоат-ионы группируются преимущественно
вблизи подложки, в то время как ионы лития стремятся отдалиться от нее на гораздо большее рас-
стояние. В работе показано, что при устремлении размеров расчетной области к размерам рабочего
пространства реактора, ионы обоих типов формируют пограничные слои.

Ключевые слова: протонный обмен, пограничный слой, численное моделирование.
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Abstract. In this article, we will check whether the known results remain valid if the metric d is replaced
by the w-distance p. we show that in some contractive conditions where w-distance p participates instead
of metric d, symmetry of w-distance p can be assumed and the proofs can be shorter. We are talking
about results such as Banach’s contraction principle, Kannan’s theorem, Boyd–Wong, Meir–Keeler,
Chatterje’s, Reich’s, Hardy–Rogers’, Karapinars’ and Wardowskis’ theorems and many others.

By doing so, we would obtain generalizations of the above results.

Keywords: fixed point, w-distance, p-interpolative Kannan type contraction, p-Hardy–Rogers contrac-
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1. Introduction and preliminaries

One of the generalizations of the well-known Banach theorem from 1922 is the introduction
after 75 years of the so-called w-distance p in the given metric space (X, d). Thus we obtained
an ordered triple (X, d, p) where (X, d) is the given metric space and p is a function from X ×X
in [0,+∞) that satisfies the following three axioms:

p1) p (x, z) 6 p (x, y) + p (y, z) for all x, y, z ∈ X;
p2) For any x ∈ X, the function p(x, ·) : X → [0;+∞) is d−lower semi-continuous;
p3) For any ε > 0, there exists δ > 0 such that p(z, x) 6 δ and p(z, y) 6 δ imply d(x, y) 6 ε.
Then, p is called a w-distance on X.
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The last two axioms are new compared to those known for metric space. The second represents
the lower semi-continuity in the second variable and the third connects the metric d and the w-
distance p.

A typical example of a w-distance is the metric d itself defined on a nonempty set X. Actually,
p1) is fulfilled as a triangle relation. Since the metric d is a continuous function with 2 variables,
it is also semi-continuous from below in the second variable. Indeed, if yn is a sequence in X that
converges to y by metric d then p(x, y) = d(x, y) = limn→+∞ d(x, yn) = lim infn→+∞ d(x, yn)

and p2) is fulfilled. Assuming that δ =
ε

2
, we get that p3) is fulfilled, because p(x, y) = d(x, y) 6

d(x, z) + d(y, z) 6 ε

2
+
ε

2
= ε.

Now we list several typical examples of w-distances, some of which were also mentioned in
the first paper on w-distances.

1. Let (X, d) be a metric space. Then a function p : X×X → [0,+∞) defined by p (x, y) = c
for every x, y ∈ X is a w-distance on X, where c is a positive real number.

2. Let X be a normed linear space with norm ∥·∥ . Then a function p : X × X → [0,+∞)
defined by p (x, y) = ∥x∥+ ∥y∥ for every x, y ∈ X is a w-distance on X.

3. The similar as example 3. only the function p : X × X → [0,+∞) is defined by
p (x, y) = ∥x∥ for all x, y ∈ X.

For several examples of w-distances see [2], pages 382, 383, 384.
An important note about p1) and p3). Since Example 1.3. from [3] (see also Example 4 from

[3]) shows that the w-distance in the general case is not symmetric, i.e., it is not p(x, y) = p(y, x)
for every x, y ∈ X, then the triangle relation as well as the axiom p3) should be understood as
the introduced order x, z; x, y; y, z and, z, x; z, y and finally x, y.

The following Lemma is one of the most important that is used in the study of w-distance
metric spaces. It relates metric convergence to w-distance convergence. It is also important
because it gives us the information (a sufficient condition) when the sequence xn is Cauchy in
the metric space (X, d). In the sequel, we denote by R+, R and N, the sets of positive real
numbers, real numbers and natural numbers, respectively.

Lemma 1.1 ( [2], Lemma 1.). Let X be a metric space with metric d and let p be a w-distance on
X. Let {xn} and {yn} be sequences in X, let {αn} and {βn} be sequences in [0,+∞) converging
to 0, and let x, y, z ∈ X. Then the following hold:

(i) If p (xn, y) 6 αn and p (xn, z) 6 βn for any n ∈ N, then y = z. In particular, if p (x, y) = 0
and p (x, z) = 0,then y = z;

(ii) if p (xn, yn) 6 αn and p (xn, z) 6 βn for any n ∈ N, then {yn} converges to z;
(iii) if p (xn, xm) 6 αn for any n,m ∈ N with m > n, then {xn} is a Cauchy sequence;
(iv) if p (y, xn) 6 αn for any n ∈ N, then {xn} is a Cauchy sequence.

The similar as in the context of metric spaces ( [1,6]) we recall the following two lemmas that
we will use in the proofs of our results. These both lemmas are important and are used to prove
the Cauchyness of the sequence xn = fxn−1, n ∈ N.

Lemma 1.2. Let {un} be a Picard sequence in metric space (X, d) with the w-distance p such
that

p (un+1, un) < p (un, un−1) (1)

or
p (un, un+1) < p (un−1, un) (2)

in both cases for all n ∈ N. Then un ̸= um whenever n ̸= m.

Proof. Consider the case (1). Suppose on the contrary that un = um for some n < m. Then,
un+1 = fun = fum = um+1, hence

p (un+1, un) = p (um+1, um) < p (um, um−1) < · · · < p (un+1, un) ,
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we obtain a contradiction. For the case (2) the proof is the same.

Lemma 1.3. Let (X, d) be a metric space with w-distance p and let {un} be a sequence in X
such that both p (un+1, un) and p (un, un+1) tend to 0 as n → +∞. If {un} is not a Cauchy
sequence in metric space (X, d) , then there exist ε > 0 and two sequences {m (k)} and {n (k)}
of positive integers such that n (k) > m (k) > k and the following sequences tend to ε+ when
k → +∞ : {

p
(
um(k), un(k)

)}
,
{
p
(
um(k), un(k)−1

)}
,
{
p
(
um(k)+1, un(k)

)}
,{

p
(
um(k)−1, un(k)+1

)}
,
{
p
(
um(k)+1, un(k)+1

)}
, . . . (3)

or {
p
(
un(k), um(k)

)}
,
{
p
(
un(k)−1,um(k)

)}
,
{
p
(
un(k), um(k)+1

)}
,{

p
(
un(k)+1, um(k)−1

)}
,
{
p
(
un(k)+1, um(k)+1

)}
, . . . (4)

Proof. Since {un} is not a d-Cauchy sequence, from Lemma 1 (iii) of [2], it follows that p (un, um)
does not tend to 0 as n,m → +∞. This means that there exist ε > 0 and subsequences
{n (k)} , {m (k)} such that m (k) > n (k) > k and

p
(
un(k), um(k)

)
> ε and p

(
un(k)−1, um(k)

)
< ε.

Then, using the axiom (p1) and the fact that both p (un+1, un) and p (un, un+1) tend to 0 as
n → +∞ it follows, in the same way as in metric spaces (see for instance [6]) that the given
sequences tend to ε+.

The w-distance p is symmetric if p(x, y) = p(y, x) for all x, y ∈ X. For such a w-distances,
if a ̸= b then p(a, b) > 0, i.e., from p(a, b) = 0 follows a = b. In many contractive conditions,
symmetry of the w-distance can be assumed. This is achieved by introducing a new function
q from X × X to [0,+∞) defined by q(x, y) = max{p(x, y), p(y, x)}. It is easy to show that q
is a w-distance. Often when proving fixed point results in metric spaces with w-distance one
finds that the condition x ̸= y implies that p(x, y) > 0. But many examples show that if p(x, y)
is not a symmetric w-distance that this need not be true. Such an example is: X = [0,+∞),
p(x, y) = y. Indeed, 1 ̸= 0 while p(1, 0) = 0. So, for many contractive conditions, symmetry of
the w-distance can be assumed. For this purpose, we introduce the following function: q(x, y) =
max{p(x, y), p(y, x)}. It is easily shown that it is a symmetric w-distance. The proof uses the
fact that p(x, y) is semi-continuous from below in the second variable if and only if p(y, x) it is
semi-continuous from below in the first variable. And then for the function q we have:

q (x, yn) = max {p (x, yn) , p (yn, x)} >

> max

{
lim inf

n→+∞
p (x, yn) , lim inf

n→+∞
p (yn, x)

}
>

> max {p (x, y) , p (y, x)} =

= q (x, y) ,

that is., q (x, y) 6 lim infn→+∞ q (x, yn) , i.e., q (x, y) is semi-continuous from below in second
variable.

In some contractive conditions where w-distance p participates instead of metric d, symmetry
of w-distance p can be assumed. Namely, using the property that from 0 6 a 6 b and 0 6 c 6 d
follows max {a, c} 6 max {b, d} , from which yields that the w-distance p, one moves to the above
symmetric w-distance q.

The following results are natural in the framework of complete metric spaces with w-distance,
and for mapping T : X → X, the next will be assumed either T is continuous or the infimum of
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the number set
{p (x, y) + p (x, Tx) : x ∈ X} where y is not a fixed point of T, is positive.

p−Banach contraction theorem: p (Tx, Ty) 6 k · p (x, y) , k ∈ (0, 1)
p−Kannan contraction: p (Tx, Ty) 6 l · [p (x, Tx) + p (y, Ty)] , l ∈

(
0, 12

)
p−Chatterjea contraction: p (Tx, Ty) 6 m · [p (x, Ty) + p (y, Tx)] ,m ∈

(
0, 12

)
p−Reich contraction: p (Tx, Ty) 6 A · p (x, y) +B · p (x, Tx) +C · p (y, Ty), A,B,C > 0 and

A+B + C < 1
p−Hardy–Rogers contraction: p (Tx, Ty) 6 A · p (x, y) + B · p (x, Tx) + C · p (y, Ty) + D ·

p (x, Ty) + E · p (y, Tx) , A,B,C,D,E > 0 and A+B + C +D + E < 1

p− Ćirić (I) p (Tx, Ty) 6 λ1 ·max
{
p (x, y) , p(x,Tx)+p(y,Ty)2 , p(x,Ty)+p(y,Tx)2

}
, λ1 ∈ (0, 1)

p−Ćirić (II) p (Tx, Ty) 6 λ2 ·max
{
p (x, y) , p (x, Tx) , p (y, Ty) , p(x,Ty)+p(y,Tx)2

}
, λ2 ∈ (0, 1)

p−Ćirić (III) p (Tx, Ty) 6 λ3 ·max
{
p (x, y) , p(x,Tx)+p(y,Ty)2 , p (x, Ty) , p (y, Tx)

}
, λ3 ∈ (0, 1)

p− Ćirić (IV)p (Tx, Ty)6λ4·max {p (x, y), p (x, Tx), p (y, Ty), p (x, Ty), p (y, Tx)}, λ4∈(0, 1)
p−Bryant contraction: p (Tnx, Tny) 6 r · p (x, y) , r ∈ (0, 1) , n ∈ N
If (X, d) is compact metric space and if
p−Nemytzki contraction: p (Tx, Ty) < p (x, y) whenever x ̸= y.
p−Browder contraction: p (Tx, Ty) 6 ϕ (p (x, y)) , ϕ nondecreasing and continuous from the

right function from (0,+∞) into(0,+∞) such that ϕ (t) < t
p−Boyd–Wong contraction: p (Tx, Ty) 6 ϕ (p (x, y)) , ϕ is a real function, upper semi-

continuous from the right, satisfying ϕ (t) < t for t > 0.
p−Meir–Keeler contraction: For all ε > 0 there exists δ > 0 such that
ε 6 p (x, y) < ε+ δ implies p (Tx, Ty) < ε
Further there are Jungck, Fisher and many other contractions.

2. p-Hardy-Rogers contraction

In section 5 of [2] the authors proved one theorem and three corollaries. In all four results,
they assume that the contraction coefficient k belongs to the set [0, 1) or [0, 1/2). It is easy to
see that this is imprecise and that the assumption must be that k belongs to (0, 1) or (0, 1/2).
This is the difference obtained when, under the known contractive conditions of metric spaces,
the metric d is replaced by the w-distance p. For example, in Theorem 4 from [2], if k = 0 is set,
p(Tx, T 2x) = 0 is obtained. Whence it does not have to follow as with metric spaces that then
Tx = T 2x because the equality p(a, b) = 0 does not necessarily follow a = b.

In this article, we will check, among other things, whether the known theorems (results)
remain valid if the metric d is replaced by the w-distance p. We are talking about results such
as Banach’s contraction principle, Kanan’s theorem, Chatterje’s, Reich’s and Hardy–Rogers’
theorems. Then the Boyd–Wong and Meir–Keeler theorems and many others.

By doing so, we would obtain generalizations of the above results because each metric is a
w-distance. One of the following sufficient conditions may be used for the existence of a fixed
point:

(i) The mapping of T from X to X is continuous;
(ii) The number set {p(x, y) + p(x, Tx) : x ∈ X, y ∈ X but such that y is different from Ty}

has a positive infimum.
First, we will formulate and prove the Hardy–Rogers theorem within metric spaces with

w-distance p.

Theorem 2.1. Let (X, d, p) be a complete metric space with w-distance p, T a mapping from X to
X and let there exist non-negative constants A,B,C,D and E such that A+B+C+D+E < 1 and
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that for every x, y from X it holds p(Tx, Ty) 6 Ap (x, y)+Bp (x, Tx)+Cp (y, Ty)+Dp (x, Ty)+
Ep(y, Tx).

Then T has a unique fixed point say z ∈ X such that p(z, z) = 0 if at least one of the above
conditions (i) or (ii) holds.

Proof. Let us first assume that z is a fixed point of the mapping T and show that then p(z, z) = 0.
Then by putting in the contractive condition x = y = Tx = Ty we get: p(x, x) 6 (A+B + C +
D+E)p(x, x) < p(x, x) which is not possible if p(x, x) > 0. In order to show the uniqueness of a
possible fixed point of the mapping T , let us assume that there are two different fixed points of it
u and v. Using the fact that according to the already shown p(u, u) = p(v, v) = 0, then based on
that and putting x = u, y = v in the contractive condition we get: p(u, v) 6 Ap(u, v)+Bp(u, u)+
Cp(v, v)+Dp(u, v)+Ep(v, u) = Ap(u, v)+Dp(u, v)+Ep(v, u) i.e., (1−A−D)p(u, v) 6 Ep(v, u).
Similarly, we get that (1 − A − D)p(v, u) 6 Ep(u, v). By taking the maximum of the left and
right sides, we get (1 − A − D)q(u, v) 6 Eq(u, v) where q(a, b) = max{p(a, b), p(b, a)]. If it is
assumed that q(u, v) > 0, we get a contradiction with A+B +C +D+E < 1. Otherwise, from
q(u, v) = 0 and since q is a symmetric w-distance, we conclude u = v.

The rest of the proof is very simialar to the one for the metric spaces.

3. p-interpolative Kannan type contraction
In 1969, Kannan [4] proved the following fixed point theorem.

Theorem 3.1. Let f : X → X be a Kannan contraction mapping, i.e., d(fx; fy) 6 k(d(x; fx)+

d(y; fy)) for all x; y ∈ X and some 0 6 k <
1

2
, of a f -orbitally complete metric space. Then f

has a unique fixed point.

Afterwards, T. Suzuki published a nice paper [7] in which generalized Kannan’s result in two
new ones. He introduced the concept of weakly Kannan contraction mappings and non-weakly
Kannan contraction mappings. For more details, see Section 4 and 5 in that paper.

Recently, the concept of interpolative Kannan type contraction mappings was introduced by
E.Karapinar in [5]; and he proved the following theorem:

Theorem 3.2. Let (X, d) be a complete metric space. Suppose that f : X → X is a interpolative
Kannan type contraction self-map; i.e. if there exist a constant α ∈ (0; 1) and k ∈ [0; 1) such
that either of the followings hold:

d(fx; fy) 6 k[d(x; fx)]α[d(y; fy)]1−α; (5)

for all x, y ∈ X with x ̸= fx. Then f has a unique fixed point in X.

In this section, we introduced the concept of weakly interpolative Kannan type contraction
mappings and we will prove and generalize Karapinar’s theorem in the setting of w-distances.

We know that a w-distance p is not symmetric; i.e. p(x; y) is not equal to p(y;x) in general.
So, we can define weakly interpolative Kannan type contractions as follows.

Definition 3.1. Let (X; d) be a metric space. The mapping f : X → X is said to be a weakly
interpolative Kannan type contraction or p-interpolative Kannan type contraction, if there exist
a constant α ∈ (0; 1) and k ∈ [0; 1) such that either of the followings hold for all x; y ∈ X:

p (fx, fy) 6 k[p (fx, x)]α[p (fy, y)]1−α, (6)

or
p (fx, fy) 6 k[p (fx, x)]α[p (y, fy)]1−α, (7)
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or
p (fx, fy) 6 k[p (x, fx)]α[p (y, fy)]1−α, (8)

or
p (fx, fy) 6 k[p (x, fx)]α[p (fy, y)]1−α. (9)

If p = d then f is called interpolative Kannan type contraction [5].

The following example shows that the class of weakly interpolative Kannan type contraction
is more than interpolative Kannan type contraction.

Example 3.1. Let X = {x, y, z}. Consider the metric d and the w-distance p on X, as follows.

d(x, x) = d(y, y) = d(z, z) = 0, d(x, y) = d(y, x) = 3,

d(x, z) = d(z, x) = 1, d(y, z) = d(z, y) = 2.

p(x, x) = p(z, z) = 1, p(y, y) = 0, p(z, y) =
3

2
, p(y, z) = 3;

p(y, x) = p(x, y) = 2, p(x, z) = p(z, x) = 4.

Also, define f : X → X by f(x) = f(y) = y and f(z) = x. Then for α =
1

2
and for each

k ∈
(

1√
2
, 1
)

the contractions (6)–(9) are true. while these contractions are not true for d, for
each k ∈ (0, 1) and each α ∈ (0, 1). For example,

d(fx, fz) = d(y, x) = 3 > 3α > k3α = kd(y, x)αd(x, z)1−α = kd(fx, x)αd(fz, z)1−α.

Obviousely y is the fixed point of f . Now define q(x, y) = max{p(x, y), p(y, x)} which is a
symmetric w-distance. Then

q(x, x) = q(y, y) = 1, q(y, y) = 0,

q(x, y) = 2, q(x, z) = 4, q(y, z) = 3.

and for α =
1

2
and for each k ∈

(
1√
2
, 1
)
, the contractions (6) and (7) are true for q.

In the latter theorem we conclude that for proving the existence of fixed point of a self map
it sufficies to consider the symmetric w-distances. We apply the following remark for proving
this main theorem.

Remark 1. Note that if p is a symmetric w-distance, then for each x ̸= y we have p(x, y) > 0.
Since if p(x, y) = 0, then

p(x, x) 6 p(x, y) + p(y, x) = 2p(x, y) = 0.

Therefore p(x, x) = 0 = p(x, y). So Lemma 1.1 implies x = y, a contradiction.

Therefore we have the following theorem.

Theorem 3.3. Let p be a w-distance on a complete metric space (X, d). Suppose that f : X → X
is a weakly interpolative Kannan type contraction self-map. Then f has a fixed point x in X
such that p(x, x) = 0. In addition, if one of the equations (6)–(9) holds for all x, y ∈ X, then x
is unique.
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Proof. Let x0 ∈ X. Define by induction xn = f(xn−1). If for some n, xn+1 = xn, then xn is a
fixed point of f . Otherwise if xn+1 ̸= xn, for each n, without loss of generality, we may assume p
is symmetric. Since otherwise we can define q(x, y) = max{p(x, y), p(y, x)} which is a symmetric
w-distance. Then if each of the equations (6)–(9) holds, then

p(fx, fy) 6 k [q(fx, x)]
α
[q(fy, y)]

1−α
,

and similarly
p(fy, fx) 6 k [q(fy, y)]

α
[q(fx, x)]

1−α
.

Therefore for each x, y with fx ̸= x and fy ̸= y we have

q(fx, fy) 6 k [q(fx, x)]
α
[q(fy, y)]

1−α
,

or
q(fx, fy) 6 k [q(fy, y)]

α
[q(fx, x)]

1−α
,

Note that since q is symmetric and xn ̸= xn+1, we have q(xn+1, xn) ̸= 0. So for each n, we have

q(xn+1, xn) 6 k [q(xn+1, xn)]
α
[q(xn, xn−1)]

1−α
;

or
q(xn+1, xn) 6 k [q(xn+1, xn)]

β
[q(xn, xn−1)]

1−β
;

where 0 < β = 1− α < 1 and so,

[q(xn+1, xn)]
1−α 6 k [q(xn, xn−1)]

1−α
;

or
[q(xn+1, xn)]

1−β 6 k [q(xn, xn−1)]
1−β

.

Now we will have

[q(xn+1, xn)]
1−α 6 k [q(xn, xn−1)]

1−α 6 k2 [q(xn−1, xn−2)]
1−α

;

or
[q(xn+1, xn)]

1−α 6 k [q(xn, xn−1)]
1−α

=

= k
(
[q(xn, xn−1)]

1−β
) 1−α

1−β 6

6 k2
(
[q(xn−1, xn−2)]

1−β
) 1−α

1−β

=

= k2 [q(xn−1, xn−2)]
1−α

.

Therefore by an inductive method we conclude that [q(xn+1, xn)]
1−α 6 . . . 6 kn [q(x1, x0)]

1−α
.

This implies that limn q(xn+1, xn) = 0 (since 0 < k < 1). (Note that if p is symmetric, then we
can replace q with p and also, all of the statements after "or" can be omitted and the proof is
shorter.)
In the sequel, since applying "or" and working with β is very similar to working with α, we
omitted them and we assume p is symmetric.
Now for each m,n we have

p(xn, xm) 6 k [p(xn, xn−1)]
α
[p(xm, xm−1)]

1−α → 0.

Therefore limn,m p(xn, xm) = 0 and so by Lemma 1.1, {xn} is a Cauchy sequence. Now since
(X, d) is complete, {xn} is convergent. Hence, there is x ∈ X such that limn xn = x. In the
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sequel we show that x is the fixed point of f .
By contrary if x is not the fixed point of f , then by Remark 1 p(fx, x) ̸= 0 and

p(fx, x) 6 lim inf
n

p(fx, xn+1) = lim inf
n

p(fx, fxn) 6 k [p(fx, x)]
α
[p(xn+1, xn)]

1−α
.

and so,
[p(fx, x)]

1−α 6 k [p(xn+1, xn)]
1−α → 0.

Therefore for each ϵ > 0, p(fx, x) < ϵ, a contradiction. Therefore fx = x and p(x, x) =
= p(fx, x) = 0. For uniqueness, let x, y are fixed points of f . Then

p(x, y) = p(fx, fy) 6 k [p(fx, x)]
α
[p(fy, y)]

1−α
= 0.

That is, p(x, y) = 0 and so by Remark 1 x = y.

4. (z, p)-contraction
Suppose that z : R+ → R is a mapping satisfying the following properties.
(z1) The mapping z is strictly increasing;
(z2) For every sequence {tn} ⊆ R+, limn→+∞ tn = 0 if and only if limn→+∞ z(tn) = −∞.
(z3) limt→0+ t

kz(t) = 0 for some k ∈ (0, 1).

Definition 4.1. Let (X, d) be a metric space with a w-distance p. A mapping f : X → X is
said to be a weakly z-contraction or (z, p)-contraction, if there exist a constant α > 0 such that

p(fx, fy) > 0 implies α+z
(
p(fx, fy)

)
6 z

(
p(x, y)

)
, (1)

for all x, y ∈ X.
If p = d then f is called z-contraction; [8].

The following example shows that the category of (z, p)-contractions are bigger than its for
z-contractions:

Example 4.1. Consider X = {x, y, z} with the metric d which is defined by

d(x, x) = d(y, y) = d(z, z) = 0;

d(x, y) = d(y, x) = d(x, z) = d(z, x) = d(y, z) = d(z, y) = 2.

Define f : x→ X by fx = fy = x and fz = y and assume z : R+ → R satisfies in at least (z1),
Then f is not an z-contraction. Indeed for each α > 0 we have

α+z(d(fx, fz)) = α+z(2) > z(2) = z(d(x, y)).

Now define the w-distance p with

p(x, x) = p(y, y) = 0; p(z, z) = 1;

p(x, y) = 1; p(y, x) =
1

2
; p(y, z) = p(z, y) = p(x, z) = p(z, x) = 2.

then for z(r) = Ln(r) and for α = Ln2 and each of the positive cases p(fx, fz), p(fy, fz),
p(fz, fx), p(fz, fy) the contraction (1) hold. Therefore f is (z, p)-contraction.

Wardowski in [8] proved the following theorem.
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Theorem 4.1. Each z-contraction f on a complete metric space (X, d) has a unique fixed point.
Moreover, for each x0 ∈ X, the corresponding Picard sequence {fnx0} converges to that fixed
point.

Then in [1] it is shown that the proof of the above theorem needs only the condition (z1).
Indeed (z1) implies that z is almost every where continous and moreover the left and right
limits exist in each a ∈ (0,+∞) and limr→a+ z(r) = z(a+). Then two Lemmas similar as
Lemmas 1.2 and 1.3 for the metric d applied for the proof.

In the sequel we prove this theorem for (z, p)-contraction.

Theorem 4.2. Let f : X → X be a (z, p)-contraction mapping on a complete metric space
(X, d) with a w-distance p. If f is continuous, or for every w ∈ X with w ̸= fw, we have
inf{p(x,w) + p(x, fx) : x ∈ X} > 0, then f has a unique fixed point u ∈ X; and every sequence
{fnx0}n∈N is convergent to u, for every x0 ∈ X.

Proof. As we see in Theorem 4.2, we may consider p symmetric. Then the proof is similar
to [1, Theorem 2.3] in the case where f is continuos. If f is not continous then similar to
[1, Theorem 2.3] we can show that fnx0 → x and if x is not the fixed point of f , then

0 < inf{p(y, x) + p(y, fy) : y ∈ X} 6 inf{p(xn, x) + p(xn, xn+1) : n ∈ N} = 0.

Which is a contradiction. So x must be a fixed point. For uniqueness let x, y be the distinct
fixed points of f , then since we consider p as a symmetric w-distance and x ̸= y, we have
p(fx, fy) = p(x, y) > 0 and so

α+z
(
p(x, y)

)
= α+z

(
p(fx, fy)

)
6 z

(
p(x, y).

Which means that α 6 0, a contradiction. So x is the unique fixed point of f .
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Аннотация. В этой статье мы проверим, остаются ли известные результаты верными, если мет-
рику d заменить на w-расстояние p. Мы показываем, что в некоторых условиях сжатия, где вместо
метрики d участвует w-расстояние p, можно предположить симметрию w-расстояния p, и дока-
зательства могут быть короче. Мы говорим о таких результатах, как принцип сжатия Банаха,
теорема Каннана, теоремы Бойда–Вонга, Мейра–Килера, Чаттерье, Райха, Харди–Роджерса, Ка-
рапинарса и Вардовский и многих других.

Сделав это, мы получим обобщения приведенных выше результатов.

Ключевые слова: фиксированная точка, w-расстояние, p-интерполяционное сокращение типа
Каннана, p-сокращение Харди–Роджерса, (z, p)-сокращение.
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Abstract. In this paper, a mathematical model of a blocky-layered medium is studied. Deformable
elastic blocks and thin elastic and viscoelastic interlayers are considered. Viscoelasticity is taken into
account to describe wave attenuation. The wave fields in a medium described by the proposed simplified
interlayer model are compared to wave fields which were obtained using the equations of the dynamic
elasticity theory for interlayers. The developed computational technology is verified for compatibility
with the experimental data.
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Introduction

The concept of a blocky structure of rock masses was proposed by M. A. Sadovskii [1, 2].
According to this concept, the geological medium can be represented as a hierarchical structure
consisting of blocks of different scales nested inside each other. The characteristic sizes of blocks
may vary from several meters to tens of kilometers. In a medium where the interlayers are
more compliant than the blocks, pendulum waves can be observed. Pendulum waves in blocky
media is well studied in both theoretical and experimental aspects. When the deformations arise
mainly in the interlayers, due to their high compliance, the blocks can be considered as rigid
bodies. Discrete periodic models with rigid blocks connected to each other by elastic springs
were represented in [3–5]. A similar but more complicated mathematical model that takes into
account the elasticity of blocks was considered in [6]. The equations of this model are written
relative to the central points of the blocks, and the accelerations of these points depend on the
elastic moduli of both the blocks and the interlayers. Wave attenuation in blocky media may
occur due to the viscoelasticity of the interlayer material. The behavior of a discrete-periodic
medium with elastic blocks and viscoelastic interlayers is quite consistent with the experimental
data [6].

A more complicated approach involves dynamic elasticity equations to describe deformations
of blocks. Blocky-layered media with sufficiently large number of blocks can be represented as
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Cosserat continuum. The analysis of wave fields propagating in blocky-layered media and the
Cosserat continuum was carried out in [7, 8].

In this paper, we study two-dimensional blocky-layered media with elastic blocks and thin
elastic and viscoelastic interlayers. A system of ordinary differential equations is used to describe
dynamics of interlayers, while the equations of the dynamic elasticity theory in partial derivatives
are used for blocks. A more consistent approach supposes to apply equations of elasticity theory
for both blocks and interlayers. However, this method computationally seems to be more difficult,
in particular due to different restrictions on the time step in blocks and interlayers. The proposed
simplified model of a blocky-layered medium retains thermodynamical compatibility inherent in
equations of elasticity theory.

We compare the numerical solutions obtained by the interlayer model described by the equa-
tions of elasticity theory and the proposed simplified model. It turns out that in a medium
with interlayers and blocks of the same material, non-physical reflections of waves occur near
the boundaries of the blocks, which indicates defectiveness of the simplified model. The nu-
merical results for a blocky medium with thin viscoelastic interlayers are in agreement with the
experimental data published in the work [6].

1. Mathematical model of a blocky-layered medium

A two-dimensional problem of the dynamics of a blocky-layered medium consisting of rect-
angular blocks is considered. Motion of each block complies with the system of equations of a
homogeneous isotropic elastic medium:

ρ
∂v1
∂t

=
∂σ11
∂x1

+
∂σ12
∂x2

, ρ
∂v2
∂t

=
∂σ12
∂x1

+
∂σ22
∂x2

,

∂σ11
∂t

= (λ+ 2µ)
∂v1
∂x1

+ λ
∂v2
∂x2

,
∂σ22
∂t

= λ
∂v1
∂x1

+ (λ+ 2µ)
∂v2
∂x2

,

∂σ12
∂t

= µ

(
∂v2
∂x1

+
∂v1
∂x2

)
.

(1)

The equations of longitudinal and transverse motions in the elastic interlayer between adjacent
blocks in the x1 direction are written as follows:

ρ′
d

dt

v+1 + v−1
2

=
σ+
11 − σ−

11

δ1
, ρ′

d

dt

v+2 + v−2
2

=
σ+
12 − σ−

12

δ1
,

d

dt

σ+
11 + σ−

11

2
= (λ′ + 2µ′)

v+1 − v−1
δ1

,
d

dt

σ+
12 + σ−

12

2
= µ′ v

+
2 − v−2
δ1

,

(2)

similarly, along the x2 axis:

ρ′
d

dt

v+2 + v−2
2

=
σ+
22 − σ−

22

δ2
, ρ′

d

dt

v+1 + v−1
2

=
σ+
12 − σ−

12

δ2
,

d

dt

σ+
22 + σ−

22

2
= (λ′ + 2µ′)

v+2 − v−2
δ2

,
d

dt

σ+
12 + σ−

12

2
= µ′ v

+
1 − v−1
δ2

.

(3)

Here v1, v2 are components of the displacement velocity vector, σ11, σ22, σ12 are components
of the stress tensor, λ = ρ(c2p − 2c2s), µ = ρc2s are Lame parameters, ρ is density, cp, cs are the
velocities of longitudinal and transverse elastic waves, respectively, strokes indicate constants for
interlayers. The interlayer thickness in both directions assumed to be the same δ = δ1 = δ2.
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Signs «+» and «–» are represent the values on the right and left boundaries of the interlayer,
respectively.

The system (1)–(3) is thermodynamically compatible. The law of conservation of energy can
be written down as the sum of the kinetic and potential energies of all blocks and interlayers,
equal to the integral of flux of the Umov–Poynting vector by time and across the boundary of
the block array consisting of n1× n2 blocks [7]:

n1∑
k1=1

n2∑
k2=1

h1∫
0

h2∫
0

(
ρ

2
v⃗k1,k2(t, x1, x2)

2 +W k1,k2(t, x1, x2)

)
dx1dx2+

+δ1

n1−1∑
k1=1

n2∑
k2=1

h2∫
0

(
ρ′

2

[
v⃗k1+1,k2(t, 0, x2) + v⃗k1,k2(t, h1, x2)

2

]2
+

+
1

2ρ′c′2p

[
σk1+1,k2
11 (t, 0, x2) + σk1,k211 (t, h1, x2)

2

]2
+

+
1

2ρ′c′2s

[
σk1+1,k2
12 (t, 0, x2) + σk1,k212 (t, h1, x2)

2

]2)
dx2+

+δ2

n1∑
k1=1

n2−1∑
k2=1

h1∫
0

(
ρ′

2

[
v⃗k1,k2+1(t, x1, 0) + v⃗k1,k2(t, x1, h2)

2

]2
+

+
1

2ρ′c′2p

[
σk1,k2+1
22 (t, x1, 0) + σk1,k222 (t, x1, h2)

2

]2
+

+
1

2ρ′c′2s

[
σk1,k2+1
12 (t, x1, 0) + σk1,k212 (t, x1, h2)

2

]2)
dx1 =

=

n2∑
k2=1

t∫
0

h2∫
0

(
pn1, k2
1 (t, h1, x2)− p0, k21 (t, 0, x2)

)
dx2dt+

+

n1∑
k1=1

t∫
0

h1∫
0

(
pk1, n2

2 (t, x1, h2)− pk1, 02 (t, x1, 0)

)
dx1dt.

(4)

Here, v⃗ = (v1, v2) is the velocity vector, p1 = σ11v1+σ12v2, p2 = σ22v2+σ12v1 are the projections
of the power flux vector, W is the elastic potential:

W =
(σ11 + σ22)

2

8(λ+ µ)
+

(σ11 − σ22)
2 + 4σ12

8µ
. (5)

Thermodynamic compatibility guarantees the well-posedness of the initial-boundary value prob-
lem with the dissipative boundary conditions, under which the right-hand side of (4) is non-
negative.

We consider a boundary value problem for a blocky-layered massif with fixed boundaries
(v1 = v2 = 0 along the boundaries). The numerical solution is calculated in the region
Ω = [0, L1]× [0, L1] with a uniform grid of N1 × N2 nodes. At the boundary x1 = 0, at point
x2 = ximp the pressure pulse is σ11(t, ximp) = p(t).

The numerical algorithm for solving equations in blocks is based on the two-cyclic splitting
method with the respect to spatial coordinates. This method allows to achieve the second order
of convergence when splitted one-dimensional problems are solved by finite-difference schemes of
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at least second order [9]. Godunov scheme with limiting reconstruction of Riemann invariants is
used to solve one dimensional problems [10]. The reconstruction procedure provides second-order
approximation in monotonic sections of the solution.

Equations in the interlayers are solved using Ivanov dissipation-free scheme [11]. To eliminate
artificial scheme dissipation, it is necessary to require that the sum of the values at the upper
(indicated by the "hat" symbol) and lower time steps be equal to the sum of the values at the
left and right boundaries of the grid cell:

v+ + v− = v̂ + v, σ+ + σ− = σ̂ + σ.

Based on this requirement, at the "predictor" stage of the scheme we obtain the system [13]:

I+ = ρcv+ + σ+ , I− = ρcv− − σ−,

v+ − v− =
δ

ρcδ + ρ′c′2τ
(I+ − I− − 2σ), σ+ − σ− =

ρ′δ

ρ′δ + ρcτ
(I+ + I− − 2ρcv),

v+ + v− =
I+ + I− − (σ+ − σ−)

ρc
, σ+ + σ− = I+ − I− − ρc(v+ − v−).

(6)

Here I+ and I− are Riemann invariants, calculated on the boundaries of neighboring blocks
separated by an interlayer, τ is the time step and h is the space step. On the "corrector" stage
we have a system:

v̂ = v +
τ

ρδ
(σ+ − σ−), σ̂ = σ +

τρc2

δ
(v+ − v−). (7)

This scheme can be written for independent subsystems for longitudinal and transverse waves
propagating with velocities c = cp and c = cs, respectively. It is necessary to allocate
one-dimensional arrays in each direction for interlayers. That is, when solving splitted one-
dimensional problems, stresses and strain rates in each interlayer are calculated in only one grid
cell.

To account mechanical energy dissipation, we consider viscoelastic interlayers. Viscoelastic
interlayers are described by the Poynting–Thomson model, also known as the standard linear
solid (SLS) model. The rheological scheme of the model consists of elastic element b0 connected
in series with a parallel connection of a viscous element η and an elastic one b (Fig. 1). An array
of SLS-mechanisms connected in parallel is called a generalized standard linear solid (GSLS).
This rheological model is widely used in geophysics due to its ability to describe media with
a nearly constant quality factor over a certain frequency range. The more mechanisms in the
model, the more precisely constant quality factor can be approximated. Denoting s as the stress
on elastic element b we can write down the system of equations for the viscoelastic interlayer in
the following form:

ρ′
d

dt

v+ + v−

2
=
σ+ − σ−

δ1
,

1

b0

d

dt

σ+ + σ−

2
=
v+ − v−

δ1
− 1

η

(
σ+ + σ−

2
− s+ + s−

2

)
,

1

b

d

dt

s+ + s−

2
=

1

η

(
σ+ + σ−

2
− s+ + s−

2

)
.

(8)

For longitudinal waves, the coefficient b is equal to λ + 2µ and for transverse waves is equal to
µ, and similarly, b0 is equal to λ0 + 2µ0 or µ0.

This model can be rewritten in terms of the relaxation modulus and relaxation times of
stress and strain. Relaxation times can be determined from the known quality factor using the
τ -method [12]. Then we can recalculate the elastic moduli and viscosity coefficient.
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Fig. 1. Rheological scheme of the Poynting–Thomson model

Finite-difference scheme is constructed analogously to (6)–(7), but leads to a more cumber-
some form:

v+ − v− =
1

α

(
β(I+ − I−)− 2σ − 2b0τ

2η + bτ
s
)
, σ+ − σ− =

ρ′δ

ρ′δ + ρcτ

(
I+ + I− − 2ρcv

)
,

v+ + v− =
I+ + I− − (σ+ − σ−)

ρc
, σ+ + σ− = I+ − I− − ρc(v+ − v−) ,

s+ + s− =
bτ

2η + bτ

(
I+ − I− − ρc(v+ − v−)

)
+

4η

2η + bτ
s ,

v̂ = v + τ
σ+ − σ−

δρ′
, σ̂ = σ + b0τ

v+ − v−

δ
− b0τ

η

(
σ+ + σ−

2
− s+ + s−

2

)
,

ŝ = s+
bτ

η

(
σ+ + σ−

2
− s+ + s−

2

)
,

where

α = ρc+
b0τ

δ
+
b0τρc

2η

(
1− bτ

2η + bτ

)
, β = 1 +

b0τ

2η

(
1− bτ

2η + bτ

)
.

2. Results of computations

The computations below were performed on a multiprocessor system with cluster architec-
ture. The software package was developed using the MPI library. Each MPI-process performs
computations on each block, which consists of smaller blocks. One can specify different interlayer
thicknesses for larger and smaller blocks, so that it is possible to simulate wave propagation in
hierarchical blocky media.

Simplification of the interlayer model leads to certain inaccuracies. Let us evaluate the
behavior of the wave field when propagating near the boundaries of blocks. We consider a
medium consisting of four identical rectangular blocks with sides of 12 and 24 m, separated by
interlayers with varying thickness. The first case considered concerns a medium with the blocks
and interlayers of the same material with properties ρ = ρ′ = 2400 kg/m3, cp = c′p = 4500 m/s,
cs = c′s = 2700 m/s. The load pressure at the upper boundary of the first block at point
ximp=21 m is p(t) = p0H(t), where H(t) is Heaviside function. The Fig. 2 shows snapshots of
velocity fields obtained using interlayer model (2)–(3) calculated on uniform grid of N1 ×N2 =

480 × 960 nodes (with h = 0.5 m). In the medium, where interlayers are modeled by the same
equations as blocks, waves propagate like in a homogenous medium. As the thickness of the
interlayers increases, partial reflections of waves from the vertical layer become more and more
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Fig. 2. Snapshots of the velocity v1 in medium with blocks and interlayers made of the same
material obtained using simplified intarlayer model (2)–(3), interlayer thicknesses are δ= 0.025 m
(upper left), 0.05 m (upper right), 0.1 m (bottom left), 0.2 m (bottom right)

sufficient. There are almost no reflections from the horizontal interlayer, since the wave passes
through it almost perpendicularly.

Let us consider a medium of the same configuration but with a more compliant interlayer
material: ρ′ = 2100 kg/m3, c′p = 2900 m/s, c′s = 1700 m/s. In this case no visual differences
between the snapshots obtained by different interlayer models are observed (Fig. 3). To es-

Fig. 3. Snapshots of the velocity v1 in medium with compliant interlayers δ = 0.05 m (left) and
0.2 m (right) thick for simplified interlayer model (2)–(3) (upper) and for interlayers described
by elasticity theory equations (bottom)
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timate the error of the numerical solution U obtained with the use of a simplified interlayer
model (2)–(3), we compare it to a reference solution Ue calculated for interlayers described by
elasticity theory equations. The relative error err2 = ||U − Ue||/||Ue|| of the numerical solution
U = (v1, v2, σ11, σ22, σ12) was calculated using a discrete equivalent of the norm of the space
L∞(0, T ; L2(Ω)):

||U || = sup
0<t<T

√√√√∫∫
Ω

(
ρ
v21 + v22

2
+W

)
dx1 dx2,

where T is the time required for the longitudinal wave to reach the boundary of the computational
domain Ω, W is the elastic potential (5). Also we use the norm

||U || = sup
0<t<T

max
Ω

|U |

to calculate relative error errC .
Tab. 1 shows the relative errors depending on grid step h for a fixed interlayer thickness. The

material of the blocks for all cases has parameters ρ= 2400 kg/m3, cp= 4500 m/s, cs= 2700 m/s,
the material of the interlayers varies. Tab. 2 shows the relative errors depending on interlayer

Table 1. The relative error depending on grid step at fixed interlayer thickness δ = 0.1 m
Interlayer ρ′ = ρ, ρ′ = 2100 kg/m3, ρ′ = 1100 kg/m3,
material c′p = cp, c′p = 2900 m/s, c′p = 1500 m/s,

parameters c′s = cs c′s = 1700 m/s c′s = 800 m/s
h, м δ/h err2 errC err2 errC err2 errC
0.1 1 0.0352 0.272 0.0303 0.123 0.0231 0.0715
0.05 2 0.0483 0.321 0.0286 0.144 0.0258 0.0839
0.025 4 0.0621 0.348 0.0357 0.146 0.0309 0.115
0.0125 8 0.0802 0.350 0.0503 0.153 0.0475 0.131

thickness with a fixed grid. With an increase in the ratio of the interlayer thickness to the grid

Table 2. The relative error depending on interlayer thickness at fixed grid N1×N2 = 960× 1920

(h = 0.025 m)

Interlayer ρ′ = ρ, ρ′ = 2100 kg/m3, ρ′ = 1100 kg/m3,
material c′p = cp, c′p = 2900 m/s, c′p = 1500 m/s,

parameters c′s = cs c′s = 1700 m/s c′s = 800 m/s
δ, м δ/h err2 errC err2 errC err2 errC
0.025 1 0.0195 0.154 0.0177 0.0756 0.0117 0.0597
0.05 2 0.0362 0.250 0.0211 0.108 0.0197 0.0704
0.1 4 0.0621 0.348 0.0357 0.146 0.0309 0.115
0.2 8 0.1035 0.414 0.0719 0.161 0.0689 0.237

step δ/h, an increase in error is observed in all cases. It is noticeable that in media with more
compliant interlayers the error is slightly lower. Therefore, the model with simplified equations for
interlayers can be used to describe blocky media with sufficiently thin and compliant interlayers.

Fig. 4 shows the distribution of the error |v1−v1e|/|v1e| in blocky media for layers of different
thicknesses on a uniform grid N1 ×N2 = 960× 1920 (h = 0.025 m).
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Fig. 4. The relative error in a blocky-layered medium with interlayers δ = 0.025 m (left) and
δ = 0.2 m (right) thick, interlayer material with ρ′ = ρ, c′p = cp, c′s = cs (upper), a more
compliant interlayer material ρ′ = 2100 kg/m3, c′p = 2900 m/s, c′s = 1700 m/s (bottom)

Verification of the mathematical model and computational technology was carried out ac-
cording to experimental data published in paper [6]. In the experiments on a biaxial stand, a
blocky-layered medium was simulated by an assembly of 36 blocks measuring 89×125×250 mm,
each made of plexiglass (ρ = 2040 kg/m3, cp = 2670 m/s). Blocks were separated by 5 mm
thick rubber interlayers with shear moduli in directions x1 and x2 equal to 107/1.3 Pa and
1.35 · 107/1.3 Pa, respectively.

It was assumed that the shear moduli of the interlayers correspond to the state of long-term
deformation, when both elements of the rheological scheme are deformed (Fig. 1). The Poisson’s
ratio for all assembly materials was assumed to be 0.3. Fig. 5 shows the diagram of the numerical
experiment. The rod striker generated elastic waves in contact with the surface of the block.
At point ximp, denoted by the red arrow in Fig. 6, the pulse impact σ11(t, ximp) = p(t) with

Fig. 5. The numerical experiment diagram. Accelerometers a1 and a2 are placed in the central
points of the corresponding blocks
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duration Timp = 0.2 ms has the following form:

p(t) =

{
p0 sin(πt/Timp), 0 < t 6 Timp

0, t > Timp.

Accelerometers a1 and a2 were measuring accelerations wi = ∂vi/∂t for 5 ms in the central points
of the corresponding blocks.

Figures 6–9 show the theoretical and experimental results from paper [6] in comparison with
the numerical solution of (1) and (8). The experimental dependencies of acceleration on time
are denoted by the blue dashed line, the red lines show accelerations calculated using the ap-
proach proposed in [6], the green curves correspond to the numerical solution for a medium with
elastic blocks and viscoelastic interlayers. The parameters of the SLS were obtained using the
τ -method [12] assuming that quality factor Q is nearly constant in the frequency range [100, 5000]
Hz. It was assumed that quality factors of the longitudinal and transverse waves are Qp = 20

and Qs = 10, respectively. The lack of data on the material of the interlayers leaves a certain
amount of arbitrariness in the choice of parameters of the viscoelastic medium.

Fig. 6. Waveforms of acceleration w1, measured in the centre of block a1

Fig. 7. Waveforms of acceleration w1, measured in the centre of block a2

The results of the numerical simulation are in good agreement with experimental data. The
calculated acceleration waveform shown in Fig. 6 is almost identical to the experimental mea-
surement. In Fig. 7 one can see the difference in phase, but the qualitative behaviour of the waves
remains the same. A more observable difference can be noted in Fig. 8–9 where the experimental
high-frequency oscillations with large amplitude were not detected numerically. Most likely, this
is due to the fact that accelerations in the experiment were measured on the side surface of the
block, while the two-dimensional problem supposes measurements "inside" the thickness of the
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Fig. 8. Waveforms of acceleration w2, measured in the centre of block a1

Fig. 9. Waveforms of acceleration w2, measured in the centre of the block a2

block. It would be more accurate to apply a three-dimensional model of a blocky-layered medium
with the same location of accelerometers as in the real experiment.

Conclusions

The considered simplified interlayer model reliably describes wave processes in blocky-layered
media. When blocks and interlayers are made of the same material, non-physical reflections occur
and grow as the interlayers get thicker. The solutions for the simplified interlayers model and
for the interlayers described by elasticity theory equations are compared. It is observed that
the error of the numerical solution obtained by the simplified model increases with increasing
ratio of the interlayer thickness to the grid step. The mathematical model was verified on the
experimental data published in paper [6]. The presented computations show good agreement
with the experimental measurements.

This work is supported by the Krasnoyarsk Mathematical Center and financed by the Ministry
of Science and Higher Education of the Russian Federation in the framework of the establish-
ment and development of regional Centers for Mathematics Research and Education (Agreement
no. 075-02-2024-1378).
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Распространение волн в блочно-слоистой среде с тонкими
прослойками
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Владимир М. Садовский
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Аннотация. Исследуется математическая модель блочно-слоистой среды с тонкими прослойками.
Рассматриваются деформируемые упругие блоки и упругие прослойки. Для описания затухания
волн учитывается вязкоупругость в прослойках. Проводится численное сравнение упрощённой мо-
дели прослоек с прослойками, описываемыми полными уравнениями теории упругости. Результаты
численного моделирования сравниваются с экспериментальными данными.

Ключевые слова: блочно-слоистая среда, тонкая прослойка, вязкоупругая прослойка.
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Abstract. The cell mechanical assay has emerged as a powerful approach to studying cellular behav-
ior and protein dynamics. This work presents the novel protocol that combines cell nanomechanical
assay with rapid protein expression profiling, enabling comprehensive insight into cellular responses.
The new protocol leverages advanced techniques in atomic force microscopy (AFM) to measure the me-
chanical properties of individual cells, while simultaneously utilizing a laser scanning microscopy for the
high-throughput quantification of protein expression levels. This dual-assay method allows researchers
to elucidate the relationship between cellular mechanical properties and protein dynamics, uncovering
critical insights into cellular physiology and pathophysiology. The effectiveness of the protocol was vali-
dated through experiments with cancer cells, showcasing its potential in colocalization of wnt3a ligand
molecule and actin cytoskeleton with Young’s modulus patterns of the cell. Our findings indicate that
this integrated approach not only enhances the accuracy of cellular assessments but also accelerates the
understanding of cellular mechanisms at the nanoscale. This protocol holds promise for applications in
drug development, diagnostics, and personalized medicine, offering a new lens through which we can
explore the intricate interplay between cellular mechanics and protein expression.
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Introduction

Atomic Force Microscopy (AFM) is a tool often used for studying biological structures and
processes at cellular and molecular scales. It offers the ability to image live cells at a resolution
much higher than light microscopy allows [1]. AFM is particularly significant in the analy-
sis of cell and biomechanics, where it quantifies mechanical parameters related to cytoskeleton
organization [2].

However, quantifying cell mechanics presents its own challenges. The main one is that the
cell senses external mechanical stimuli and changes its metabolic profile, which in turn changes
its mechanical properties [3]. This is a prerequisite for understanding the role of mechanosens-
ing and the cellular response expressed as changes in cell stiffness and tension. At the same
time, measuring the relationship between molecular kinetics and cell mechanics opens up new
possibilities for understanding the adaptive mechanobiological mechanisms of cells that have yet
to be fully understood [4]. Combining Laser Scanning Microscopy (LSM) with Atomic Force
Microscopy (AFM) can significantly enrich data acquisition for cell and biomaterial research.

AFM is a technique that provides high-resolution images, which allows users to view surfaces
under any aqueous conditions. It is used to study the structural and mechanical properties of a
wide range of biological matters like biomolecules, cells, and tissues. However, AFM studies are
typically limited to imaging the surface of the cell membrane [5].

On the other hand, LSM is an optical imaging technique that offers a variety of supplemental
datasets. While AFM provides valuable information from the topography mapping of a sample
surface, LSM allows the acquisition of molecular marker distributions [6]. Hence, when combined,
they can provide comprehensive information on surface structure, mechanical topography and
specific molecular distribution.

The combination also permits structural mapping of properties and enables manipulation
with molecular precision [6]. This combined mapping of immunohistochemical and topographical
properties aids in delivering more comprehensive and detailed data [7].

Previously we proved that mechanical properties of glioma cells depend on the expression of
CD44 receptors on the cell surface [8].

We verified this protocol on WNT3a and actin colocalization with nanomechanical properties
obtained by AFM.

Wnt ligands are secreted proteins which activate the wnt pathway by interaction with Frizzled
protein (Fz) and cytoplasmic low-density lipoproteins LRP 5/6 [9]. Canonical wnt3a pathway
involved in all cell and tissue processes including cell division, differentiation, malignization and
epithelial-mesenchymal transition [10–12]. Several studies are devoted to anticancer therapy
based on targeting on wnt3a protein or its receptor. The main targets are Disheveled (Dvl)
protein [13], PORCN, or miRNA assays [14].

It was shown that wnt3a has a significant impact on glioblastoma cell migration and prolifer-
ation both in vitro and in vitro. Glioblastoma cells are synthesizing Wnt3a which increases local
microglial ARG-1 and STI1 expression, followed by an upregulation of IL-10 mRNA levels, and
a decrease in IL1β gene expression. The presence of Wnt3a in microglia-glioblastoma co-cultures
increases the formation of cell membrane actin cytoskeleton accompanied by changes in migration
capability. In vivo, tumors formed from Wnt3a-stimulated glioblastoma cells presented greater
microglial infiltration and more aggressive characteristics such as growth rate than untreated
tumors [15].

In this study, we propose a fast and effective assay for conducting live cell imaging using the
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combined strengths of Atomic Force Microscopy (AFM) and Laser Scanning Microscopy (LSM).

1. Materials and methods

1.1. Cell culture assay

Glioma early-passage cell cultures BT32, BT39, BT40, BT52 established from tumor samples
described previously were used in this work [8]. The established cell cultures were cultivated until
the 80% confluency; then, the cells were removed from the flask surfaces by using 0.25% trypsin
solution (Thermo Fisher, Waltham, MA, USA) and reseeded on sterile coverslips laying in cell
culture dishes. High-glucose DMEM with 1mM sodium pyruvate and 300 mg/L L-glutamine
(Thermo Fisher, Waltham, MA, USA), 10% fetal bovine serum (FBS) (Thermo Fisher, Waltham,
MA, USA), penicillin (50 U/ml) and streptomycin (50 ug/ml) (Thermo Fisher, Waltham, MA,
USA) was used.

1.2. Atomic force microscopy

We used a Bruker BioScope Resolve microscope (Bruker, USA) for atomic force microscopy
(AFM). The probes selected for the experiments were PFQNM-LC-A-Cal and SNL-C (Bruker,
USA). Before each experiment, the probe was calibrated. The cantilever spring constant values
provided by the manufacturer were cross-checked by performing a thermal noise calibration [16]
and the calibration was performed on a solid surface. This calibration was necessary to determine
the deflection sensitivity by obtaining multiple force curves on a rigid sample, which formed the
basis for subsequent analysis. In addition, we determined the tip radius by reconstructing it, an
operation that involved imaging a rough titanium sample (Bruker, USA). Before atomic force
microscopy, the cells were fixed with 4% PFA (Sigma, USA) prepared in 1x PBS.

During Atomic Force Microscopy (AFM) scanning, measures were taken to prevent cellular
damage and ensure the generation of quality force curves. These steps included limiting the tip
velocity to 66 µm/s, setting the peak force tapping frequency at 0.5 kHz, defining the image scan
size at 100 µm, and fixing the number of samples per line and the number of lines at 256 each. The
initial force curves analysis was carried out utilizing the Derjagin, Muller, Toropov model (DMT-
model [17]). This model was crucial in analyzing sample deformation by an amount smaller than
the probe’s radius. The nanomechanical analysis was carried out using the NanoScope analysis
software (Bruker, USA), which was provided with the atomic force microscope. The subsequent
data analysis for group classifications (parametric and non-parametric statistics) was carried out
using GraphPad Prism 8 software (GraphPad Software, USA).

1.3. Immunocytochemistry (ICC)

Cells were fixed in 4% paraformaldehyde prepared on PBS for 15 min and washed 3 times for
5 min in 0.05% Tween-20 (Helicon, RF) prepared on PBS (PBS-T). The next step was membrane
permeabilization by Triton X-100 (Helicon, RF) 0.5% solution prepared on PBS for 5 min at
room temperature. Cells were blocked by incubation for 2 h with 3% Bovine Serum Albumin
(Sigma–Aldrich, USA) prepared on PBS. Cell labeling was performed by using primary antibodies
wnt3a (ServiceBio, China) and Rhodamine–Phalloidin staining (Thermo–Fisher, USA) in supply-
recommended titer in PBS for 2 h at room temperature. Alexa Fluor 488 goat anti-rabbit IgG
(H+L) (a11034, Thermo–Fisher, USA) secondary antibodies were used. The labeling procedure
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was performed for 1 h at room temperature. To stain the nucleus, we added DAPI (Sigma–
Aldrich, USA) for 10 min with concentration of 300 nM in the final washing step.

1.4. Laser scanning microscopy

Laser Scanning Microscopy (LSM) was conducted using an Olympus FV1200 microscope
(Olympus, Japan). We chose a magnification setting of x60 (Olympus UPlanSAPO 60X ) and
set the scanning resolution to 1600. The coverglasses with fixed and stained cells were transferred
on a clean slide and embedded in Mowiol 4-88 solution. In order to yield comparative data on
protein expression, we ensured that all images were procured under consistent image acquisition
parameters. Additionally, these images were systematically taken in a manner such that they
encompassed the fields acquired through Atomic Force Microscopy (AFM).

1.5. Image overlaying and colocalization assay

To effectively overlay the atomic force microscopy (AFM) and laser scanning microscopy
(LSM) images, ImageJ software was used. To ensure effective overlay, the color scheme of each
AFM image was adjusted to effectively separate invalid zero values as well as the plastic substrate.
After that, the AFM image was imported into ImageJ software and manually overlaid onto the
LSM image. The Coloc2 plugin was used to calculate the colocalization of AFM and LSM data.
The median fluorescence was then colocalized to Young’s modulus.

In this study, we employed Pearson’s correlation coefficient (PCC) and Manders’ colocal-
ization coefficient (MCC) to quantitatively assess colocalization in imaging data. The PCC is
calculated using the intensities of the red (Ri) and green (Gi) channels for each pixel (i), along
with the mean intensities (R and G) of the respective channels across the entire image. The
formula for PCC is presented below:

PCC =

∑
i(Ri −R)× (Gi −G)√∑

i(Ri −R)2 ×
∑
i(Gi −G)2

(1)

and resulting values can range from +1, indicating a perfect linear relationship between the
fluorescence intensities of the two channels, to –1, signifying a perfect inverse relationship Man-
ders’ colocalization coefficient (MCC) is a valuable metric for determining the proportion of one
protein that colocalizes with another. When analyzing two probes, referred to as R and G, two
distinct MCC values are generated: M1, which represents the fraction of R found in compart-
ments that contain G, and M2, which indicates the fraction of G in compartments that contain
R. The calculations for these coefficients are as follows:

M1 is calculated as:

(M1 =

∑
iRi,colocal∑

iRi
), (2)

where (Ri,colocal = Ri) if (Gi > 0) and (Ri,colocal = 0) if (Gi = 0).
M2 is calculated as:

(M2 =

∑
iGi,colocal∑

iGi
), (3)

where (Gi,colocal = Gi) if (Ri > 0) and (Gi,colocal = 0) if (Ri = 0).
Costes et al. [18] introduced a novel method for automatically determining the threshold value

used to identify background levels. This method involves analyzing the range of pixel values that
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yield a positive Pearson correlation coefficient (PCC). Initially, PCC is calculated for all pixels
in the image, and then it is recalculated for pixels corresponding to the next lower red and green
intensity values along the regression line. This iterative process continues until the pixel values
reach a point where the PCC falls to zero or below. The red and green intensity values at this
juncture are established as the threshold values for identifying background levels in each channel.
Only pixels with red and green intensity values exceeding their respective thresholds are classified
as having colocalized probes. The MCC is then computed as the fraction of total fluorescence
within the region of interest that is attributed to these "colocal" pixels [19].

2. Results

2.1. WNT3a intensity does not depend on cell nanomechanical
properties

Glioma early-passage cells were seeded on coverslips fixed and atomic force microscopy was
done. Following cell labeling and laser scanning microscopy colocalization analysis was performed
to investigate the relationship between nanomechanical properties of cells and local expression
of WNT3a protein and fibrillar actin in 4 cell cultures. The modified tM1, tM2 coefficients
(threshold Manders’ coefficients, MCC) and Pearson coefficient (PCC) were calculated, for which
the ImageJ software threshold values were used.

The distribution of actin in all studied cell cultures showed significant colocalization with
Young’s modulus values. For the BT32 cell culture, Manders’ colocalization coefficients were
0.817 (tM1) and 0.6 (tM2), indicating the extent of actin fluorescence detected over Young’s
modulus (tM1) and vice versa (tM2) (Fig. 1A). However, the Pearson correlation coefficient was
relatively low at 0.01, reflected by a wide scatter in the scatterplot. This suggests a potential
nonlinear relationship between the actin fraction and Young’s modulus or a low dependency
between these values (Fig. 1B).

Similar patterns were observed in other cell cultures, characterized by high Manders’ colocal-
ization coefficients (MCC) and low Pearson correlation coefficients (PCC). For BT39, the tM1,
tM2, and PCC values were 0.99, 0.98, and 0.09, respectively; for BT52, the values were 0.98, 0.94,
and 0.15; and for BT40, the values were 0.9, 0.68, and 0.04. Colocalization images displayed a
predominance of colocalized pixels (gray) over non-colocalized pixels (red for actin and green for
nanomechanics) (Fig. 1A). Scatterplots also suggested a complex relationship between Young’s
modulus and the actin fraction (Fig. 1B).

The distribution of Wnt3a in the studied cell cultures showed considerable heterogeneity
in colocalization with Young’s modulus values. In the BT39 cell culture, tM1 and tM2 were
relatively high at 0.99 and 0.98, respectively, while the Pearson correlation coefficient (PCC)
was –0.06. About 97% of the non-zero pixels for Wnt3a overlapped with Young’s modulus values
(Fig. 1C), though the scatterplot of Wnt3a and Young’s modulus intensities was widely dispersed
(Fig. 1D).

For BT40 and BT52 cell cultures, tM1 and tM2 values were moderate: 0.81 and 0.49 for
BT40, and 0.82 and 0.56 for BT52. Similar to BT39, the PCC values for BT40 and BT52
were close to zero, at –0.05 and –0.06, respectively. The images displayed a significant number
of non-colocalized Young’s modulus regions (Fig. 2C), and the scatterplots for these cultures
also showed a broad distribution (Fig. 1D). In contrast, the BT32 cell culture exhibited weak
colocalization between Wnt3a and Young’s modulus, with tM1 at 0.07 and tM2 at 0.2.
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Fig. 1. Actin and WNT3a colocalization with Young’s modulus: A. Merged images of actin,
Young’s modulus and colocalized data; B. Merged images of wnt3a, Young’s modulus and colo-
calized data

The images revealed a large number of non-colocalized patterns for both Young’s modulus and
Wnt3a, with very few colocalized areas (Fig. 2C), further supported by the scatterplot indicating
low colocalization (Fig. 2D).

Probes with both large and small tip radii were tested.
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The sharp probe (SNL) demonstrated high indentation values in the cell, which led to
"sticking", especially on rough or soft cell areas like the nucleus (Fig. 2A). These probes are
suitable for precise analysis of rigid samples like plastic substrate or lyophilized protein sample
(Fig. 2B). Probes with a larger tip radius are generally more suitable for AFM imaging of cells
(Fig. 2C).

Fig. 2. The influence of the probe shape on AFM visualization: A. Cell visualized by the sharp
SNL probe; B. Cell culture plastic visualized by the sharp SNL probe; C. Cell visualized by the
probe with high tip radius; D. LSM image in grayscale with inappropriate microscope settings;
E. LSM image in grayscale with appropriate microscope settings

Properly adjusting the LSM detector sensitivity and laser power is crucial for colocalization
analysis (Fig. 2C,D). Incorrect settings can affect the PCC values due to invalid pixel intensities
caused by overexposure or underexposure. Similarly, it’s important to adjust the AFM pseudo-
color scheme to ensure sufficient contrast for visualizing the cells (Fig. 3A). This includes setting
a range for invalid/zero values and substrate data (Fig. 3B), allowing the final AFM image to
clearly distinguish invalid data from the substrate (Fig. 3C).

During AFM and LSM scanning, clusters of invalid data may be acquired. Removing this data
is essential for accurate colocalization analysis. Instead of manually drawing regions of interest
(ROI), it’s preferable to use a mask generated from the AFM image (Fig. 4A). Transferring this
ROI to the LSM image ensures that any LSM data not covered by AFM is removed (Fig. 4B).
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Fig. 3. AFM image color scheme adjustment: A. Data scaling to focus on the cell; B. Editing
the color table to visualize the data referred to cell surface; C. The resulting AFM image

Fig. 4. LSM image editing to exclude the data not represented on AFM slide: A. The mask
done on AFM image. White color refers to the surfaces without valid AFM data; B. Initial LSM
image that have the same resolution, and the data not represented on AFM image (Green arrow,
yellow lines) and cleaned LSM image

2.2. Procedure for AFM-LSM colocalization

1. Passage the cells on sterile coverglasses, or confocal cell culture dishes (Nunc 150680 or
similar) for 1–2 days to allow the cells to recover their protein expression and synthesize
surface markers, damaged by previous disaggregation.

(Timing 1–3 d).

2. Propagate the atomic force microscopy:

a. Remove the media and fix the cells with a 4% buffered PFA solution for 15 minutes.

b. Carefully rinse the cells 3 times for 5 minutes with the warm PBS. Avoid scratching the
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cell substrate.

c. Choose an appropriate probe — the sharp and stiff probes are more suitable for small
and rigid objects, and not always suitable for the cells (Fig. 2 A,B). The probes with
large tip radius are better for the cell visualization, especially when the scan size exceeds
10 um (Fig. 2 C). However, the microscopy’s effective resolution usually does not allow
to visualize small objects (less than 200 nm), so very high resolution of an AFM image
may be useless in order to AFM-LSM colocalization.

d. The critical step is probe calibration. To promote a reliable and valid scanning is
required to estimate the deflection sensitivity, spring constant and tip radius/tip half
angle (this depends on the model used to calculate the sample Young’s modulus).

e. The AFM scanning parameters should be chosen in order to promote high resolution
which must not be lower than LSM image and not damage the cell. The optimal
resolution for the 100 um AFM image is 256–512 samples/line.

f. It is strongly recommended to perform a Bright field or Phase contrast image of each
AFM-examined cell for the effective AFM-LSM overlaying.
(Timing 1–2 d).

3. Perform antibody labeling:

a. For an effective AFM-LSM colocalization the investigated marker must be localized on
the cell surface, or very close to it, so membrane permeabilization may not be useful.
Moreover, harsh detergents such as Triton X-100 or NP-40 may solubilize cell membrane,
membrane-associated antigens and change its mechanical properties. So, use it carefully.
The optimal detergent and the permeabilization time should be optimized for each cell
line and the investigated protein. One of the most used reagent is Triton X-100 in the
concentration of 0.05–0.1% in PBS and the incubation time is 3–5 minutes.

b. Carefully rinse the cells 3 times for 5 minutes with the warm PBS. Avoid scratching the
cell substrate.

c. Block the cells using the bovine serum albumin, 3% on PBS for 2 hours on room tem-
perature or overnight on +4. Use the moisture chamber to avoid drying the sample.

d. During the previous step prepare the antibody solution in desired dilution on PBS.
Avoid the freeze-thaw cycles of the antibody stock.

e. Carefully rinse the cells 3 times for 5 minutes with the warm PBS. Avoid scratching the
cell substrate.

f. Cover the sample with the antibody solution. Incubate 2 hours at room temperature or
overnight on +4. Use the moisture chamber to avoid drying the sample.

g. During the previous step prepare the fluorophore-conjugated antibody solution in desired
dilution on PBS. Avoid the freeze-thaw cycles of the antibody stock and light exposure
to prevent photobleaching.

h. Carefully rinse the cells 3 times for 5 minutes with the warm PBS. Avoid scratching the
cell substrate.

i. Cover the sample with the antibody solution. Incubate 2 hours at room temperature or
overnight on +4 away from light.
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j. Carefully rinse the cells 3 times for 5 minutes with the warm PBS. Avoid scratching the
cell substrate.

k. Stain the nucleus with DAPI or PI and actin cytoskeleton with Phalloidin-fluorophore
conjugate if necessary, away from light.

l. If you used coverslips as a cell substrate, transfer them on clean slides, with an addition
of 15–20 ul of mounting medium. Place coverslip over the slide using tweezers. If using
an aqueous mounting medium, seal with limonene or nail polish.
(Timing 1 d).

4. Examine the samples using Laser scanning microscopy. For cell visualization combined
with AFM, objectives with a magnification of more than 60x are most preferred.

a. When doing microscopy, adjust the laser power and detector sensitivity in order to
avoid overexposed and underexposed pixels (Fig. 2D,E). Use the same image acquisition
setting to acquire comparable intensity data.

b. If possible use the same picture resolution (pixels/um) as the AFM resolution.
(Timing 1d).

5. Set up the AFM Young’s Modulus Image Color Scheme.

a. Adjust the image data scale to show the cell surface in detail. The data scale should
range from zero to the hardest part of the cell surface (Figure 3A).

b. Set up the color scheme. The color plot should include 3 regions: zero and invalid data
points; the bulk of the cell surface; and the substrate region. The bulk of the color plot
should be in a single color channel — red, green, or blue — and should not overlap with
zero or substrate data points, which should be in a different single color (Fig. 3B,C).

c. Export the resulting image as a high-resolution, uncompressed .tif file.
(Timing 20–30 min).

6. Overlay the AFM and LSM image using ImageJ or another raster graphics editor.

a. Modify LSM image in order to effective overlay the AFM image — flip picture if neces-
sary, rotate and resize it.

b. Crop the LSM to AFM picture size and match the cell structures on both images.

c. Import the AFM image to ImageJ, separate the channels by Image → Color → Make
Composite command, then split the channels by Image → Color → Split Channels
command. Save the obtained images in .tif.

d. Import the prepared LSM image to ImageJ and do the same manipulations as described
in the previous step. Save the obtained images in .tif.
(Timing 2–4 h).

7. Perform the image colocalization analysis using ImageJ.

a. Create a negative image mask based on the AFM image obtained on 8c step by using
Image → Adjust → Threshold command. Use the values between 0 and 1 (Fig. 4A).
This step is needed to remove all the data on the LSM image which is not covered by
AFM.
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b. Create the composite Region of Interest by Analyze → Analyze particles command.
The values of the fields "Size" and "Circularity" must be "0-Infinity" and "0.00-1.00",
respectively, parameters "Add to manager", "Include holes", "Overlay", "Composite
ROIs" must be tagged on. Other parameters are out of interest in this analysis. As a
result a bulk of regions of interest will be obtained. (Fig. 4B).

c. Transfer the ROIs obtained on the previous step to each stack of LSM images obtained
on the 8d step and delete the data in these ROIs.

d. Use Coloc2 or ColocalisationThreshold plugin to perform pixel-wise colocalization anal-
ysis.

(Timing 1 h).

3. Discussion

It was shown that β-actin and other cytoskeleton components have a significant impact on
cell rheology. However, not only cytoskeleton itself modulates cell mechanics, it always bounded
to various proteins , such as myosin and tropomyosin, which could modulate cell mechanics via
contractile forces [20], or could change actin conformation [21]. The weak Pearson correlation
between cell surface nanomechanics and actin cytoskeleton localisation may be explained by lo-
calisation of actin fibers deep inside the cell or altered contractility of actin-myosin compounds
and therefore, non-linear dependency between Young’s modulus and actin expression [22]. How-
ever, high MCC values indicate that actin cytoskeleton provides a significant impact on cell
mechanics.

Wnt3a is a target gene of regulatory RNA such as miR-491 and miR-491 that mediates
epithelial-mesenchymal transition (EMT). Additionally, miR-491 regulated the proliferation
through the Wnt/β-Catenin pathway by targeting Wnt3a [11]. Wnt3a downregulation leads
to Wnt-signaling alteration and increased sensitivity to temozolomide in vitro [23]. It was shown
that Wnt3a receptor — LRP6 protein is associated with lipid rafts [24] and signal transduction
modulated by Wnt3a is hypothesized to modulate local membrane hardness and could be an
effective nanomechanical marker for EMT. However, the results, which show varying levels of
colocalization across different cell cultures, cast doubt on this thesis.

The method used for this investigation could be used for the various implementations con-
nected to the AFM and LSM studied and used for the direct proof of physical relations between
studying protein and membrane stiff structures such as lipid rafts or cytoskeleton local complexes.

AFM is rarely used in combination with LSM. Several papers including high-resolution AFM-
LSM scanning [25], actin cytoskeleton scanning [26], cell receptor visualization [27] and SEM-LSM
scanning [28]. However, these studies did not perform a quantitative assessment of data from one
area obtained by different methods. Moreover, hardware optical laser scanning AFM systems
are not widely used and are expensive. Our method will make it possible to effectively use data
obtained in various ways for multivariate analysis of biological systems.

Conclusion

Comparing data from different microscopy techniques can be challenging. Our ImageJ-based
method offers a fast, reliable, and free way to analyze cell surfaces captured by various imaging
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methods, both optical and non-optical. This approach enhances the versatility of the data and
enables a quantitative evaluation of specific features of interest.

This research was funded by the Russian Science Foundation (project no. 20-15-00378п).
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Аннотация. Атомно-силовая микроскопия стала одним из ключевых методов изучения клеток
и белков. В этой работе представлен новый протокол, который сочетает в себе наномеханическое
исследование клеток с быстрым профилированием экспрессии белков, что позволяет получить но-
вый источник данных для фундаментальных и прикладных исследований в области клеточной
биологии. Новый протокол основан на методах атомно-силовой микроскопии (АСМ) для измере-
ния механических свойств отдельных клеток и лазерной сканирующей микроскопии (ЛСМ) для
высокопроизводительного количественного анализа уровня экспрессии белков. Такой подход поз-
воляет оценить взаимосвязь между механическими свойствами клеток и динамикой белков, рас-
крывая важные аспекты физиологии и патофизиологии клеток. Эффективность протокола была
подтверждена экспериментами с раковыми клетками, демонстрируя его потенциал в колокализации
молекулы лиганда wnt3a и актина цитоскелета с картинами модуля Юнга клетки. Разработанный
подход найдет свое применение в разработке лекарств, диагностике злокачественных опухолей и
персонализированной медицине, предлагая новый взгляд на сложное взаимодействие между меха-
никой клеток и локальной экспрессией белков.

Ключевые слова: атомно-силовая микроскопия, лазерная сканирующая микроскопия, колокали-
зация, глиомы, wnt-сигналинг.

– 143 –


	J_MATH_1_цв.pdf
	мат.физ.18.1.pdf

